
ESA PSS-05-10 Issue 1 Revision 1
March 1995

european space agency / agence spatiale européenne
8-10, rue Mario-Nikis, 75738 PARIS CEDEX, France

Guide to
software
verification
and
validation
Prepared by:
ESA Board for Software
Standardisation and Control
(BSSC)

Approved by:
The Inspector General, ESA

ii ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
DOCUMENT STATUS SHEET

DOCUMENT STATUS SHEET

DOCUMENT STATUS SHEET

1. DOCUMENT TITLE: ESA PSS-05-10 Guide to Software Verification and Validation

2. ISSUE 3. REVISION 4. DATE 5. REASON FOR CHANGE

1 0 1994 First issue

1 1 1995 Minor updates for publication

Issue 1 Revision 1 approved, May 1995
Board for Software Standardisation and Control
M. Jones and U. Mortensen, co-chairmen

Issue 1 approved by:
The Inspector General, ESA

Published by ESA Publications Division,
ESTEC, Noordwijk, The Netherlands.
Printed in the Netherlands.
ESA Price code: E2
ISSN 0379-4059

Copyright © 1994 by European Space Agency

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) iii
TABLE OF CONTENTS

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION.. 1
1.1 PURPOSE ...1
1.2 OVERVIEW..1
1.3 IEEE STANDARDS USED FOR THIS GUIDE...2

CHAPTER 2 SOFTWARE VERIFICATION AND VALIDATION.............................. 3
2.1 INTRODUCTION...3
2.2 PRINCIPLES OF SOFTWARE VERIFICATION AND VALIDATION.........................4
2.3 REVIEWS...6

2.3.1 Technical reviews..7
2.3.1.1 Objectives...8
2.3.1.2 Organisation ...8
2.3.1.3 Input ..9
2.3.1.4 Activities..9

2.3.1.4.1 Preparation.. 10
2.3.1.4.2 Review meeting... 11

2.3.1.5 Output .. 12
2.3.2 Walkthroughs.. 12

2.3.2.1 Objectives.. 13
2.3.2.2 Organisation .. 13
2.3.2.3 Input ... 14
2.3.2.4 Activities... 14

2.3.2.4.1 Preparation.. 14
2.3.2.4.2 Review meeting... 14

2.3.2.5 Output .. 15
2.3.3 Audits ... 15

2.3.3.1 Objectives.. 16
2.3.3.2 Organisation .. 16
2.3.3.3 Input .. 16
2.3.3.4 Activities... 17
2.3.3.5 Output .. 17

2.4 TRACING .. 18
2.5 FORMAL PROOF.. 19
2.6 TESTING ... 19

2.6.1 Unit tests .. 22
2.6.1.1 Unit test planning .. 22
2.6.1.2 Unit test design ... 23

2.6.1.2.1 White-box unit tests .. 25
2.6.1.2.2 Black-box unit tests... 26
2.6.1.2.3 Performance tests... 28

iv ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
TABLE OF CONTENTS

2.6.1.3 Unit test case definition... 28
2.6.1.4 Unit test procedure definition.. 28
2.6.1.5 Unit test reporting.. 29

2.6.2 Integration tests ... 29
2.6.2.1 Integration test planning ... 29
2.6.2.2 Integration test design .. 30

2.6.2.2.1 White-box integration tests ... 31
2.6.2.2.2 Black-box integration tests ... 32
2.6.2.2.3 Performance tests... 32

2.6.2.3 Integration test case definition.. 32
2.6.2.4 Integration test procedure definition... 32
2.6.2.5 Integration test reporting... 33

2.6.3 System tests .. 33
2.6.3.1 System test planning... 33
2.6.3.2 System test design.. 33

2.6.3.2.1 Function tests.. 34
2.6.3.2.2 Performance tests... 34
2.6.3.2.3 Interface tests.. 35
2.6.3.2.4 Operations tests.. 35
2.6.3.2.5 Resource tests .. 36
2.6.3.2.6 Security tests... 36
2.6.3.2.7 Portability tests.. 37
2.6.3.2.8 Reliability tests... 37
2.6.3.2.9 Maintainability tests .. 37
2.6.3.2.10 Safety tests.. 38
2.6.3.2.11 Miscellaneous tests .. 38
2.6.3.2.12 Regression tests ... 38
2.6.3.2.13 Stress tests.. 39

2.6.3.3 System test case definition ... 39
2.6.3.4 System test procedure definition .. 39
2.6.3.5 System test reporting .. 40

2.6.4 Acceptance tests... 40
2.6.4.1 Acceptance test planning ... 40
2.6.4.2 Acceptance test design .. 40

2.6.4.2.1 Capability tests.. 41
2.6.4.2.2 Constraint tests ... 41

2.6.4.3 Acceptance test case specification.. 41
2.6.4.4 Acceptance test procedure specification... 42
2.6.4.5 Acceptance test reporting... 42

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) v
TABLE OF CONTENTS

CHAPTER 3 SOFTWARE VERIFICATION AND VALIDATION METHODS......... 43
3.1 INTRODUCTION... 43
3.2 SOFTWARE INSPECTIONS ... 43

3.2.1 Objectives .. 44
3.2.2 Organisation .. 44
3.2.3 Input ... 45
3.2.4 Activities ... 45

3.2.4.1 Overview .. 46
3.2.4.2 Preparation .. 46
3.2.4.3 Review meeting ... 47
3.2.4.4 Rework ... 48
3.2.4.5 Follow-up ... 48

3.2.5 Output .. 48
3.3 FORMAL METHODS .. 48
3.4 PROGRAM VERIFICATION TECHNIQUES.. 49
3.5 CLEANROOM METHOD .. 49
3.6 STRUCTURED TESTING.. 50

3.6.1 Testability ... 50
3.6.2 Branch testing.. 54
3.6.3 Baseline method.. 54

3.7 STRUCTURED INTEGRATION TESTING .. 55
3.7.1 Testability ... 56
3.7.2 Control flow testing.. 60
3.7.3 Design integration testing method.. 60

CHAPTER 4 SOFTWARE VERIFICATION AND VALIDATION TOOLS............... 63
4.1 INTRODUCTION... 63
4.2 TOOLS FOR REVIEWING... 63

4.2.1 General administrative tools.. 63
4.2.2 Static analysers.. 64
4.2.3 Configuration management tools ... 65
4.2.4 Reverse engineering tools... 65

4.3 TOOLS FOR TRACING... 65
4.4 TOOLS FOR FORMAL PROOF.. 67
4.5 TOOLS FOR TESTING ... 67

4.5.1 Static analysers.. 69
4.5.2 Test case generators... 70
4.5.3 Test harnesses .. 70
4.5.4 Debuggers ... 72
4.5.5 Coverage analysers... 72
4.5.6 Performance analysers.. 73
4.5.7 Comparators.. 73
4.5.8 Test management tools .. 74

vi ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
TABLE OF CONTENTS

CHAPTER 5 THE SOFTWARE VERIFICATION AND VALIDATION PLAN 75
5.1 INTRODUCTION... 75
5.2 STYLE.. 77
5.3 RESPONSIBILITY.. 77
5.4 MEDIUM.. 77
5.5 SERVICE INFORMATION... 78
5.6 CONTENT OF SVVP/SR, SVVP/AD & SVVP/DD SECTIONS............................... 78
5.7 CONTENT OF SVVP/UT, SVVP/IT, SVVP/ST & SVVP/AT SECTIONS 82
5.8 EVOLUTION.. 92

5.8.1 UR phase ... 92
5.8.2 SR phase.. 92
5.8.3 AD phase ... 93
5.8.4 DD phase ... 93

APPENDIX A GLOSSARY ...A-1
APPENDIX B REFERENCES...B-1
APPENDIX C MANDATORY PRACTICES ... C-1
APPENDIX D INDEX... D-1

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) vii
PREFACE

PREFACE

This document is one of a series of guides to software engineering produced by
the Board for Software Standardisation and Control (BSSC), of the European Space
Agency. The guides contain advisory material for software developers conforming to
ESA's Software Engineering Standards, ESA PSS-05-0. They have been compiled from
discussions with software engineers, research of the software engineering literature,
and experience gained from the application of the Software Engineering Standards in
projects.

Levels one and two of the document tree at the time of writing are shown in
Figure 1. This guide, identified by the shaded box, provides guidance about
implementing the mandatory requirements for software verification and validation
described in the top level document ESA PSS-05-0.

Guide to the
Software Engineering

Guide to the
User Requirements

Definition Phase

Guide to
Software Project

Management

PSS-05-01

PSS-05-02 UR Guide
PSS-05-03 SR Guide

PSS-05-04 AD Guide
PSS-05-05 DD Guide

PSS-05-06 TR Guide
PSS-05-07 OM Guide

PSS-05-08 SPM Guide
PSS-05-09 SCM Guide

PSS-05-11 SQA Guide

ESA
Software

Engineering
Standards

PSS-05-0

Standards

Level 1

Level 2

PSS-05-10 SVV Guide

Figure 1: ESA PSS-05-0 document tree

The Guide to the Software Engineering Standards, ESA PSS-05-01, contains
further information about the document tree. The interested reader should consult this
guide for current information about the ESA PSS-05-0 standards and guides.

The following past and present BSSC members have contributed to the
production of this guide: Carlo Mazza (chairman), Gianfranco Alvisi, Michael Jones,
Bryan Melton, Daniel de Pablo and Adriaan Scheffer.

viii ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
PREFACE

The BSSC wishes to thank Jon Fairclough for his assistance in the development
of the Standards and Guides, and to all those software engineers in ESA and Industry
who have made contributions.

Requests for clarifications, change proposals or any other comment concerning
this guide should be addressed to:

BSSC/ESOC Secretariat BSSC/ESTEC Secretariat
Attention of Mr C Mazza Attention of Mr B Melton
ESOC ESTEC
Robert Bosch Strasse 5 Postbus 299
D-64293 Darmstadt NL-2200 AG Noordwijk
Germany The Netherlands

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 1
INTRODUCTION

CHAPTER 1
INTRODUCTION

1.1 PURPOSE

ESA PSS-05-0 describes the software engineering standards to be
applied for all deliverable software implemented for the European Space
Agency (ESA), either in-house or by industry [Ref 1].

ESA PSS-05-0 requires that software be verified during every phase
of its development life cycle and validated when it is transferred. These
activities are called 'Software Verification and Validation' (SVV). Each project
must define its Software Verification and Validation activities in a Software
Verification and Validation Plan (SVVP).

This guide defines and explains what software verification and
validation is, provides guidelines on how to do it, and defines in detail what a
Software Verification and Validation Plan should contain.

This guide should be read by everyone concerned with developing
software, such as software project managers, software engineers and
software quality assurance staff. Sections on acceptance testing and formal
reviews should be of interest to users.

1.2 OVERVIEW

Chapter 2 contains a general discussion of the principles of
software verification and validation, expanding upon the ideas in ESA PSS-
05-0. Chapter 3 discusses methods for software verification and validation
that can be used to supplement the basic methods described in Chapter 2.
Chapter 4 discusses tools for software verification and validation. Chapter 5
describes how to write the SVVP.

All the mandatory practices in ESA PSS-05-0 concerning software
verification and validation are repeated in this document. The identifier of the
practice is added in parentheses to mark a repetition. This document
contains no new mandatory practices.

2 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
INTRODUCTION

1.3 IEEE STANDARDS USED FOR THIS GUIDE

Six standards of the Institute of Electrical and Electronics Engineers
(IEEE) have been used to ensure that this guide complies as far as possible
with internationally accepted standards for verification and validation
terminology and documentation. The IEEE standards are listed in Table 1.3
below.

Reference Title
610.12-1990 Standard Glossary of Software Engineering Terminology
829-1983 Standard for Software Test Documentation
1008-1987 Standard for Software Unit Testing
1012-1986 Standard for Software Verification and Validation Plans
1028-1988 Standard for Software Reviews and Audits

Table 1.3: IEEE Standards used for this guide.

IEEE Standard 829-1983 was used to define the table of contents
for the SVVP sections that document the unit, integration, system and
acceptance testing activities (i.e. SVVP/UT, SVVP/IT, SVVP/ST, SVVP/AT).

IEEE Standard 1008-1987 provides a detailed specification of the
unit testing process. Readers who require further information on the unit
testing should consult this standard.

IEEE Standard 1012-1986 was used to define the table of contents
for the SVVP sections that document the non-testing verification and
validation activities (i.e. SVVP/SR, SVVP/AD, SVVP/DD).

IEEE Standard 1028-1988 was used to define the technical review,
walkthrough, inspection and audit processes.

 Because of the need to integrate the requirements of six standards
into a single approach to software verification and validation, users of this
guide should not claim complete compliance with any one of the IEEE
standards.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 3
SOFTWARE VERIFICATION AND VALIDATION

 CHAPTER 2
SOFTWARE VERIFICATION AND VALIDATION

2.1 INTRODUCTION

 Software verification and validation activities check the software
against its specifications. Every project must verify and validate the software
it produces. This is done by:
• checking that each software item meets specified requirements;
• checking each software item before it is used as an input to another

activity;
• ensuring that checks on each software item are done, as far as

possible, by someone other than the author;
• ensuring that the amount of verification and validation effort is adequate

to show each software item is suitable for operational use.

Project management is responsible for organising software
verification and validation activities, the definition of software verification and
validation roles (e.g. review team leaders), and the allocation of staff to
those roles.

Whatever the size of project, software verification and validation
greatly affects software quality. People are not infallible, and software that
has not been verified has little chance of working. Typically, 20 to 50 errors
per 1000 lines of code are found during development, and 1.5 to 4 per 1000
lines of code remain even after system testing [Ref 20]. Each of these errors
could lead to an operational failure or non-compliance with a requirement.
The objective of software verification and validation is to reduce software
errors to an acceptable level. The effort needed can range from 30% to 90%
of the total project resources, depending upon the criticality and complexity
of the software [Ref 12].

 This chapter summarises the principles of software verification and
validation described in ESA PSS-05-0 and then discusses the application of
these principles first to documents and then to code.

4 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

2.2 PRINCIPLES OF SOFTWARE VERIFICATION AND VALIDATION

Verification can mean the:
• act of reviewing, inspecting, testing, checking, auditing, or otherwise

establishing and documenting whether items, processes, services or
documents conform to specified requirements [Ref.5];

• process of evaluating a system or component to determine whether the
products of a given development phase satisfy the conditions imposed
at the start of the phase [Ref. 6]

• formal proof of program correctness [Ref.6].

 The first definition of verification in the list above is the most general
and includes the other two. In ESA PSS-05-0, the first definition applies.

 Validation is, according to its ANSI/IEEE definition, 'the process of
evaluating a system or component during or at the end of the development
process to determine whether it satisfies specified requirements'. Validation
is, therefore, 'end-to-end' verification.

Verification activities include:
• technical reviews, walkthroughs and software inspections;
• checking that software requirements are traceable to user requirements;
• checking that design components are traceable to software

requirements;
• unit testing;
• integration testing;
• system testing;
• acceptance testing;
• audit.

Verification activities may include carrying out formal proofs.

 The activities to be conducted in a project are described in the
Software Verification and Validation Plan (SVVP).

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 5
SOFTWARE VERIFICATION AND VALIDATION

URD

SRD

ADD

DDD

INTEGRATION

TESTS

SYSTEM

TESTS

ACCEPTANCE

TESTS

UNIT

TESTS

Product

Key

Activity

Verify

1

2

3

4

5

6

7

8

CODE

DETAILED

DESIGN

ARCHITECTURAL
DESIGN

SOFTWARE

REQUIREMENTS

DEFINITION

USER

REQUIREMENTS

DEFINITION 9

Accepted
Software

Tested
System

Tested
Subsystems

Tested
Units

Compiled
Modules

Project
Request

SVVP/AT

SVVP/SR

SVVP/AD

SVVP/DD

SVVP/UT

SVVP/IT

SVVP/ST

SVVP/DD

 Figure 2.2: Life cycle verification approach

Figure 2.2 shows the life cycle verification approach. Software
development starts in the top left-hand corner, progresses down the left-
hand 'specification' side to the bottom of the 'V' and then onwards up the
right-hand 'production' side. The V-formation emphasises the need to verify
each output specification against its input specification, and the need to
verify the software at each stage of production against its corresponding
specification.

 In particular the:
• SRD must be verified with respect to the URD by means of the

SVVP/SR;
• ADD must be verified with respect to the SRD by means of the

SVVP/AD;
• DDD must be verified with respect to the ADD by means of the

SVVP/DD;
• code must be verified with respect to the DDD by means of the

SVVP/DD;
• unit tests verify that the software subsystems and components work

correctly in isolation, and as specified in the detailed design, by means
of the SVVP/UT;

6 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

• integration tests verify that the major software components work
correctly with the rest of the system, and as specified in the architectural
design, by means of the SVVP/IT;

• system tests verify that the software system meets the software
requirements, by means of the SVVP/ST;

• acceptance tests verify that the software system meets the user
requirements, by means of the SVVP/AT.

These verification activities demonstrate compliance to
specifications. This may be done by showing that the product:
• performs as specified;
• contains no defects that prevent it performing as specified.

Demonstration that a product meets its specification is a
mechanical activity that is driven by the specification. This part of verification
is efficient for demonstrating conformance to functional requirements (e.g. to
validate that the system has a function it is only necessary to exercise the
function). In contrast, demonstration that a product contains no defects that
prevent it from meeting its specification requires expert knowledge of what
the system must do, and the technology the system uses. This expertise is
needed if the non-functional requirements (e.g. those for reliability) are to be
met. Skill and ingenuity are needed to show up defects.

In summary, software verification and validation should show that
the product conforms to all the requirements. Users will have more
confidence in a product that has been through a rigorous verification
programme than one subjected to minimal examination and testing before
release.

2.3 REVIEWS

A review is 'a process or meeting during which a work product, or
set of work products, is presented to project personnel, managers, users,
customers, or other interested parties for comment or approval' [Ref 6].

Reviews may be formal or informal. Formal reviews have explicit and
definite rules of procedure. Informal reviews have no predefined procedures.
Although informal reviews can be very useful for educating project members
and solving problems, this section is only concerned with reviews that have
set procedures, i.e. formal reviews.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 7
SOFTWARE VERIFICATION AND VALIDATION

Three kinds of formal review are normally used for software
verification:
• technical review;
• walkthrough;
• audits.

These reviews are all 'formal reviews' in the sense that all have
specific objectives and procedures. They seek to identify defects and
discrepancies of the software against specifications, plans and standards.

Software inspections are a more rigorous alternative to
walkthroughs, and are strongly recommended for software with stringent
reliability, security and safety requirements. Methods for software
inspections are described in Section 3.2.

The software problem reporting procedure and document change
procedure defined in Part 2, Section 3.2.3.2 of ESA PSS-05-0, and in more
detail ESA PSS-05-09 'Guide to Software Configuration Management', calls
for a formal review process for all changes to code and documentation. Any
of the first two kinds of formal review procedure can be applied for change
control. The SRB, for example, may choose to hold a technical review or
walkthrough as necessary.

2.3.1 Technical reviews

Technical reviews evaluate specific software elements to verify
progress against the plan. The technical review process should be used for
the UR/R, SR/R, AD/R, DD/R and any critical design reviews.

 The UR/R, SR/R, AD/R and DD/R are formal reviews held at the end
of a phase to evaluate the products of the phase, and to decide whether the
next phase may be started (UR08, SR09, AD16 and DD11).

Critical design reviews are held in the DD phase to review the
detailed design of a major component to certify its readiness for
implementation (DD10).

The following sections describe the technical review process. This
process is based upon the ANSI/IEEE Std 1028-1988, 'IEEE Standard for
Software Reviews and Audits' [Ref 10], and Agency best practice.

8 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

2.3.1.1 Objectives

The objective of a technical review is to evaluate a specific set of
review items (e.g. document, source module) and provide management with
evidence that:
• they conform to specifications made in previous phases;
• they have been produced according to the project standards and

procedures;
• any changes have been properly implemented, and affect only those

systems identified by the change specification (described in a RID, DCR
or SCR).

2.3.1.2 Organisation

The technical review process is carried out by a review team, which
is made up of:
• a leader;
• a secretary;
• members.

In large and/or critical projects, the review team may be split into a
review board and a technical panel. The technical panel is usually
responsible for processing RIDs and the technical assessment of review
items, producing as output a technical panel report. The review board
oversees the review procedures and then independently assesses the status
of the review items based upon the technical panel report.

The review team members should have skills to cover all aspects of
the review items. Depending upon the phase, the review team may be drawn
from:
• users;
• software project managers;
• software engineers;
• software librarians;
• software quality assurance staff;
• independent software verification and validation staff;
• independent experts not involved in the software development.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 9
SOFTWARE VERIFICATION AND VALIDATION

Some continuity of representation should be provided to ensure
consistency.

The leader's responsibilities include:
• nominating the review team;
• organising the review and informing all participants of its date, place

and agenda;
• distribution of the review items to all participants before the meeting;
• organising as necessary the work of the review team;
• chairing the review meetings;
• issuing the technical review report.

The secretary will assist the leader as necessary and will be
responsible for documenting the findings, decisions and recommendations
of the review team.

Team members examine the review items and attend review
meetings. If the review items are large, complex, or require a range of
specialist skills for effective review, the leader may share the review items
among members.

2.3.1.3 Input

Input to the technical review process includes as appropriate:
• a review meeting agenda;
• a statement of objectives;
• the review items;
• specifications for the review items;
• plans, standards and guidelines that apply to the review items;
• RID, SPR and SCR forms concerning the review items;
• marked up copies of the review items;
• reports of software quality assurance staff.

2.3.1.4 Activities

The technical review process consists of the following activities:
• preparation;
• review meeting.

10 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

The review process may start when the leader considers the review
items to be stable and complete. Obvious signs of instability are the
presence of TBDs or of changes recommended at an earlier review meeting
not yet implemented.

Adequate time should be allowed for the review process. This
depends on the size of project. A typical schedule for a large project (20
man years or more) is shown in Table 2.3.1.4.

Event Time

Review items distributed R - 20 days

RIDs categorised and distributed R - 10 days

Review Meeting R

Issue of Report R + 20 days

Table 2.3.1.4: Review Schedule for a large project

Members may have to combine their review activities with other
commitments, and the review schedule should reflect this.

2.3.1.4.1 Preparation

The leader creates the agenda and distributes it, with the
statements of objectives, review items, specifications, plans, standards and
guidelines (as appropriate) to the review team.

Members then examine the review items. Each problem is recorded
by completing boxes one to six of the RID form. A RID should record only
one problem, or group of related problems. Members then pass their RIDs
to the secretary, who numbers each RID uniquely and forwards them to the
author for comment. Authors add their responses in box seven and then
return the RIDs to the secretary.

The leader then categorises each RID as major, minor, or editorial.
Major RIDs relate to a problem that would affect capabilities, performance,
quality, schedule and cost. Minor RIDs request clarification on specific
points and point out inconsistencies. Editorial RIDs point out defects in
format, spelling and grammar. Several hundred RIDs can be generated in a
large project review, and classification is essential if the RIDs are to be dealt

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 11
SOFTWARE VERIFICATION AND VALIDATION

with efficiently. Failure to categorise the RIDs can result in long meetings that
concentrate on minor problems at the expense of major ones.

Finally the secretary sorts the RIDs in order of the position of the
discrepancy in the review item. The RIDs are now ready for input to the
review meeting.

 Preparation for a Software Review Board follows a similar pattern,
with RIDs being replaced by SPRs and SCRs.

2.3.1.4.2 Review meeting

A typical review meeting agenda consists of:
1. Introduction;
2. Presentation of the review items;
3. Classification of RIDs;
4. Review of the major RIDs;
5. Review of the other RIDs;
6. Conclusion.

The introduction includes agreeing the agenda, approving the report
of any previous meetings and reviewing the status of outstanding actions.

After the preliminaries, authors present an overview of the review
items. If this is not the first meeting, emphasis should be given to any
changes made since the items were last discussed.

The leader then summarises the classification of the RIDs. Members
may request that RIDs be reclassified (e.g. the severity of a RID may be
changed from minor to major). RIDs that originate during the meeting should
be held over for decision at a later meeting, to allow time for authors to
respond.

Major RIDs are then discussed, followed by the minor and editorial
RIDs. The outcome of the discussion of any defects should be noted by the
secretary in the review decision box of the RID form. This may be one of
CLOSE, UPDATE, ACTION or REJECT. The reason for each decision should
be recorded. Closure should be associated with the successful completion
of an update. The nature of an update should be agreed. Actions should be
properly formulated, the person responsible identified, and the completion
date specified. Rejection is equivalent to closing a RID with no action or
update.

12 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

 The conclusions of a review meeting should be agreed during the
meeting. Typical conclusions are:
• authorisation to proceed to the next phase, subject to updates and

actions being completed;
• authorisation to proceed with a restricted part of the system;
• a decision to perform additional work.

One or more of the above may be applicable.

If the review meeting cannot reach a consensus on RID dispositions
and conclusions, possible actions are:
• recording a minority opinion in the review report;
• for one or more members to find a solution outside the meeting;
• referring the problem to the next level of management.

2.3.1.5 Output

The output from the review is a technical review report that should
contain the following:
• abstract of the report;
• a list of the members;
• an identification of the review items;
• tables of RIDs, SPRs and SCRs organised according to category, with

dispositions marked;
• a list of actions, with persons responsible identified and expected dates

for completion defined;
• conclusions.

This output can take the form of the minutes of the meeting, or be a
self-standing report. If there are several meetings, the collections of minutes
can form the report, or the minutes can be appended to a report
summarising the findings. The report should be detailed enough for
management to judge what happened. If there have been difficulties in
reaching consensus during the review, it is advisable that the output be
signed off by members.

2.3.2 Walkthroughs

Walkthroughs should be used for the early evaluation of documents,
models, designs and code in the SR, AD and DD phases. The following

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 13
SOFTWARE VERIFICATION AND VALIDATION

sections describe the walkthrough process, and are based upon the
ANSI/IEEE Std 1028-1988, 'IEEE Standard for Software Reviews and Audits'
[Ref 10].

2.3.2.1 Objectives

The objective of a walkthrough is to evaluate a specific software
element (e.g. document, source module). A walkthrough should attempt to
identify defects and consider possible solutions. In contrast with other forms
of review, secondary objectives are to educate, and to resolve stylistic
problems.

2.3.2.2 Organisation

The walkthrough process is carried out by a walkthrough team,
which is made up of:
• a leader;
• a secretary;
• the author (or authors);
• members.

The leader, helped by the secretary, is responsible for management
tasks associated with the walkthrough. The specific responsibilities of the
leader include:
• nominating the walkthrough team;
• organising the walkthrough and informing all participants of the date,

place and agenda of walkthrough meetings;
• distribution of the review items to all participants before walkthrough

meetings;
• organising as necessary the work of the walkthrough team;
• chairing the walkthrough meeting;
• issuing the walkthrough report.

The author is responsible for the production of the review items, and
for presenting them at the walkthrough meeting.

 Members examine review items, report errors and recommend
solutions.

14 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

2.3.2.3 Input

Input to the walkthrough consists of:
• a statement of objectives in the form of an agenda;
• the review items;
• standards that apply to the review items;
• specifications that apply to the review items.

2.3.2.4 Activities

 The walkthrough process consists of the following activities:
• preparation;
• review meeting.

2.3.2.4.1 Preparation

The moderator or author distributes the review items when the
author decides that they are ready for walkthrough. Members should
examine the review items prior to the meeting. Concerns should be noted on
RID forms so that they can be raised at the appropriate point in the
walkthrough meeting.

2.3.2.4.2 Review meeting

The review meeting begins with a discussion of the agenda and the
report of the previous meeting. The author then provides an overview of the
review items.

A general discussion follows, during which issues of the structure,
function and scope of the review items should be raised.

The author then steps through the review items, such as documents
and source modules (in contrast technical reviews step through RIDs, not
the items themselves). Members raise issues about specific points as they
are reached in the walkthrough.

As the walkthrough proceeds, errors, suggested changes and
improvements are noted on RID forms by the secretary.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 15
SOFTWARE VERIFICATION AND VALIDATION

2.3.2.5 Output

The output from the walkthrough is a walkthrough report that should
contain the following:
• a list of the members;
• an identification of the review items;
• a list of changes and defects noted during the walkthrough;
• completed RID forms;
• a list of actions, with persons responsible identified and expected dates

for completion defined;
• recommendations made by the walkthrough team on how to remedy

defects and dispose of unresolved issues (e.g. further walkthrough
meetings).

This output can take the form of the minutes of the meeting, or be a
self-standing report.

2.3.3 Audits

Audits are independent reviews that assess compliance with
software requirements, specifications, baselines, standards, procedures,
instructions, codes and contractual and licensing requirements. To ensure
their objectivity, audits should be carried out by people independent of the
development team. The audited organisation should make resources (e.g.
development team members, office space) available to support the audit.

A 'physical audit' checks that all items identified as part of the
configuration are present in the product baseline. A 'functional audit' checks
that unit, integration and system tests have been carried out and records
their success or failure. Other types of audits may examine any part of the
software development process, and take their name from the part of the
process being examined, e.g. a 'code audit' checks code against coding
standards.

Audits may be routine or non-routine. Examples of routine audits are
the functional and physical audits that must be performed before the release
of the software (SVV03). Non-routine audits may be initiated by the
organisation receiving the software, or management and quality assurance
personnel in the organisation producing the software.

16 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

The following sections describe the audit process, and are based
upon the ANSI/IEEE Std 1028-1988, 'IEEE Standard for Software Reviews
and Audits' [Ref 10].

2.3.3.1 Objectives

The objective of an audit is to verify that software products and
processes comply with standards, guidelines, specifications and
procedures.

2.3.3.2 Organisation

The audit process is carried out by an audit team, which is made up
of:
• a leader;
• members.

The leader is responsible for administrative tasks associated with
the audit. The specific responsibilities of the leader include:
• nominating the audit team;
• organising the audit and informing all participants of the schedule of

activities;
• issuing the audit report.

Members interview the development team, examine review items,
report errors and recommend solutions.

2.3.3.3 Input

The following items should be input to an audit:
• terms of reference defining the purpose and scope of the audit;
• criteria for deciding the correctness of products and processes such as

contracts, plans, specifications, procedures, guidelines and standards;
• software products;
• software process records;
• management plans defining the organisation of the project being

audited.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 17
SOFTWARE VERIFICATION AND VALIDATION

2.3.3.4 Activities

The team formed to carry out the audit should produce a plan that
defines the:
• products or processes to be examined;
• schedule of audit activities;
• sampling criteria, if a statistical approach is being used;
• criteria for judging correctness (e.g. the SCM procedures might be

audited against the SCMP);
• checklists defining aspects to be audited;
• audit staffing plan;
• date, time and place of the audit kick-off meeting.

The audit team should prepare for the audit by familiarising
themselves with the organisation being audited, its products and its
processes. All the team must understand the audit criteria and know how to
apply them. Training may be necessary.

 The audit team then examines the software products and
processes, interviewing project team members as necessary. This is the
primary activity in any audit. Project team members should co-operate fully
with the auditors. Auditors should fully investigate all problems, document
them, and make recommendations about how to rectify them. If the system
is very large, the audit team may have to employ a sampling approach.

When their investigations are complete, the audit team should issue
a draft report for comment by the audited organisation, so that any
misunderstandings can be eliminated. After receiving the audited
organisation's comments, the audit team should produce a final report. A
follow-up audit may be required to check that actions are implemented.

2.3.3.5 Output

The output from an audit is an audit report that:
• identifies the organisation being audited, the audit team, and the date

and place of the audit;
• defines the products and processes being audited;
• defines the scope of the audit, particularly the audit criteria for products

and processes being audited;
• states conclusions;
• makes recommendations;
• lists actions.

18 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

2.4 TRACING

Tracing is 'the act of establishing a relationship between two or
more products of the development process; for example, to establish the
relationship between a given requirement and the design element that
implements that requirement' [Ref 6]. There are two kinds of traceability:
• forward traceability;
• backward traceability.

Forward traceability requires that each input to a phase must be
traceable to an output of that phase (SVV01). Forward traceability shows
completeness, and is normally done by constructing traceability matrices.
These are normally implemented by tabulating the correspondence between
input and output (see the example in ESA PSS-05-03, Guide to Software
Requirements Definition [Ref 2]). Missing entries in the matrix display
incompleteness quite vividly. Forward traceability can also show duplication.
Inputs that trace to more than one output may be a sign of duplication.

 Backward traceability requires that each output of a phase must be
traceable to an input to that phase (SVV02). Outputs that cannot be traced
to inputs are superfluous, unless it is acknowledged that the inputs
themselves were incomplete. Backward tracing is normally done by
including with each item a statement of why it exists (e.g. source of a
software requirement, requirements for a software component).

During the software life cycle it is necessary to trace:
• user requirements to software requirements and vice-versa;
• software requirements to component descriptions and vice versa;
• integration tests to architectural units and vice-versa;
• unit tests to the modules of the detailed design;
• system tests to software requirements and vice-versa;
• acceptance tests to user requirements and vice-versa.

To support traceability, all components and requirements are
identified. The SVVP should define how tracing is to be done. References to
components and requirements should include identifiers. The SCMP defines
the identification conventions for documents and software components. The
SVVP should define additional identification conventions to be used within
documents (e.g. requirements) and software components.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 19
SOFTWARE VERIFICATION AND VALIDATION

2.5 FORMAL PROOF

Formal proof attempts to demonstrate logically that software is
correct. Whereas a test empirically demonstrates that specific inputs result
in specific outputs, formal proofs logically demonstrate that all inputs
meeting defined preconditions will result in defined postconditions being
met.

Where practical, formal proof of the correctness of software may be
attempted. Formal proof techniques are often difficult to justify because of
the additional effort required above the necessary verification techniques of
reviewing, tracing and testing.

The difficulty of expressing software requirements and designs in
the mathematical form necessary for formal proof has prevented the wide
application of the technique. Some areas where formal methods have been
successful are for the specification and verification of:
• protocols;
• secure systems.

Good protocols and very secure systems depend upon having
precise, logical specifications with no loopholes.

Ideally, if formal techniques can prove that software is correct,
separate verification (e.g. testing) should not be necessary. However,
human errors in proofs are still possible, and ways should be sought to
avoid them, for example by ensuring that all proofs are checked
independently.

Sections 3.3 and 3.4 discuss Formal Methods and formal Program
Verification Techniques.

2.6 TESTING

A test is 'an activity in which a system or component is executed
under specified conditions, the results are observed or recorded, and an
evaluation is made of some aspect of the system or component' [Ref 6].
Compared with other verification techniques, testing is the most direct
because it executes the software, and is therefore always to be preferred.
When parts of a specification cannot be verified by a test, another
verification technique (e.g. inspection) should be substituted in the test plan.
For example a test of a portability requirement might be to run the software

20 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

in the alternative environment. If this not possible, the substitute approach
might be to inspect the code for statements that are not portable.

Testing skills are just as important as the ability to program, design
and analyse. Good testers find problems quickly. Myers defines testing as
'the process of executing a program with the intent of finding errors' [Ref 14].
While this definition is too narrow for ESA PSS-05-0, it expresses the
sceptical, critical attitude required for effective testing.

The testability of software should be evaluated as it is designed, not
when coding is complete. Designs should be iterated until they are testable.
Complexity is the enemy of testability. When faced with a complex design,
developers should ask themselves:
• can the software be simplified without compromising its capabilities?
• are the resources available to test software of this complexity?

Users, managers and developers all need to be assured that the
software does what it is supposed to do. An important objective of testing is
to show that software meets its specification. The 'V diagram' in Figure 2.2
shows that unit tests compare code with its detailed design, integration
tests compare major components with the architectural design, system tests
compare the software with the software requirements, and acceptance tests
compare the software with the user requirements. All these tests aim to
'verify' the software, i.e. show that it truly conforms to specifications.

In ESA PSS-05-0 test plans are made as soon as the corresponding
specifications exist. These plans outline the approach to testing and are
essential for estimating the resources required to complete the project.
Tests are specified in more detail in the DD phase. Test designs, test cases
and test procedures are defined and included in the SVVP. Tests are then
executed and results recorded.

Figure 2.6 shows the testing activities common to unit, integration,
system and acceptance tests. Input at the top left of the figure are the
Software Under Test (SUT), the test plans in the SVVP, and the URD, SRD,
ADD and DDD that define the baselines for testing against. This sequence
of activities is executed for unit testing, integration testing, system testing
and acceptance testing in turn.

The following paragraphs address each activity depicted in Figure
2.6. Section 4.5 discusses the tools needed to support the activities.
1. The 'specify tests' activity takes the test plan in the SVVP, and the

product specification in one of the URD, SRD, ADD or DDD and

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 21
SOFTWARE VERIFICATION AND VALIDATION

produces a test design for each requirement or component. Each
design will imply a family of test cases. The Software Under Test (SUT)
is required for the specification of unit tests.

2. The 'make test software' activity takes the test case specifications and
produces the test code (stubs, drivers, simulators, harnesses), input
data files and test procedures needed to run the tests.

3. The 'link SUT' activity takes the test code and links it with the SUT, and
(optionally) existing tested code, producing the executable SUT.

4. The 'run tests' activity executes the tests according to the test
procedures, by means of the input data. The output data produced may
include coverage information, performance information, or data
produced by the normal functioning of the SUT.

Specify
tests

Make test
software

Link SUT

Run tests

Analyse
coverage

Analyse
performance

Check
outputs

Store
test data

URD & SVVP/AT/Test Plan
SRD & SVVP/ST/Test Plan
ADD & SVVP/IT/Test Plan
DDD & SVVP/UT/Test Plan

Test
cases

Test
Code

SUT

Tested Code
Executable
SUT

Output
Data

Old
Output
Data

Test
Proc's
Input Data

Test
Data

Expected Output Data

Test Data = Input Data + Expected Output Data

Test results/coverage

Test results/performance

Test results

 Figure 2.6: Testing activities
5. The 'analyse coverage' activity checks that the tests have in fact

executed those parts of the SUT that they were intended to test.
6. The 'analyse performance' activity studies the resource consumption of

the SUT (e.g. CPU time, disk space, memory).
7. The 'check outputs' activity compares the outputs with the expected

output data or the outputs of previous tests, and decides whether the
tests have passed or failed.

22 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

8. The 'store test data' activity stores test data for reruns of tests. Test
output data needs to be retained as evidence that the tests have been
performed.

The following sections discuss the specific approaches to unit
testing, integration testing, system testing and acceptance testing. For each
type of testing sections are provided on:
• test planning;
• test design;
• test case specification;
• test procedure definition;
• test reporting.

2.6.1 Unit tests

A 'unit' of software is composed of one or more modules. In ESA
PSS-05-0, 'unit testing' refers to the process of testing modules against the
detailed design. The inputs to unit testing are the successfully compiled
modules from the coding process. These are assembled during unit testing
to make the largest units, i.e. the components of architectural design. The
successfully tested architectural design components are the outputs of unit
testing.

An incremental assembly sequence is normally best. When the
sequence is top-down, the unit grows during unit testing from a kernel
module to the major component required in the architectural design. When
the sequence is bottom-up, units are assembled from smaller units.
Normally a combination of the two approaches is used, with the objective of
minimising the amount of test software, measured both in terms of the
number of test modules and the number of lines of test code. This enables
the test software to be easily verified by inspection.

Studies of traditional developments show that approximately 65% of
bugs can be caught in unit testing, and that half these bugs will be caught
by 'white-box' tests [Ref 12]. These results show that unit testing is the most
effective type of testing for removing bugs. This is because less software is
involved when the test is performed, and so bugs are easier to isolate.

2.6.1.1 Unit test planning

The first step in unit testing is to construct a unit test plan and
document it in the SVVP (SVV18). This plan is defined in the DD phase and

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 23
SOFTWARE VERIFICATION AND VALIDATION

should describe the scope, approach, resources and schedule of the
intended unit tests. The scope of unit testing is to verify the design and
implementation of all components from the lowest level defined in the
detailed design up to and including the lowest level in the architectural
design. The approach should outline the types of tests, and the amounts of
testing, required.

 The amount of unit testing required is dictated by the need to
execute every statement in a module at least once (DD06). The simplest
measure of the amount of testing required is therefore just the number of
lines of code.

 Execution of every statement in the software is normally not
sufficient, and coverage of every branch in the logic may be required. The
amount of unit testing then depends principally on the complexity of the
software. The 'Structured Testing' method (see Section 3.6) uses the
cyclomatic complexity metric to evaluate the testability of module designs.
The number of test cases necessary to ensure that every branch in the
module logic is covered during testing is equivalent to the cyclomatic
complexity of the module. The Structured Testing method is strongly
recommended when full branch coverage is a requirement.

2.6.1.2 Unit test design

The next step in unit testing is unit test design (SVV19). Unit test
designs should specify the details of the test approach for each software
component defined in the DDD, and identify the associated test cases and
test procedures. The description of the test approach should state the
assembly sequence for constructing the architectural design units, and the
types of tests necessary for individual modules (e.g. white-box, black-box).

The three rules of incremental assembly are:
• assemble the architectural design units incrementally, module-by-

module if possible, because problems that arise in a unit test are most
likely to be related to the module that has just been added;

• introduce producer modules before consumer modules, because the
former can provide control and data flows required by the latter.

• ensure that each step is reversible, so that rollback to a previous stage
in the assembly is always possible.

A simple example of unit test design is shown in Figure 2.6.1.2A.
The unit U1 is a major component of the architectural design. U1 is
composed of modules M1, M2 and M3. Module M1 calls M2 and then M3,

24 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

as shown by the structure chart. Two possible assembly sequences are
shown. The sequence starting with M1 is 'top-down' and the sequence
starting with M2 is 'bottom-up'. Figure 2.6.1.2B shows that data flows from
M2 to M3 under the control of M1.

Each sequence in Figure 2.6.1.2A requires two test modules. The
top-down sequence requires the two stub modules S2 and S3 to simulate
M2 and M3. The bottom-up sequence requires the drivers D2 and D3 to
simulate M1, because each driver simulates a different interface. If M1, M2
and M3 were tested individually before assembly, four drivers and stubs
would be required. The incremental approach only requires two.

The rules of incremental assembly argue for top-down assembly
instead of bottom-up because the top-down sequence introduces the:
• modules one-by-one;
• producer modules before consumer modules (i.e. M1 before M2 before

M3).

M1

M2 M3

U1

D2

M2

D3

M3

M1

M2 M3

M1

S2 S3

M1

M2 S3

M1

M2 M3

Bottom-up

Top-down

Step 2Step 1 Step 3

Figure 2.6.1.2A: Example of unit test design

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 25
SOFTWARE VERIFICATION AND VALIDATION

M1

M2

M3

control flow

control flow

data flow

Figure 2.6.1.2B: Data flow dependencies between the modules of U1

2.6.1.2.1 White-box unit tests

The objective of white-box testing is to check the internal logic of the
software. White-box tests are sometimes known as 'path test s', 'structure
tests' or 'logic tests'. A more appropriate title for this kind of test is 'glass-
box test', as the engineer can see almost everything that the code is doing.

White-box unit tests are designed by examining the internal logic of
each module and defining the input data sets that force the execution of
different paths through the logic. Each input data set is a test case.

Traditionally, programmers used to insert diagnostic code to follow
the internal processing (e.g. statements that print out the values of program
variables during execution). Debugging tools that allow programmers to
observe the execution of a program step-by-step in a screen display make
the insertion of diagnostic code unnecessary, unless manual control of
execution is not appropriate, such as when real-time code is tested.

When debugging tools are used for white-box testing, prior
preparation of test cases and procedures is still necessary. Test cases and
procedures should not be invented during debugging. The Structured
Testing method (see Section 3.6) is the best known method for white-box
unit testing. The cyclomatic complexity value gives the number of paths that
must be executed, and the 'baseline method' is used to define the paths.
Lastly, input values are selected that will cause each path to be executed.
This is called 'sensitising the path'.

A limitation of white-box testing is its inability to show missing logic.
Black-box tests remedy this deficiency.

26 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

2.6.1.2.2 Black-box unit tests

The objective of black-box tests is to verify the functionality of the
software. The tester treats the module as 'black-box' whose internals cannot
be seen. Black-box tests are sometimes called 'function tests'.

Black-box unit tests are designed by examining the specification of
each module and defining input data sets that will result in different
behaviour (e.g. outputs). Each input data set is a test case.

Black-box tests should be designed to exercise the software for its
whole range of inputs. Most software items will have many possible input
data sets and using them all is impractical. Test designers should partition
the range of possible inputs into 'equivalence classes'. For any given error,
input data sets in the same equivalence class will produce the same error
[Ref 14].

-1 0 1 2 3 4 5 6 7 8 9 10 11

illegal values illegal valuesnominal values

lower
boundary

value

upper
boundary

value

12

Figure 2.6.1.2.2: Equivalence partitioning example

Consider a module that accepts integers in the range 1 to 10 as
input, for example. The input data can be partitioned into five equivalence
classes as shown in Figure 2.6.1.2.2. The five equivalence classes are the
illegal values below the lower boundary, such as 0, the lower boundary value
1, the nominal values 2 to 9, the upper boundary value 10, and the illegal
values above the upper boundary, such as 11.

Output values can be used to generate additional equivalence
classes. In the example above, if the output of the routine generated the
result TRUE for input numbers less than or equal to 5 and FALSE for
numbers greater than 5, the nominal value equivalence class should be split
into two subclasses:
• nominal values giving a TRUE result, such as 3;
• boundary nominal value, i.e. 5;
• nominal values giving a FALSE result, such as 7.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 27
SOFTWARE VERIFICATION AND VALIDATION

Equivalence classes may be defined by considering all possible
data types. For example the module above accepts integers only. Test
cases could be devised using real, logical and character data.

Having defined the equivalence classes, the next step is to select
suitable input values from each equivalence class. Input values close to the
boundary values are normally selected because they are usually more
effective in causing test failures (e.g. 11 might be expected to be more likely
to produce a test failure than 99).

Although equivalence partitioning combined with boundary-value
selection is a useful technique for generating efficient input data sets, it will
not expose bugs linked to combinations of input data values. Techniques
such as decision tables [Ref 12] and cause-effect graphs [Ref 14] can be
very useful for defining tests that will expose such bugs.

1 2 3 4

open_pressed TRUE TRUE FALSE FALSE

close_pressed TRUE FALSE TRUE FALSE

action ? OPEN CLOSE ?

 Table 2.6.1.2.2: Decision table example

Table 2.6.1.2.2 shows the decision table for a module that has
Boolean inputs that indicate whether the OPEN or CLOSE buttons of an
elevator door have been pressed. When open_pressed is true and
close_pressed is false, the action is OPEN. When close_pressed is true and
open_pressed is false, the action is CLOSE. Table 2.6.1.2.2 shows that the
outcomes for when open_pressed and close_pressed are both true and
both false are undefined. Additional test cases setting open_pressed and
close_pressed both true and then both false are likely to expose problems.

A useful technique for designing tests for real-time systems is the
state-transition table. These tables define what messages can be processed
in each state. For example, sending the message 'open doors' to an
elevator in the state 'moving' should be rejected. Just as with decision
tables, undefined outcomes shown by blank table entries make good
candidates for testing.

28 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

 Decision tables, cause-effect graphs and state-transition diagrams
are just three of the many analysis techniques that can be employed for test
design. After tests have been devised by means of these techniques, test
designers should examine them to see whether additional tests are needed,
their judgement being based upon their experience of similar systems or
their involvement in the development of the system. This technique, called
'error guessing' [Ref 14], should be risk-driven, focusing on the parts of the
design that are novel or difficult to verify by other means, or where quality
problems have occurred before.

Test tools that allow the automatic creation of drivers, stubs and test
data sets help make black-box testing easier (see Chapter 4). Such tools
can define equivalence classes based upon boundary values in the input,
but the identification of more complex test cases requires knowledge of the
how the software should work.

2.6.1.2.3 Performance tests

The DDD may have placed resource constraints on the performance
of a module. For example a module may have to execute within a specified
elapsed time, or use less than a specified amount of CPU time, or consume
less than a specified amount of memory. Compliance with these constraints
should be tested as directly as possible, for example by means of:
• performance analysis tools;
• diagnostic code;
• system monitoring tools.

2.6.1.3 Unit test case definition

Each unit test design will use one or more unit test cases, which
must also be documented in the SVVP (SVV20). Test cases should specify
the inputs, predicted results and execution conditions for a test case.

2.6.1.4 Unit test procedure definition

The unit test procedures must be described in the SVVP (SVV21).
These should provide a step-by-step description of how to carry out each
test case. One test procedure may execute one or more test cases. The
procedures may use executable 'scripts' that control the operation of test
tools. With the incremental approach, the input data required to test a
module may be created by executing an already tested module (e.g. M2 is
used to create data for M1 and M3 in the example above). The test
procedure should define the steps needed to create such data.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 29
SOFTWARE VERIFICATION AND VALIDATION

2.6.1.5 Unit test reporting

Unit test results may be reported in a variety of ways. Some
common means of recording results are:
• unit test result forms, recording the date and outcome of the test cases

executed by the procedure;
• execution logfile.

2.6.2 Integration tests

A software system is composed of one or more subsystems, which
are composed of one or more units (which are composed of one or more
modules). In ESA PSS-05-0, 'integration testing' refers to the process of
testing units against the architectural design. During integration testing, the
architectural design units are integrated to make the system.

The 'function-by-function' integration method described in Section
3.3.2.1 of ESA PSS-05-05 'Guide to the Detailed Design and Production
Phase' [Ref 3] should be used to integrate the software. As with the
approach described for unit testing, this method minimises the amount of
test software required. The steps are to:
1. select the functions to be integrated;
2. identify the components that carry out the functions;
3. order the components by the number of dependencies (i.e. fewest

dependencies first);
4. create a driver to simulate the input of the component later in the order

when a component depends on another later in the order;
5. introduce the components with fewest dependencies first.

Though the errors found in integration testing should be much fewer
than those found in unit testing, they are more time-consuming to diagnose
and fix. Studies of testing [Ref 15] have shown architectural errors can be as
much as thirty times as costly to repair as detailed design errors.

2.6.2.1 Integration test planning

The first step in integration testing is to construct an integration test
plan and document it in the SVVP (SVV17). This plan is defined in the AD
phase and should describe the scope, approach, resources and schedule
of the intended integration tests.

30 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

 The scope of integration testing is to verify the design and
implementation of all components from the lowest level defined in the
architectural design up to the system level. The approach should outline the
types of tests, and the amounts of testing, required.

 The amount of integration testing required is dictated by the need
to:
• check that all data exchanged across an interface agree with the data

structure specifications in the ADD (DD07);
• confirm that all the control flows in the ADD have been implemented

(DD08).

The amount of control flow testing required depends on the
complexity of the software. The Structured Integration Testing method (see
Section 3.7) uses the integration complexity metric to evaluate the testability
of architectural designs. The integration complexity value is the number of
integration tests required to obtain full coverage of the control flow. The
Structured Integration Testing method is strongly recommended for
estimating the amount of integration testing.

2.6.2.2 Integration test design

 The next step in integration testing is integration test design
(SVV19). This and subsequent steps are performed in the DD phase,
although integration test design may be attempted in the AD phase.
Integration test designs should specify the details of the test approach for
each software component defined in the ADD, and identify the associated
test cases and test procedures.

The description of the test approach should state the:
• integration sequence for constructing the system;
• types of tests necessary for individual components (e.g. white-box,

black-box).

With the function-by-function method, the system grows during
integration testing from the kernel units that depend upon few other units,
but are depended upon by many other units. The early availability of these
kernel units eases subsequent testing.

For incremental delivery, the delivery plan will normally specify what
functions are required in each delivery. Even so, the number of
dependencies can be used to decide the order of integration of components
in each delivery.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 31
SOFTWARE VERIFICATION AND VALIDATION

P1

P2

P3

P4

0 dependencies

1 dependency

2 dependencies

3 dependencies

control flow

control flow

control flow

data flow

data flow

data flow

 Figure 2.6.2A: Incremental integration sequences

Figure 2.6.2A shows a system composed of four programs P1, P2,
P3 and P4. P1 is the 'program manager', providing the user interface and
controlling the other programs. Program P2 supplies data to P3, and both
P2 and P3 supply data to P4. User inputs are ignored. P1 has zero
dependencies, P2 has one, P3 has two and P4 has three. The integration
sequence is therefore P1, P2, P3 and then P4.

2.6.2.2.1 White-box integration tests

White-box integration tests should be defined to verify the data and
control flow across interfaces between the major components defined in the
ADD (DD07 and DD08). For file interfaces, test programs that print the
contents of the files provide the visibility required. With real-time systems,
facilities for trapping messages and copying them to a log file can be
employed. Debuggers that set break points at interfaces can also be useful.
When control or data flow traverses an interface where a break point is set,
control is passed to the debugger, enabling inspection and logging of the
flow.

The Structured Integration Testing method (see Section 3.7) is the
best known method for white-box integration testing. The integration
complexity value gives the number of control flow paths that must be
executed, and the 'design integration testing method' is used to define the
control flow paths. The function-by-function integration method (see Section

32 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

2.6.2) can be used to define the order of testing the required control flow
paths.

The addition of new components to a system often introduces new
execution paths through it. Integration test design should identify paths
suitable for testing and define test cases to check them. This type of path
testing is sometimes called 'thread testing'. All new control flows should be
tested.

2.6.2.2.2 Black-box integration tests

Black-box integration tests should be used to fully exercise the
functions of each component specified in the ADD. Black-box tests may
also be used to verify that data exchanged across an interface agree with
the data structure specifications in the ADD (DD07).

2.6.2.2.3 Performance tests

The ADD may have placed resource constraints on the performance
of a unit. For example a program may have to respond to user input within a
specified elapsed time, or process a defined number of records within a
specified CPU time, or occupy less than a specified amount of disk space or
memory. Compliance with these constraints should be tested as directly as
possible, for example by means of:
• performance analysis tools;
• diagnostic code;
• system monitoring tools.

2.6.2.3 Integration test case definition

Each integration test design will use one or more integration test
cases, which must also be documented in the SVVP (SVV20). Test cases
should specify the inputs, predicted results and execution conditions for a
test case.

2.6.2.4 Integration test procedure definition

The integration test procedures must be described in the SVVP
(SVV21). These should provide a step-by-step description of how to carry
out each test case. One test procedure may execute one or more test
cases. The procedures may use executable 'scripts' that control the
operation of test tools.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 33
SOFTWARE VERIFICATION AND VALIDATION

2.6.2.5 Integration test reporting

Integration test results may be reported in a variety of ways. Some
common means of recording results are:
• integration test result forms, recording the date and outcome of the test

cases executed by the procedure;
• execution logfile.

2.6.3 System tests

In ESA PSS-05-0, 'system testing' refers to the process of testing
the system against the software requirements. The input to system testing is
the successfully integrated system.

 Wherever possible, system tests should be specified and
performed by an independent testing team. This increases the objectivity of
the tests and reduces the likelihood of defects escaping the software
verification and validation net.

2.6.3.1 System test planning

The first step in system testing is to construct a system test plan
and document it in the SVVP (SVV14). This plan is defined in the SR phase
and should describe the scope, approach, resources and schedule of the
intended system tests. The scope of system testing is to verify compliance
with the system objectives, as stated in the SRD (DD09). System testing
must continue until readiness for transfer can be demonstrated.

The amount of testing required is dictated by the need to cover all
the software requirements in the SRD. A test should be defined for every
essential software requirement, and for every desirable requirement that has
been implemented.

2.6.3.2 System test design

The next step in system testing is system test design (SVV19). This
and subsequent steps are performed in the DD phase, although system test
design may be attempted in the SR and AD phases. System test designs
should specify the details of the test approach for each software
requirement specified in the SRD, and identify the associated test cases and
test procedures. The description of the test approach should state the types
of tests necessary (e.g. function test, stress test etc).

34 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

Knowledge of the internal workings of the software should not be
required for system testing, and so white-box tests should be avoided.
Black-box and other types of test should be used wherever possible. When
a test of a requirement is not possible, an alternative method of verification
should be used (e.g. inspection).

System testing tools can often be used for problem investigation
during the TR and OM phases. Effort invested in producing efficient easy-to-
use diagnostic tools at this stage of development is often worthwhile.

If an incremental delivery or evolutionary development approach is
being used, system tests of each release of the system should include
regression tests of software requirements verified in earlier releases.

The SRD will contain several types of requirements, each of which
needs a distinct test approach. The following subsections discuss possible
approaches.

2.6.3.2.1 Function tests

System test design should begin by designing black-box tests to
verify each functional requirement. Working from the functional requirements
in the SRD, techniques such as decision tables, state-transition tables and
error guessing are used to design function tests.

2.6.3.2.2 Performance tests

Performance requirements should contain quantitative statements
about system performance. They may be specified by stating the:
• worst case that is acceptable;
• nominal value, to be used for design;
• best case value, to show where growth potential is needed.

System test cases should be designed to verify:
• that all worst case performance targets have been met;
• that nominal performance targets are usually achieved;
• whether any best-case performance targets have been met.

In addition, stress tests (see Section 2.6.3.2.13) should be designed
to measure the absolute limits of performance.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 35
SOFTWARE VERIFICATION AND VALIDATION

2.6.3.2.3 Interface tests

System tests should be designed to verify conformance to external
interface requirements. Interface Control Documents (ICDs) form the
baseline for testing external interfaces. Simulators and other test tools will be
necessary if the software cannot be tested in the operational environment.

Tools (not debuggers) should be provided to:
• convert data flows into a form readable by human operators;
• edit the contents of data stores.

2.6.3.2.4 Operations tests

Operations tests include all tests of the user interface, man machine
interface, or human computer interaction requirements. They also cover the
logistical and organisational requirements. These are essential before the
software is delivered to the users.

Operations tests should be designed to show up deficiencies in
usability such as:
• instructions that are difficult to follow;
• screens that are difficult to read;
• commonly-used operations with too many steps;
• meaningless error messages.

The operational requirements may have defined the time required to
learn and operate the software. Such requirements can be made the basis
of straightforward tests. For example a test of usability might be to measure
the time an operator with average skill takes to learn how to restart the
system.

 Other kinds of tests may be run throughout the system-testing
period, for example:
• do all warning messages have a red background?
• is there help on this command?

If there is a help system, every topic should be systematically
inspected for accuracy and appropriateness.

Response times should normally be specified in the performance
requirements (as opposed to operational requirements). Even so, system

36 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

tests should verify that the response time is short enough to make the
system usable.

2.6.3.2.5 Resource tests

Requirements for the usage of resources such as CPU time, storage
space and memory may have been set in the SRD. The best way to test for
compliance to these requirements is to allocate these resources and no
more, so that a failure occurs if a resource is exhausted. If this is not suitable
(e.g. it is usually not possible to specify the maximum size of a particular
file), alternative approaches are to:
• use a system monitoring tool to collect statistics on resource

consumption;
• check directories for file space used.

2.6.3.2.6 Security tests

Security tests should check that the system is protected against
threats to confidentiality, integrity and availability.

Tests should be designed to verify that basic security mechanisms
specified in the SRD have been provided, for example:
• password protection;
• resource locking.

Deliberate attempts to break the security mechanisms are an
effective way of detecting security errors. Possible tests are attempts to:
• access the files of another user;
• break into the system authorisation files;
• access a resource when it is locked;
• stop processes being run by other users.

Security problems can often arise when users are granted system
privileges unnecessarily. The Software User Manual should clearly state the
privileges required to run the software.

 Experience of past security problems should be used to check new
systems. Security loopholes often recur.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 37
SOFTWARE VERIFICATION AND VALIDATION

2.6.3.2.7 Portability tests

Portability requirements may require the software to be run in a
variety of environments. Attempts should be made to verify portability by
running a representative selection of system tests in all the required
environments. If this is not possible, indirect techniques may be attempted.
For example if a program is supposed to run on two different platforms, a
programming language standard (e.g. ANSI C) might be specified and a
static analyser tool used to check conformance to the standard.
Successfully executing the program on one platform and passing the static
analysis checks might be adequate proof that the software will run on the
other platform.

2.6.3.2.8 Reliability tests

Reliability requirements should define the Mean Time Between
Failure (MTBF) of the software. Separate MTBF values may have been
specified for different parts of the software.

 Reliability can be estimated from the software problems reported
during system testing. Tests designed to measure the performance limits
should be excluded from the counts, and test case failures should be
categorised (e.g. critical, non-critical). The mean time between failures can
then be estimated by dividing the system testing time by the number of
critical failures.

2.6.3.2.9 Maintainability tests

Maintainability requirements should define the Mean Time To Repair
(MTTR) of the software. Separate MTTR values may have been specified for
different parts of the software.

Maintainability should be estimated by averaging the difference
between the dates of Software Problem Reports (SPRs) reporting critical
failures that occur during system testing, and the corresponding Software
Modification Reports (SMRs) reporting the completion of the repairs.

Maintainability requirements may have included restrictions on the
size and complexity of modules, or even the use of the programming
language. These should be tested by means of a static analysis tool. If a
static analysis tool is not available, samples of the code should be manually
inspected.

38 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

2.6.3.2.10 Safety tests

Safety requirements may specify that the software must avoid injury
to people, or damage to property, when it fails. Compliance to safety
requirements can be tested by:
• deliberately causing problems under controlled conditions and

observing the system behaviour (e.g. disconnecting the power during
system operations);

• observing system behaviour when faults occur during tests.

Simulators may have to be built to perform safety tests.

Safety analysis classifies events and states according to how much
of a hazard they cause to people or property. Hazards may be catastrophic
(i.e. life-threatening), critical, marginal or negligible [Ref 24]. Safety
requirements may identify functions whose failure may cause a catastrophic
or critical hazard. Safety tests may require exhaustive testing of these
functions to establish their reliability.

2.6.3.2.11 Miscellaneous tests

An SRD may contain other requirements for:
• documentation (particularly the SUM);
• verification;
• acceptance testing;
• quality, other than reliability, maintainability and safety.

It is usually not possible to test for compliance to these
requirements, and they are normally verified by inspection.

2.6.3.2.12 Regression tests

Regression testing is 'selective retesting of a system or component,
to verify that modifications have not caused unintended effects, and that the
system or component still complies with its specified requirements' [Ref 6].

Regression tests should be performed before every release of the
software in the OM phase. If an incremental delivery or evolutionary
development approach is being used, regression tests should be performed
to verify that the capabilities of earlier releases are unchanged.

Traditionally, regression testing often requires much effort,
increasing the cost of change and reducing its speed. Test tools that

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 39
SOFTWARE VERIFICATION AND VALIDATION

automate regression testing are now widely available and can greatly
increase the speed and accuracy of regression testing (see Chapter 4).
Careful selection of test cases also reduces the cost of regression testing,
and increases its effectiveness.

2.6.3.2.13 Stress tests

Stress tests 'evaluate a system or software component at or
beyond the limits of its specified requirements' [Ref 6]. The most common
kind of stress test is to measure the maximum load the SUT can sustain for
a time, for example the:
• maximum number of activities that can be supported simultaneously;
• maximum quantity of data that can be processed in a given time.

Another kind of stress test, sometimes called a 'volume test ' [Ref
14], exercises the SUT with an abnormally large quantity of input data. For
example a compiler might be fed a source file with very many lines of code,
or a database management system with a file containing very many records.
Time is not of the essence in a volume test.

Most software has capacity limits. Testers should examine the
software documentation for statements about the amount of input the
software can accept, and design tests to check that the stated capacity is
provided. In addition, testers should look for inputs that have no constraint
on capacity, and design tests to check whether undocumented constraints
do exist.

2.6.3.3 System test case definition

The system test cases must be described in the SVVP (SVV20).
These should specify the inputs, predicted results and execution conditions
for a test case.

2.6.3.4 System test procedure definition

The system test procedures must be described in the SVVP
(SVV21). These should provide a step-by-step description of how to carry
out each test case. One test procedure may execute one or more test
cases. The procedures may use executable 'scripts' that control the
operation of test tools.

40 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

2.6.3.5 System test reporting

System test results may be reported in a variety of ways. Some
common means of recording results are:
• system test result forms recording the date and outcome of the test

cases executed by the procedure;
• execution logfile.

System test results should reference any Software Problem Reports
raised during the test.

2.6.4 Acceptance tests

In ESA PSS-05-0, 'acceptance testing' refers to the process of
testing the system against the user requirements. The input to acceptance
testing is the software that has been successfully tested at system level.

Acceptance tests should always be done by the user or their
representatives. If this is not possible, they should witness the acceptance
tests and sign off the results.

2.6.4.1 Acceptance test planning

The first step in acceptance testing is to construct an acceptance
test plan and document it in the SVVP (SVV11). This plan is defined in the
UR phase and should describe the scope, approach, resources and
schedule of the intended acceptance tests. The scope of acceptance
testing is to validate that the software is compliant with the user
requirements, as stated in the URD. Acceptance tests are performed in the
TR phase, although some acceptance tests of quality, reliability,
maintainability and safety may continue into the OM phase until final
acceptance is possible.

The amount of testing required is dictated by the need to cover all
the user requirements in the URD. A test should be defined for every
essential user requirement, and for every desirable requirement that has
been implemented

2.6.4.2 Acceptance test design

The next step in acceptance testing is acceptance test design
(SVV19). This and subsequent steps are performed in the DD phase,
although acceptance test design may be attempted in the UR, SR and AD
phases. Acceptance test designs should specify the details of the test

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 41
SOFTWARE VERIFICATION AND VALIDATION

approach for a user requirement, or combination of user requirements, and
identify the associated test cases and test procedures. The description of
the test approach should state the necessary types of tests.

Acceptance testing should require no knowledge of the internal
workings of the software, so white-box tests cannot be used.

 If an incremental delivery or evolutionary development approach is
being used, acceptance tests should only address the user requirements of
the new release. Regression tests should have been performed in system
testing.

Dry-runs of acceptance tests should be performed before transfer of
the software. Besides exposing any faults that have been overlooked, dry-
runs allow the acceptance test procedures to be checked for accuracy and
ease of understanding.

 The specific requirements in the URD should be divided into
capability requirements and constraint requirements. The following
subsections describe approaches to testing each type of user requirement.

2.6.4.2.1 Capability tests

Capability requirements describe what the user can do with the
software. Tests should be designed that exercise each capability. System
test cases that verify functional, performance and operational requirements
may be reused to validate capability requirements.

2.6.4.2.2 Constraint tests

Constraint requirements place restrictions on how the software can
be built and operated. They may predefine external interfaces or specify
attributes such as adaptability, availability, portability and security. System
test cases that verify compliance with requirements for interfaces, resources,
security, portability, reliability, maintainability and safety may be reused to
validate constraint requirements.

2.6.4.3 Acceptance test case specification

The acceptance test cases must be described in the SVVP (SVV20).
These should specify the inputs, predicted results and execution conditions
for a test case.

42 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

2.6.4.4 Acceptance test procedure specification

The acceptance test procedures must be described in the SVVP
(SVV21). These should provide a step-by-step description of how to carry
out each test case. The effort required of users to validate the software
should be minimised by means of test tools.

2.6.4.5 Acceptance test reporting

Acceptance test results may be reported in a variety of ways. Some
common means of recording results are:
• acceptance test result forms recording the date and outcome of the test

cases executed by the procedure;
• execution logfile.

Acceptance test results should reference any Software Problem
Reports raised during the test.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 43
SOFTWARE VERIFICATION AND VALIDATION METHODS

CHAPTER 3
SOFTWARE VERIFICATION AND VALIDATION METHODS

3.1 INTRODUCTION

This chapter discusses methods for software verification and
validation that may be used to enhance the basic approach described in
Chapter 2. The structure of this chapter follows that of the previous chapter,
as shown in Table 3.1. Supplementary methods are described for reviews,
formal proof and testing.

Activity Supplementary method

review software inspection

tracing none

formal proof formal methods
program verification techniques

testing structured testing
structured integration testing

Table 3.1: Structure of Chapter 3

3.2 SOFTWARE INSPECTIONS

Software inspections can be used for the detection of defects in
detailed designs before coding, and in code before testing. They may also
be used to verify test designs, test cases and test procedures. More
generally, inspections can be used for verifying the products of any
development process that is defined in terms of:
• operations (e.g. 'code module');
• exit criteria (e.g. 'module successfully compiles').

Software inspections are efficient. Projects can detect over 50% of
the total number of defects introduced in development by doing them [Ref
21, 22].

Software inspections are economical because they result in
significant reductions in both the number of defects and the cost of their

44 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION METHODS

removal. Detection of a defect as close as possible to the time of its
introduction results in:
• an increase in the developers' awareness of the reason for the defect's

occurrence, so that the likelihood that a similar defect will recur again is
reduced;

• reduced effort in locating the defect, since no effort is required to
diagnose which component, out of many possible components,
contains the defect.

Software inspections are formal processes. They differ from
walkthroughs (see Section 2.3.2) by:
• repeating the process until an acceptable defect rate (e.g. number of

errors per thousand lines of code) has been achieved;
• analysing the results of the process and feeding them back to improve

the production process, and forward to give early measurements of
software quality;

• avoiding discussion of solutions;
• including rework and follow-up activities.

The following subsections summarise the software inspection
process. The discussion is based closely on the description given by Fagan
[Ref 21 and 22] and ANSI/IEEE Std 1028-1988, 'IEEE Standard for Software
Reviews and Audits' [Ref 10].

3.2.1 Objectives

The objective of a software inspection is to detect defects in
documents or code.

3.2.2 Organisation

There are five roles in a software inspection:
• moderator;
• secretary;
• reader;
• inspector;
• author.

The moderator leads the inspection and chairs the inspection
meeting. The person should have implementation skills, but not necessarily

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 45
SOFTWARE VERIFICATION AND VALIDATION METHODS

be knowledgeable about the item under inspection. He or she must be
impartial and objective. For this reason moderators are often drawn from
staff outside the project. Ideally they should receive some training in
inspection procedures.

The secretary is responsible for recording the minutes of inspection
meetings, particularly the details about each defect found.

The reader guides the inspection team through the review items
during the inspection meetings.

Inspectors identify and describe defects in the review items under
inspection. They should be selected to represent a variety of viewpoints (e.g.
designer, coder and tester).

 The author is the person who has produced the items under
inspection. The author is present to answer questions about the items under
inspection, and is responsible for all rework.

A person may have one or more of the roles above. In the interests
of objectivity, no person may share the author role with another role.

3.2.3 Input

The inputs to an inspection are the:
• review items;
• specifications of the review items;
• inspection checklist;
• standards and guidelines that apply to the review items;
• inspection reporting forms;
• defect list from a previous inspection.

3.2.4 Activities

A software inspection consists of the following activities:
• overview;
• preparation;
• review meeting;
• rework;
• follow-up.

46 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION METHODS

The overview is a presentation of the items being inspected.
Inspectors then prepare themselves for the review meeting by familiarising
themselves with the review items. They then examine the review items,
identify defects, and decide whether they should be corrected or not, at the
review meeting. Rework activities consist of the repair of faults. Follow-up
activities check that all decisions made by the review meeting are carried
out.

Before the overview, the moderator should:
• check that the review items are ready for inspection;
• arrange a date, time and place for the overview and review meetings;
• distribute the inputs if no overview meeting is scheduled.

Organisations should collect their own inspection statistics and use
them for deciding the number and duration of inspections. The following
figures may be used as the starting point for inspections of code [Ref 22]:
• preparation: 125 non-comment lines of source code per hour;
• review meeting: 90 non-comment lines of source code per hour.

These figures should be doubled for inspections of pseudo code or
program design language.

Review meetings should not last more than two hours. The
efficiency of defect detection falls significantly when meetings last longer
than this.

3.2.4.1 Overview

The purpose of the overview is to introduce the review items to the
inspection team. The moderator describes the area being addressed and
then the specific area that has been designed in detail.

For a reinspection, the moderator should flag areas that have been
subject to rework since the previous inspection.

The moderator then distributes the inputs to participants.

3.2.4.2 Preparation

Moderators, readers and inspectors then familiarise themselves with
the inputs. They might prepare for a code inspection by reading:
• design specifications for the code under inspection;

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 47
SOFTWARE VERIFICATION AND VALIDATION METHODS

• coding standards;
• checklists of common coding errors derived from previous inspections;
• code to be inspected.

Any defects in the review items should be noted on RID forms and
declared at the appropriate point in the examination. Preparation should be
done individually and not in a meeting.

3.2.4.3 Review meeting

The moderator checks that all the members have performed the
preparatory activities (see Section 3.2.4.2). The amount of time spent by
each member should be reported and noted.

The reader then leads the meeting through the review items. For
documents, the reader may summarise the contents of some sections and
cover others line-by-line, as appropriate. For code, the reader covers every
piece of logic, traversing every branch at least once. Data declarations
should be summarised. Inspectors use the checklist to find common errors.

Defects discovered during the reading should be immediately noted
by the secretary. The defect list should cover the:
• severity (e.g. major, minor);
• technical area (e.g. logic error, logic omission, comment error);
• location;
• description.

Any solutions identified should be noted. The inspection team
should avoid searching for solutions and concentrate on finding defects.

At the end of the meeting, the inspection team takes one of the
following decisions:
• accept the item when the rework (if any) is completed;
• make the moderator responsible for accepting the item when the rework

is completed;
• reinspect the whole item (usually necessary if more than 5% of the

material requires rework).

The secretary should produce the minutes immediately after the
review meeting, so that rework can start without delay.

48 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION METHODS

3.2.4.4 Rework

After examination, software authors correct the defects described in
the defect list.

3.2.4.5 Follow-up

After rework, follow-up activities verify that all the defects have been
properly corrected and that no secondary defects have been introduced.
The moderator is responsible for follow-up.

Other follow-up activities are the:
• updating of the checklist as the frequency of different types of errors

change;
• analysis of defect statistics, perhaps resulting in the redirection of SVV

effort.

3.2.5 Output

The outputs of an inspection are the:
• defect list;
• defect statistics;
• inspection report.

The inspection report should give the:
• names of the participants;
• duration of the meeting;
• amount of material inspected;
• amount of preparation time spent;
• review decision on acceptance;
• estimates of rework effort and schedule.

3.3 FORMAL METHODS

Formal Methods, such as LOTOS, Z and VDM, possess an agreed
notation, with well-defined semantics, and a calculus, which allow proofs to
be constructed. The first property is shared with other methods for software
specification, but the second sets them apart.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 49
SOFTWARE VERIFICATION AND VALIDATION METHODS

 Formal Methods may be used in the software requirements
definition phase for the construction of specifications. They are discussed in
ESA PSS-05-03, 'Guide to the Software Requirements Definition Phase' [Ref
2].

3.4 PROGRAM VERIFICATION TECHNIQUES

Program verification techniques may be used in the detailed design
and production phase to show that a program is consistent with its
specification. These techniques require that the:
• semantics of the programming language are formally defined;
• program be formally specified in a notation that is consistent with the

mathematical verification techniques used.

If these conditions are not met, formal program verification cannot
be attempted [Ref 16].

A common approach to formal program verification is to derive, by
stepwise refinement of the formal specification, 'assertions' (e.g.
preconditions or postconditions) that must be true at each stage in the
processing. Formal proof of the program is achieved by demonstrating that
program statements separating assertions transform each assertion into its
successor. In addition, it is necessary to show that the program will always
terminate (i.e. one or more of the postconditions will always be met).

Formal program verification is usually not possible because the
programming language has not been formally defined. Even so, a more
pragmatic approach to formal proof is to show that the:
• program code is logically consistent with the program specification;
• program will always terminate.

Assertions are placed in the code as comments. Verification is
achieved by arguing that the code complies with the requirements present in
the assertions.

3.5 CLEANROOM METHOD

The cleanroom method [Ref 23] replaces unit testing and
integration testing with software inspections and program verification
techniques. System testing is carried out by an independent testing team.

50 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION METHODS

 The cleanroom method is not fully compliant with ESA PSS-05-0
because:
• full statement coverage is not achieved (DD06);
• unit and integration testing are omitted (DD07, DD08).

3.6 STRUCTURED TESTING

Structured Testing is a method for verifying software based upon
the mathematical properties of control graphs [Ref 13]. The method:
• improves testability by limiting complexity during detailed design;
• guides the definition of test cases during unit testing.

Software with high complexity is hard to test. The Structured Testing
method uses the cyclomatic complexity metric for measuring complexity,
and recommends that module designs be simplified until they are within the
complexity limits.

Structured Testing provides a technique, called the 'baseline
method', for defining test cases. The objective is to cover every branch of the
program logic during unit testing. The minimum number of test cases is the
cyclomatic complexity value measured in the first step of the method.

The discussion of Structured Testing given below is a summary of
that given in Reference 13. The reader is encouraged to consult the
reference for a full discussion.

3.6.1 Testability

The testability of software should be evaluated during the detailed
design phase by measuring its complexity.

 The relationships between the parts of an entity determine its
complexity. The parts of a software module are the statements in it. These
are related to each other by sequence, selection (i.e. branches or
conditions) and iteration (i.e. loops). As loops can be simulated by
branching on a condition, McCabe defined a metric that gives a complexity
of 1 for a simple sequence of statements with no branches. Only one test is
required to execute every statement in the sequence. Each branch added to
a module increases the complexity by one, and requires an extra test to
cover it.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 51
SOFTWARE VERIFICATION AND VALIDATION METHODS

A control graph represents the control flow in a module. Control
graphs are simplified flowcharts. Blocks of statements with sequential logic
are represented as 'nodes' in the graph. Branches between blocks of
statements (called 'edges') are represented as arrows connecting the
nodes. McCabe defines the cyclomatic complexity 'v' of a control graph as:

v = e - n + 2

where:
• e is the number of edges;
• n is the number of nodes.

 Figure 3.6.1A, B and C show several examples of control graphs.

e = 1, n = 2, v = 1

e = 1, n = 1, v = 2

e = 3, n = 3, v = 2

Sequence

Selection

Iteration

Node

Edge

Figure 3.6.1A: Basic control graphs

52 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION METHODS

e = 4, n = 4, v = 2IF .. THEN ... ELSE ... ENDIF

e = 3, n = 3, v = 2UNTIL

e = 3, n = 3, v = 2WHILE

e = 6, n = 5, v = 3CASE

Figure 3.6.1B: Control graphs for structured programming elements

e = 3, n = 4, v = 1

e = 6, n = 5, v = 3

e = 9, n = 5, v = 6

Figure 3.6.1C: Example control graphs

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 53
SOFTWARE VERIFICATION AND VALIDATION METHODS

Alternative ways to measure cyclomatic complexity are to count the:
• number of separate regions in the control graph (i.e. areas separated by

edges);
• number of decisions (i.e. the second and subsequent branches

emanating from a node) and add one.

Myers [Ref 14] has pointed out that decision statements with
multiple predicates must be separated into simple predicates before
cyclomatic complexity is measured. The decision IF (A .AND. B .AND. C)
THEN ... is really three separate decisions, not one.

The Structured Testing Method recommends that the cyclomatic
complexity of a module be limited to 10. Studies have shown that errors
concentrate in modules with complexities greater than this value. During
detailed design, the limit of 7 should be applied because complexity always
increases during coding. Modules that exceed these limits should be
redesigned. Case statements are the only exception permitted.

The total cyclomatic complexity of a program can be obtained by
summing the cyclomatic complexities of the constituent modules. The full
cyclomatic complexity formula given by McCabe is:

v = e - n + 2p

where p is the number of modules. Each module has a separate
control graph. Figure 3.6.1D shows how the total cyclomatic complexity can
be evaluated by:
• counting all edges (18), nodes (14) and modules (3) and applying the

complexity formula, 18 - 14 + 2*3 = 10;
• adding the complexity of the components, 1+ 3 + 6 = 10.

Combining the modules in Figure 3.6.1D into one module gives a
module with complexity of eight. Although the total complexity is reduced,
this is higher than the complexity of any of the separate modules. In general,
decomposing a module into smaller modules increases the total complexity
but reduces the maximum module complexity. A useful rule for design
decomposition is to continue decomposition until the complexity of each of
the modules is 10 or less.

54 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION METHODS

e = 18, n = 14, v = 18 - 14 + (2 x 3) = 10

Module A

Module B Module C

B C

v = 1

v = 3 v = 6

 Figure 3.6.1D: Evaluating total cyclomatic complexity

3.6.2 Branch testing

Each branch added to a control graph adds a new path, and in this
lies the importance of McCabe's complexity metric for the software tester:
the cyclomatic complexity metric, denoted as 'v' by McCabe, measures the
minimum number of paths through the software required to ensure that:
• every statement in a program is executed at least once (DD06);
• each decision outcome is executed at least once.

These two criteria imply full 'branch testing' of the software. Every
clause of every statement is executed. In simple statement testing, every
clause of every statement may not be executed. For example, branch testing
of IF (A .EQ. B) X = X/Y requires that test cases be provided for both 'A
equal to B' and 'A not equal to B'. For statement testing, only one test case
needs to be provided. ESA PSS-05-0 places statement coverage as the
minimum requirement. Branch testing should be the verification requirement
in most projects.

3.6.3 Baseline method

The baseline method is used in structured testing to decide what
paths should be used to traverse every branch. The test designer should

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 55
SOFTWARE VERIFICATION AND VALIDATION METHODS

examine the main function of the module and define the 'baseline path' that
directly achieves it. Special cases and errors are ignored.

Complexity = 7 - 6 + 2 = 3

Test Case 1 Test Case 2 Test Case 3

Baseline path Switch decision 1 Switch decision 2

IF (A) THEN
X=1

ELSEIF (B) THEN
X=2

ELSE
X=3

ENDIF

Figure 3.6.3: Baseline Method example.

Figure 3.6.3 shows the principles. The cyclomatic complexity of the
module is three, so three test cases are required for full branch coverage.
Test case 1 traces the baseline path. The baseline method proceeds by
taking each decision in turn and switching it, as shown in test cases 2 and
3. Each switch is reset before switching the next, resulting in the checking of
each deviation from the baseline. The baseline method does not require the
testing of all possible paths. See the example of untested path of Figure
3.6.3. Tests for paths that are not tested by the baseline method may have
to be added to the test design (e.g paths for testing safety-critical functions).

3.7 STRUCTURED INTEGRATION TESTING

Structured Integration Testing [Ref 15] is a method based upon the
Structured Testing Method that:
• improves testability by limiting complexity during software architectural

design;
• guides the definition of test cases during integration testing.

56 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION METHODS

The method can be applied at all levels of design above the module
level. Therefore it may also be applied in unit testing when units assembled
from modules are tested.

The discussion of Structured Integration Testing given below is a
summary of that given in Reference 15. The reader is encouraged to consult
the references for a full discussion.

3.7.1 Testability

Structured Integration Testing defines three metrics for measuring
testability:
• module design complexity;
• design complexity;
• integration complexity.

Module design complexity, denoted as 'iv' by McCabe, measures
the individual effect of a module upon the program design [Ref 15]. The
module design complexity is evaluated by drawing the control graph of the
module and then marking the nodes that contain calls to external modules.
The control graph is then 'reduced' according to the rules listed below and
shown in Figure 3.7.1A:
1. marked nodes cannot be removed;
2. unmarked nodes that contain no decisions are removed;
3. edges that return control to the start of a loop that only contains

unmarked nodes are removed;
4. edges that branch from the start of a case statement to the end are

removed if none of the other cases contain marked nodes.

As in all control graphs, edges that 'duplicate' other edges are
removed. The module design complexity is the cyclomatic complexity of the
reduced graph.

In summary, module design complexity ignores paths covered in
module testing that do not result in calls to external modules. The remaining
paths are needed to test module interfaces.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 57
SOFTWARE VERIFICATION AND VALIDATION METHODS

Rule 1.

Rule 2.

Rule 3.

Example A.

Rule 4.

Example B.

 Figure 3.7.1A: Reduction rules

3

4 5 6

7

8

9

Full Control Graph

1

2

1

3

4 5 6

7

8

9

1

3

5 6

7

9

1. Remove node 2

2. Remove node 4 loop return edge

3. Remove node 4

8

4. Remove node 7 decision
branch with no nodes

Figure 3.7.1B: Calculating module design complexity - part 1

58 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION METHODS

1

3

5 6

7

9

5. Remove node 8

1

3

5 6

7

6. Remove node 9

3

5 6

7

7. Remove node 1

iv = 5 - 4 + 2 = 3

Figure 3.7.1C: Calculating module design complexity - part 2

Figures 3.7.1B and C show an example of the application of these
rules. The shaded nodes 5 and 6 call lower level modules. The unshaded
nodes do not. In the first reduction step, rule 2 is applied to remove node 2.
Rule 3 is then applied to remove the edge returning control in the loop
around node 4. Rule 2 is applied to remove node 4. Rule 4 is then applied to
remove the edge branching from node 7 to node 9. Rule 2 is then applied to
remove nodes 8, 9 and 1. The module design complexity is the cyclomatic
complexity (see Section 3.6.1) of the reduced control graph, 3.

The design complexity, denoted as 'So' by McCabe, of an assembly
of modules is evaluated by summing the module design complexities of
each module in the assembly.

The integration complexity, denoted as 'S1' by McCabe, of an
assembly of modules, counts the number of paths through the control flow.
The integration complexity of an assembly of 'N' modules is given by the
formula:

S1 = S0 - N + 1

The integration complexity of N modules each containing no
branches is therefore 1.

 The testability of a design is measured by evaluating its integration
complexity. Formally the integration complexity depends on measuring the
module design complexity of each module. During architectural design, the

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 59
SOFTWARE VERIFICATION AND VALIDATION METHODS

full control graph of each constituent module will not usually be available.
However sufficient information should be available to define the module
design complexity without knowing all the module logic.

iv=1 iv=1 iv=1 iv=1

iv=1 iv=4

iv=2

A

B C

D E F G

S0=11; S1=11-7+1=5

Figure 3.7.1D: Estimating integration complexity from a structure chart

Figure 3.7.1D shows a structure chart illustrating how S 1 can be
evaluated just from knowing the conditions that govern the invocation of
each component, i.e. the control flow. Boxes in the chart correspond to
design components, and arrows mark transfer of the control flow. A
diamond indicates that the transfer is conditional. The control flow is defined
to be:
• component A calls either component B or component C;
• component B sequentially calls component D and then component E;
• component C calls either component E or component F or component

G or none of them.

The integration complexity of the design in shown Figure 3.7.1D is
therefore 5.

60 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION METHODS

3.7.2 Control flow testing

Just as cyclomatic complexity measures the number of test cases
required to cover every branch of a module, integration complexity measures
the number of tests required to cover all the control flow paths. Structured
integration testing can therefore be used for verifying that all the control
flows defined in the ADD have been implemented (DD08).

3.7.3 Design integration testing method

The design integration testing method is used in structured
integration testing to enable the test designer to decide what control flow
paths should be tested. The test designer should:
• evaluate the integration complexity, S1 for the N modules in the design

(see Section 3.7.1);
• construct a blank matrix of dimension S1 rows by N columns, called the

'integration path test matrix';
• mark each column, the module of which is conditionally called, with a

'p' (for predicate), followed by a sequence number for the predicate;
• fill in the matrix with 1's or 0's to show whether the module is called in

each test case.

The example design shown in Figure 3.7.1D has an integration
complexity of 5. The five integration test cases to verify the control flow are
shown in Table 3.7.3.

Case A

P1

B

P2

C D

P3

E

P4

F

P5

G Control flow path

1 1 1 0 1 1 0 0 A calls B; B calls D and E

2 1 0 1 0 0 0 0 A calls C and then returns

3 1 0 1 0 1 0 0 A calls C and then C calls E

4 1 0 1 0 0 1 0 A calls C and then C calls F

5 1 0 1 0 0 0 1 A calls C and then C calls G

Table 3.7.3: Example Integration Path Test Matrix

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 61
SOFTWARE VERIFICATION AND VALIDATION METHODS

In Table 3.7.3, P1 and P2 are two predicates (contained within
module A) that decide whether B or C are called. Similarly, P3, P4 and P5
are three predicates (contained within module C) that decide whether E, F or
G are called.

62 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION METHODS

This page is intentionally left blank.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 63
SOFTWARE VERIFICATION AND VALIDATION TOOLS

CHAPTER 4
SOFTWARE VERIFICATION AND VALIDATION TOOLS

4.1 INTRODUCTION

A software tool is a 'computer program used in the development,
testing, analysis, or maintenance of a program or its documentation' [Ref 6].
Software tools, more commonly called 'Computer Aided Software
Engineering' (CASE) tools enhance the software verification and validation
process by:
• reducing the effort needed for mechanical tasks, therefore increasing

the amount of software verification and validation work that can be
done;

• improving the accuracy of software verification and validation (for
example, measuring test coverage is not only very time consuming, it is
also very difficult to do accurately without tools).

Both these benefits result in improved software quality and
productivity.

ESA PSS-05-0 defines the primary software verification and
validation activities as:
• reviewing;
• tracing;
• formal proof;
• testing;
• auditing.

The following sections discuss tools for supporting each activity.
This chapter does not describe specific products, but contains guidelines
for their selection.

4.2 TOOLS FOR REVIEWING

4.2.1 General administrative tools

General administrative tools may be used for supporting reviewing,
as appropriate. Examples are:
• word processors that allow commenting on documents;

64 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION TOOLS

• word processors that can show changes made to documents;
• electronic mail systems that support the distribution of review items;
• notes systems that enable communal commenting on a review item;
• conferencing systems that allow remote participation in reviews.

4.2.2 Static analysers

Static analysis is the process of evaluating a system or component
based on its form, structure, content or documentation [Ref 6]. Reviews,
especially software inspections, may include activities such as:
• control flow analysis to find errors such as unreachable code, endless

loops, violations of recursion conventions, and loops with multiple entry
and exit points;

• data-use analysis to find errors such as data used before initialisation,
variables declared but not used, and redundant writes;

• range-bound analysis to find errors such as array indices outside the
boundaries of the array;

• interface analysis to find errors such as mismatches in argument lists
between called modules and calling modules;

• information flow analysis to check the dependency relations between
input and output;

• verification of conformance to language standards (e.g. ANSI C);
• verification of conformance to project coding standards, such as

departures from naming conventions;
• code volume analysis, such as counts of the numbers of modules and

the number of lines of code in each module;
• complexity analysis, such as measurements of cyclomatic complexity

and integration complexity.

Tools that support one or more of these static analysis activities are
available and their use is strongly recommended.

Compilers often perform some control flow and data-use analysis.
Some compile/link systems, such as those for Ada and Modula-2,
automatically do interface analysis to enforce the strong type checking
demanded by the language standards. Compilers for many languages, such
as FORTRAN and C, do not do any interface analysis. Static analysis tools
are especially necessary when compilers do not check control flow, data

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 65
SOFTWARE VERIFICATION AND VALIDATION TOOLS

flow, range bounds and interfaces. The use of a static analyser should be an
essential step in C program development, for example.

Static analysers for measuring complexity and constructing call
graphs are essential when the Structured Testing method is used for unit
testing (see Section 4.5.1). Producing call graphs at higher levels (i.e.
module tree and program tree) is also of use in the review and testing of the
detailed design and architectural design.

4.2.3 Configuration management tools

Reviewing is an essential part of the change control process and
therefore some configuration management tools also support review
processes. The preparation and tracking of RIDs and SPRs can be
supported by database management systems for example. See ESA PSS-
05-09, 'Guide to Software Configuration Management' [Ref 4].

4.2.4 Reverse engineering tools

Although reverse engineering tools are more commonly used during
maintenance to enable code to be understood, they can be used during
development to permit verification that 'as-built' conforms to 'as-designed'.
For example the as-built structure chart of a program can be generated from
the code by means of a reverse engineering tool, and then compared with
the as-designed structure chart in the ADD or DDD.

4.3 TOOLS FOR TRACING

The basic tracing method is to:
• uniquely identify the items to be tracked;
• record relationships between items.

ESA PSS-05-0 states that cross-reference matrices must be used to
record relationships between:
• user requirements and software requirements;
• software requirements and architectural design components;
• software requirements and detailed design components.

In addition, test designs should be traced to software components
and requirements.

66 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION TOOLS

Tracing tools should:
• ensure that identifiers obey the naming conventions of the project;
• ensure that identifiers are unique;
• allow attributes to be attached to the identified items such as the need,

priority, or stability of a requirement, or the status of a software
component (e.g. coded, unit tested, integration tested, system tested,
acceptance tested);

• record all instances where an identified part of a document references
an identified part of another document (e.g. when software requirement
SR100 references user requirement UR49, the tool should record the
relationship SR100-UR49);

• accept input in a variety of formats;
• store the traceability records (e.g. a table can be used to store a

traceability matrix);
• allow easy querying of the traceability records;
• allow the extraction of information associated with a specific traceability

record (e.g. the user requirement related to a software requirement);
• generate traceability reports (e.g. cross-reference matrices);
• inform users of the entities that may be affected when a related entity is

updated or deleted;
• be integrated with the project repository so that the relationship

database is automatically updated after a change to a document or a
software component;

• provide access to the change history of a review item so that the
consistency of changes can be monitored.

In summary, tracing tools should allow easy and efficient navigation
through the software.

Most word processors have indexing and cross-referencing
capabilities. These can also support traceability; for example, traceability
from software requirements to user requirements can be done by creating
index entries for the user requirement identifiers in the SRD. The
disadvantage of this approach is that there is no system-wide database of
relationships. Consequently dedicated tracing tools, normally based upon
commercial database management systems, are used to build relationship
databases. Customised frontends are required to make tracing tool
capabilities easily accessible. The database may form part of, or be
integrated with, the software development environment's repository. Tracing

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 67
SOFTWARE VERIFICATION AND VALIDATION TOOLS

tools should accept review items (with embedded identifiers) and generate
the traceability records from that input.

Traceability tool functionality is also provided by 'requirements
engineering' tools, which directly support the requirements creation and
maintenance process. Requirements engineering tools contain all the
specific requirements information in addition to the information about the
relationships between the requirements and the other parts of the software.

4.4 TOOLS FOR FORMAL PROOF

Formal Methods (e.g. Z and VDM) are discussed in ESA PSS-05-03,
'Guide to the Software Requirements Definition Phase' [Ref 2]. This guide
also discusses the criteria for the selection of CASE tools for software
requirements definition. These criteria should be used for the selection of
tools to support Formal Methods.

Completely automated program verification is not possible without a
formally defined programming language. However subsets of some
languages (e.g. Pascal, Ada) can be formally defined. Preprocessors are
available that automatically check that the code is consistent with assertion
statements placed in it. These tools can be very effective in verifying small
well-structured programs.

Semantics is the relationship of symbols and groups of symbols to
their meaning in a given language [Ref 6]. In software engineering, semantic
analysis is the symbolic execution of a program by means of algebraic
symbols instead of test input data. Semantic analyser s use a source code
interpreter to substitute algebraic symbols into the program variables and
present the results as algebraic formulae [Ref 17]. Like program verifiers,
semantic analysers may be useful for the verification of small well-structured
programs.

4.5 TOOLS FOR TESTING

Testing involves many activities, most of which benefit from tool
support. Figure 4.5 shows what test tools can be used to support the testing
activities defined in Section 2.6.

68 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION TOOLS

Specify
tests

Make test
software

Link SUT

Run tests

Analyse
coverage

Analyse
performance

Check
outputs

Store
test data

URD & SVVP/AT/Test Plan
SRD & SVVP/ST/Test Plan
ADD & SVVP/IT/Test Plan
DDD & SVVP/UT/Test Plan

Test
cases

Test
Code

SUT

Tested Code
Executable
SUT

Output
Data

Old
Output
Data

Test
Proc's
Input Data

Test
Data

Expected Output Data

Test Data = Input Data + Expected Output Data

Test results/coverage

Test results/performance

Test results

Static analyser
Test case generator

Test harness

Debugger
Coverage analyser

Performance analyser
Debugger

Test harness

Coverage analyser

Perform' analyser

Comparator

Test manager tool

System monitor

Figure 4.5: Testing Tools

The following paragraphs step through each activity depicted in
Figure 4.5, discussing the tools indicated by the arrows into the bottom of
the activity boxes.
1. The 'specify tests' activity may use the Structured Testing Method and

Structured Integration Testing methods (see Sections 3.6 and 3.7).
Static analysers should be used to measure the cyclomatic complexity
and integration complexity metrics. This activity may also use the
equivalence partitioning method for defining unit test cases. Test case
generators should support this method.

2. The 'make test software' activity should be supported with a test
harness tool. At the unit level, test harness tools that link to the SUT act
as drivers for software modules, providing all the user interface
functions required for the control of unit tests. At the integration and
system levels, test harness tools external to the SUT (e.g. simulators)
may be required. Test procedures should be encoded in scripts that
can be read by the test harness tool.

3. The 'link SUT' activity links the test code, SUT, and existing tested code,
producing the executable SUT. Debuggers, coverage analysers and
performance analysers may also be built into the executable SUT.
Coverage analysers and performance analysers (collectively known as
'dynamic analysers') require 'instrumentation' of the code so that post-
test analysis data can be collected.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 69
SOFTWARE VERIFICATION AND VALIDATION TOOLS

4. The 'run tests' activity executes the tests according to the test
procedures, using the input data. Test harnesses permit control of the
test. These should have a capture and playback capability if the SUT
has an interactive user interface. White-box test runs may be conducted
under the control of a debugger. This permits monitoring of each step of
execution, and immediate detection of defects that cause test failures.
System monitoring tools can be used to study program resource usage
during tests.

 5. The 'analyse coverage' activity checks that the tests have executed the
parts of the SUT they were intended to. Coverage analysers show the
paths that have been executed, helping testers keep track of coverage.

6. The 'analyser performance' activity should be supported with a
performance analyser (also called a 'profiler'). These examine the
performance data collected during the test run and produce reports of
resource usage at component level and statement level.

 7. The 'check outputs' activity should be supported with a comparator .
This tool can automatically compare the test output data with the
outputs of previous tests or the expected output data.

8. The 'store test data' activity should be supported by test manager tools
that store the test scripts, test input and output data for future use.

 Tool support for testing is weakest in the area of test design and
test case generation. Tool support is strongest in the area of running tests,
analysing the results and managing test software. Human involvement is
required to specify the tests, but tools should do most of the tedious,
repetitive work involved in running them. Automated support for regression
testing is especially good. In an evolving system this is where it is most
needed. The bulk of software costs usually accrue during the operations and
maintenance phase of a project. Often this is due to the amount of
regression testing required to verify that changes have not introduced faults
in the system.

The following subsections discuss the capabilities of test tools in
more detail.

4.5.1 Static analysers

Static analysers that measure complexity are needed to support the
Structured Testing method and for checking adherence to coding
standards. These tools may also support review activities (see Section
4.2.2). The measure of complexity defines the minimum number of test

70 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION TOOLS

cases required for full branch coverage. Static analysers should also
produce module control graphs to support path definition.

The output of a static analyser should be readable by the test
harness tool so that checks on values measured during static analysis can
be included in test scripts (e.g. check that the complexity of a module has
not exceeded some threshold, such as 10). This capability eases regression
testing.

4.5.2 Test case generators

A test case generator (or automated test generator) is 'a software
tool that accepts as input source code, test criteria, specifications, or data
structure definitions; uses these inputs to generate test input data; and,
sometimes, determines the expected results' [Ref 6].

The test case generation methods of equivalence partitioning and
boundary value analysis can be supported by test case generators. These
methods are used in unit testing. Automated test case generation at
integration, system and acceptance test level is not usually possible.

Expected output data need to be in a form usable by comparators.

4.5.3 Test harnesses

A test harness (or test driver) is a ‘software module used to invoke a
module under test and, often, provide test inputs, control and monitor
execution, and report test results’ [Ref 6]. Test harness tools should:
• provide a language for programming test procedures (i.e. a script

language);
• generate stubs for software components called by the SUT;
• not require any modifications to the SUT;
• provide a means of interactive control (for debugging);
• provide a batch mode (for regression testing);
• enable stubs to be informed about the test cases in use, so that they

will read the appropriate test input data;
• execute all test cases required of a unit, subsystem or system;
• handle exceptions, so that testing can continue after test failures;
• record the results of all test cases in a log file;
• check all returns from the SUT;
• record in the test results log whether the test was passed or failed;
• be usable in development and target environments.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 71
SOFTWARE VERIFICATION AND VALIDATION TOOLS

A test harness is written as a driver for the SUT. The harness is
written in a scripting language that provides module, sequence, selection
and iteration constructs. Scripting languages are normally based upon a
standard programming language. The ability to call one script module from
another, just as in a conventional programming language, is very important
as test cases may only differ in their input data. The scripting language
should include directives to set up, execute, stop and check the results of
each test case. Software components that implement these directives are
provided as part of the test harness tool. Test harnesses may be compiled
and linked with the SUT, or exist externally as a control program.

Test harness tools can generate input at one or more of the
following levels [Ref 19]:
• application software level, either as input files or call arguments;
• operating system level, for example as X-server messages;
• hardware level, as keyboard or mouse input.

Test harness tools should capture output at the level at which they
input it. It should be possible to generate multiple input and output data
streams. This is required in stress tests (e.g. multiple users logging on
simultaneously) and security tests (e.g. resource locking).

A synchronisation mechanism is required to co-ordinate the test
harness and the software under test. During unit testing this is rarely a
problem, as the driver and the SUT form a single program. Synchronisation
may be difficult to achieve during integration and system testing, when the
test harness and SUT are separate programs. Synchronisation techniques
include:
• recording and using the delays of the human operators;
• waiting for a specific output (i.e. a handshake technique);
• using an algorithm to decide the wait time;
• monitoring keyboard lock indicators.

 The first technique is not very robust. The other techniques are
preferable.

For interactive testing, the most efficient way to define the test script
is to capture the manually generated input and store it for later playback. For
graphical user interfaces this may be the only practical method.

72 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION TOOLS

Graphical user interfaces have window managers to control the use
of screen resources by multiple applications. This can cause problems to
test harness tools because the meaning of a mouse click depends upon
what is beneath the cursor. The window manager decides this, not the test
harness. This type of problem can mean that test scripts need to be
frequently modified to cope with changes in layout. Comparators that can
filter out irrelevant changes in screen layout (see Section 4.5.7) reduce the
problems of testing software with a graphical user interface.

4.5.4 Debuggers

Debuggers are used in white-box testing for controlling the
execution of the SUT. Capabilities required for testing include the ability to:
• display and interact with the tester using the symbols employed in the

source code;
• step through code instruction-by-instruction;
• set watch points on variables;
• set break points;
• maintain screen displays of the source code during test execution;
• log the session for inclusion in the test results.

Session logs can act as test procedure files for subsequent tests
and also as coverage reports, since they describe what happened.

4.5.5 Coverage analysers

Coverage analysis is the process of:
• instrumenting the code so that information is collected on the parts of it

that are executed when it is run;
• analysing the data collected to see what parts of the SUT have been

executed.

Instrumentation of the code should not affect its logic. Any effects
on performance should be easy to allow for. Simple coverage analysers will
just provide information about statement coverage, such as indications of
the program statements executed in one run. More advanced coverage
analysers can:
• sum coverage data to make reports of total coverage achieved in a

series of runs;
• display control graphs, so that branch coverage and path coverage can

be monitored;

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 73
SOFTWARE VERIFICATION AND VALIDATION TOOLS

• output test coverage information so that coverage can be checked by
the test harness, therefore aiding regression testing;

• operate in development and target environments.

4.5.6 Performance analysers

Performance analysis is the process of:
• instrumenting the code so that information is collected about resources

used when it is run;
• analysing the data collected to evaluate resource utilisation;
• optimising performance.

Instrumentation of the code should not affect the measured
performance. Performance analysers should provide information on a variety
of metrics such as:
• CPU usage by each line of code;
• CPU usage by each module;
• memory usage;
• input/output volume.

Coverage analysers are often integrated with performance analysers
to make 'dynamic analysers'.

4.5.7 Comparators

A comparator is a ‘software tool used to compare two computer
programs, files, or sets of data to identify commonalities and differences’
[Ref 6]. Differencing tools are types of comparators. In testing, comparators
are needed to compare actual test output data with expected test output
data.

Expected test output data may have originated from:
• test case generators;
• previous runs.

Comparators should report about differences between actual and
expected output data. It should be possible to specify tolerances on
differences (floating point operations can produce slightly different results
each time they are done). The output of comparators should be usable by
test harness tools, so that differences can be used to flag a test failure. This
makes regression testing more efficient.

74 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION TOOLS

Screen comparators [Ref 19] are useful for testing interactive
software. These may operate at the character or bitmap level. The ability to
select parts of the data, and attributes of the data, for comparison is a key
requirement of a screen comparator. Powerful screen comparison
capabilities are important when testing software with a graphical user
interface.

 Some comparators may be run during tests. When a difference is
detected the test procedure is suspended. Other comparators run off-line,
checking for differences after the test run.

4.5.8 Test management tools

All the software associated with testing: test specifications, SUT,
drivers, stubs, scripts, tools, input data, expected output data and output
data must be placed under configuration management (SCM01). The
configuration management system is responsible for identifying, storing,
controlling and accounting for all configuration items.

Test data management tools provide configuration management
functions for the test data and scripts. Specifically designed for supporting
testing, they should:
• enable tests to be set up and run with the minimum of steps;
• automatically manage the storage of outputs and results;
• provide test report generation facilities;
• provide quality and reliability statistics;
• provide support for capture and playback of input and output data

during interactive testing.

Test managers are essential for efficient regression testing.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 75
THE SOFTWARE VERIFICATION AND VALIDATION PLAN

CHAPTER 5
THE SOFTWARE VERIFICATION AND VALIDATION PLAN

5.1 INTRODUCTION

All software verification and validation activities must be
documented in the Software Verification and Validation Plan (SVVP) (SVV04).
The SVVP is divided into seven sections that contain the verification plans for
the SR, AD and DD phases and the unit, integration, system and
acceptance test specifications. Figure 5.1A summarises when and where
each software verification and validation activity is documented in the SVVP.

SVVP
SECTION

PHASE USER
REQUIREMENTS
DEFINITION

SOFTWARE
REQUIREMENTS
DEFINITION

ARCHITECTURAL
DESIGN

DETAILED
DESIGN AND
PRODUCTION

TRANSFER

UT Plan
UT Designs
UT Cases
UT Procedures
UT Reports

IT Plan IT Designs
IT Cases
IT Procedures
IT Reports

ST Plan ST Designs
ST Cases
ST Procedures
ST Reports

AT Plan
AT Designs
AT Cases
AT Procedures AT Reports

DD Phase Plan

AD Phase Plan

SR Phase Plan

SVVP/SR

SVVP/AD

SVVP/DD

SVVP/AT

SVVP/ST

SVVP/IT

SVVP/UT

Figure 5.1A: Life cycle production of SVV documentation

Each row of Figure 5.1A corresponds to a section of the SVVP and
each column entry corresponds to a subsection. For example, the entry 'ST
Plan' in the SVVP/ST row means that the System Test Plan is drawn up in the
SR phase and placed in the SVVP section 'System Tests', subsection 'Test
Plan'.

76 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
THE SOFTWARE VERIFICATION AND VALIDATION PLAN

 The SVVP must ensure that the verification activities:
• are appropriate for the degree of criticality of the software (SVV05);
• meet the verification and acceptance testing requirements (stated in the

SRD) (SVV06);
• verify that the product will meet the quality, reliability, maintainability and

safety requirements (stated in the SRD) (SVV07);
• are sufficient to assure the quality of the product (SVV08).

The table of contents for the verification sections is derived from the
IEEE Standard for Verification and Validation Plans (ANSI/IEEE Std 1012-
1986). For the test sections it is derived from the IEEE Standard for Software
Test Documentation (ANSI/IEEE Std 829-1983).

The relationship between test specifications, test plans, test
designs, test cases, test procedures and test results may sometimes be a
simple hierarchy but usually it will not be. Figure 5.1B shows the
relationships between the sections and subsections of the SVVP. Sections
are shown in boxes. Relationships between sections are shown by lines
labelled with the verb in the relationship (e.g. 'contains'). The one-to-one
relationships are shown by a plain line and one-to-many relationships are
shown by the crow's feet.

Test
Design

Test
Case

Test
Procedure

Test
Report

Test Specification

contains contains contains contains

Test
Plan

contains

SVVP

contains

controls uses uses outputs

Phase

Plan
contains

SR,AD,DD

UT,IT,ST,AT

1,n 1,n 1,n 1,n

uses

Figure 5.1B: Relationships between sections of the SVVP

Figure 5.1B illustrates that a test plan controls the test design
process, defining the software items to be tested. Test designs define the
features of each software item to be tested, and specify the test cases and
test procedures that will be used to test the features. Test cases may be

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 77
THE SOFTWARE VERIFICATION AND VALIDATION PLAN

used by many test designs and many test procedures. Each execution of a
test procedure produces a new set of test results.

Software verification and validation procedures should be easy to
follow, efficient and wherever possible, reusable in later phases. Poor test
definition and record keeping can significantly reduce the maintainability of
the software.

The key criterion for deciding the level of documentation of testing is
repeatability. Tests should be sufficiently documented to allow repetition by
different people, yet still yield the same results for the same software. The
level of test documentation depends very much upon the software tools
used to support testing. Good testing tools should relieve the developer
from much of the effort of documenting tests.

5.2 STYLE

The SVVP should be plain and concise. The document should be
clear, consistent and modifiable.

Authors should assume familiarity with the purpose of the software,
and not repeat information that is explained in other documents.

5.3 RESPONSIBILITY

The developer is normally responsible for the production of the
SVVP. The user may take responsibility for producing the Acceptance Test
Specification (SVVP/AT), especially when the software is to be embedded in
a larger system.

5.4 MEDIUM

It is usually assumed that the SVVP is a paper document. The SVVP
could be distributed electronically to participants with the necessary
equipment.

78 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
THE SOFTWARE VERIFICATION AND VALIDATION PLAN

5.5 SERVICE INFORMATION

The SR, AD, DD, UT, IT, ST and AT sections of the SVVP are
produced at different times in a software project. Each section should be
kept separately under configuration control and contain the following service
information:

a - Abstract
b - Table of Contents
c - Document Status Sheet
d - Document Change records made since last issue

5.6 CONTENT OF SVVP/SR, SVVP/AD & SVVP/DD SECTIONS

These sections define the review, proof and tracing activities in the
SR, AD and DD phases of the lifecycle. While the SPMP may summarise
these activities, the SVVP should provide the detailed information. For
example the SPMP may schedule an AD/R, but this section of the SVVP
defines the activities for the whole AD phase review process.

These sections of the SVVP should avoid repeating material from
the standards and guidelines and instead define how the procedures will be
applied.

ESA PSS-05-0 recommends the following table of contents for the
SVVP/SR, SVVP/AD and SVVP/DD sections:

1 Purpose
2 Reference Documents
3 Definitions
4. Verification overview

4.1 Organisation
4.2 Master schedule
4.3 Resources summary
4.4 Responsibilities
4.5 Tools, techniques and methods

5. Verification Administrative Procedures
5.1 Anomaly reporting and resolution
5.2 Task iteration policy
5.3 Deviation policy
5.4 Control procedures
5.5 Standards, practices and conventions

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 79
THE SOFTWARE VERIFICATION AND VALIDATION PLAN

6. Verification Activities
6.1 Tracing1

6.2 Formal proofs
6.3 Reviews

7 Software Verification Reporting

Additional material should be inserted in additional appendices. If
there is no material for a section then the phrase 'Not Applicable' should be
inserted and the section numbering preserved.

1 PURPOSE

This section should:
• briefly define the purpose of this part of the SVVP, stating the part of the

lifecycle to which it applies;
• identify the software project for which the SVVP is written;
• identify the products to be verified, and the specifications that they are

to be verified against;
• outline the goals of verification and validation;
• specify the intended readers of this part of the SVVP.

2 REFERENCE DOCUMENTS

This section should provide a complete list of all the applicable and
reference documents, such as the ESA PSS-05 series of standards and
guides. Each document should be identified by title, author and date. Each
document should be marked as applicable or reference. If appropriate,
report number, journal name and publishing organisation should be
included.

3 DEFINITIONS

This section should provide the definitions of all terms, acronyms,
and abbreviations used in the plan, or refer to other documents where the
definitions can be found.

1 Note that in ESA PSS-05-0 Issue 2 this section is called 'traceability matrix template'

80 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
THE SOFTWARE VERIFICATION AND VALIDATION PLAN

4 VERIFICATION OVERVIEW

This section should describe the organisation, schedule, resources,
responsibilities, tools, techniques and methods necessary to perform
reviews, proofs and tracing.

4.1 Organisation

This section should describe the organisation of the review, proofs
and tracing activities for the phase. Topics that should be included are:
• roles;
• reporting channels;
• levels of authority for resolving problems;
• relationships to the other activities such as project management,

development, configuration management and quality assurance.

The description should identify the people associated with the roles.
Elsewhere the plan should only refer to roles.

4.2 Master schedule

This section should define the schedule for the review, proofs and
tracing activities in the phase.

Reviews of large systems should be broken down by subsystem. In
the DD phase, critical design reviews of subsystems should be held when
the subsystem is ready, not when all subsystems have been designed.

4.3 Resources summary

This section should summarise the resources needed to perform
reviews, proofs and tracing such as staff, computer facilities, and software
tools.

4.4 Responsibilities

This section should define the specific responsibilities associated
with the roles described in section 4.1.

4.5 Tools, techniques and methods

This section should identify the software tools, techniques and
methods used for reviews, proofs and tracing in the phase. Training plans
for the tools, techniques and methods may be included.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 81
THE SOFTWARE VERIFICATION AND VALIDATION PLAN

5 VERIFICATION ADMINISTRATIVE PROCEDURES

5.1 Anomaly reporting and resolution

The Review Item Discrepancy (RID) form is normally used for
reporting and resolving anomalies found in documents and code submitted
for formal review. The procedure for handling this form is normally described
in Section 4.3.2 of the SCMP, which should be referenced here and not
repeated. This section should define the criteria for activating the anomaly
reporting and resolution process.

5.2 Task iteration policy

This section should define the criteria for deciding whether a task
should be repeated when a change has been made. The criteria may
include assessments of the scope of a change, the criticality of the
function(s) affected, and any quality effects.

5.3 Deviation policy

This section should describe the procedures for deviating from the
plan, and define the levels of authorisation required for the approval of
deviations. The information required for deviations should include task
identification, deviation rationale and the effect on software quality.

5.4 Control procedures

This section should identify the configuration management
procedures of the products of review, proofs and tracing. Adequate
assurance that they are secure from accidental or deliberate alteration is
required.

5.5 Standards, practices and conventions

This section should identify the standards, practices and
conventions that govern review, proof and tracing tasks, including internal
organisational standards, practices and policies (e.g. practices for safety-
critical software).

6 VERIFICATION ACTIVITIES

This section should describe the procedures for review, proof and
tracing activities.

82 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
THE SOFTWARE VERIFICATION AND VALIDATION PLAN

6.1 Tracing

This section should describe the procedures for tracing each part of
the input products to the output products, and vice-versa.

6.2 Formal proofs

This section should define or reference the methods and
procedures used (if any) for proving theorems about the behaviour of the
software.

6.3 Reviews

This section should define or reference the methods and
procedures used for technical reviews, walkthroughs, software inspections
and audits.

This section should list the reviews, walkthroughs and audits that
will take place during the phase and identify the roles of the people
participating in them.

This section should not repeat material found in the standards and
guides, but should specify project-specific modifications and additions.

7 SOFTWARE VERIFICATION REPORTING

This section should describe how the results of implementing the
plan will be documented. Types of reports might include:
• summary report for the phase;
• technical review report;
• walkthrough report;
• audit report.

RIDs should be attached to the appropriate verification report.

5.7 CONTENT OF SVVP/UT, SVVP/IT, SVVP/ST & SVVP/AT SECTIONS

The SVVP contains four sections dedicated to each test
development phase. These sections are called:
• Unit Test Specification (SVVP/UT);
• Integration Test Specification (SVVP/IT);
• System Test Specification (SVVP/ST);
• Acceptance Test Specification (SVVP/AT).

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 83
THE SOFTWARE VERIFICATION AND VALIDATION PLAN

ESA PSS-05-0 recommends the following table of contents for each
test section of the SVVP.

1 Test Plan
1.1 Introduction
1.2 Test items
1.3 Features to be tested
1.4 Features not to be tested
1.5 Approach
1.6 Item pass/fail criteria
1.7 Suspension criteria and resumption requirements
1.8 Test deliverables
1.9 Testing tasks
1.10 Environmental needs
1.11 Responsibilities
1.12 Staffing and training needs
1.13 Schedule
1.14 Risks and contingencies
1.15 Approvals

2 Test Designs (for each test design...)
2.n.1 Test design identifier
2.n.2 Features to be tested
2.n.3 Approach refinements
2.n.4 Test case identification
2.n.5 Feature pass/fail criteria

3 Test Case Specifications (for each test case...)
3.n.1 Test case identifier
3.n.2 Test items
3.n.3 Input specifications
3.n.4 Output specifications
3.n.5 Environmental needs
3.n.6 Special procedural requirements
3.n.7 Intercase dependencies

4 Test Procedures (for each test case...)
4.n.1 Test procedure identifier
4.n.2 Purpose
4.n.3 Special requirements
4.n.4 Procedure steps

5 Test Reports (for each execution of a test procedure ...)
5.n.1 Test report identifier
5.n.2 Description
5.n.3 Activity and event entries

84 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
THE SOFTWARE VERIFICATION AND VALIDATION PLAN

1 TEST PLAN

1.1 Introduction

This section should summarise the software items and software
features to be tested. A justification of the need for testing may be included.

1.2 Test items

This section should identify the test items. References to other
software documents should be supplied to provide information about what
the test items are supposed to do, how they work, and how they are
operated.

Test items should be grouped according to release number when
delivery is incremental.

1.3 Features to be tested

This section should identify all the features and combinations of
features that are to be tested. This may be done by referencing sections of
requirements or design documents.

References should be precise yet economical, e.g:
• 'the acceptance tests will cover all requirements in the User

Requirements Document except those identified in Section 1.4';
• 'the unit tests will cover all modules specified in the Detailed Design

Document except those modules listed in Section 1.4'.

Features should be grouped according to release number when
delivery is incremental.

1.4 Features not to be tested

This section should identify all the features and significant
combinations of features that are not to be tested, and why.

1.5 Approach

This section should specify the major activities, methods (e.g.
structured testing) and tools that are to be used to test the designated
groups of features.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 85
THE SOFTWARE VERIFICATION AND VALIDATION PLAN

 Activities should be described in sufficient detail to allow
identification of the major testing tasks and estimation of the resources and
time needed for the tests. The coverage required should be specified.

1.6 Item pass/fail criteria

This section should specify the criteria to be used to decide whether
each test item has passed or failed testing.

1.7 Suspension criteria and resumption requirements

This section should specify the criteria used to suspend all, or a part
of, the testing activities on the test items associated with the plan.

This section should specify the testing activities that must be
repeated when testing is resumed.

1.8 Test deliverables

This section should identify the items that must be delivered before
testing begins, which should include:
• test plan;
• test designs;
• test cases;
• test procedures;
• test input data;
• test tools.

This section should identify the items that must be delivered when
testing is finished, which should include:
• test reports;
• test output data;
• problem reports.

1.9 Testing tasks

This section should identify the set of tasks necessary to prepare for
and perform testing. This section should identify all inter-task dependencies
and any special skills required.

86 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
THE SOFTWARE VERIFICATION AND VALIDATION PLAN

Testing tasks should be grouped according to release number
when delivery is incremental.

1.10 Environmental needs

This section should specify both the necessary and desired
properties of the test environment, including:
• physical characteristics of the facilities including hardware;
• communications software;
• system software;
• mode of use (i.e. standalone, networked);
• security;
• test tools.

Environmental needs should be grouped according to release
number when delivery is incremental.

1.11 Responsibilities

This section should identify the groups responsible for managing,
designing, preparing, executing, witnessing, and checking tests.

Groups may include developers, operations staff, user
representatives, technical support staff, data administration staff,
independent verification and validation personnel and quality assurance
staff.

1.12 Staffing and training needs

This section should specify staffing needs according to skill. Identify
training options for providing necessary skills.

1.13 Schedule

This section should include test milestones identified in the software
project schedule and all item delivery events, for example:
• programmer delivers unit for integration testing;
• developers deliver system for independent verification.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 87
THE SOFTWARE VERIFICATION AND VALIDATION PLAN

This section should specify:
• any additional test milestones and state the time required for each

testing task;
• the schedule for each testing task and test milestone;
• the period of use for all test resources (e.g. facilities, tools, staff).

1.14 Risks and contingencies

This section should identify the high-risk assumptions of the test
plan. It should specify contingency plans for each.

 1.15 Approvals

This section should specify the names and titles of all persons who
must approve this plan. Alternatively, approvals may be shown on the title
page of the plan.

2 TEST DESIGNS

2.n.1 Test Design identifier

The title of this section should specify the test design uniquely. The
content of this section should briefly describe the test design.

2.n.2 Features to be tested

This section should identify the test items and describe the features,
and combinations of features, that are to be tested.

For each feature or feature combination, a reference to its
associated requirements in the item requirement specification (URD, SRD)
or design description (ADD, DDD) should be included.

2.n.3 Approach refinements

This section should describe the results of the application of the
methods described in the approach section of the test plan. Specifically it
may define the:
• module assembly sequence (for unit testing);
• paths through the module logic (for unit testing);
• component integration sequence (for integration testing);
• paths through the control flow (for integration testing);
• types of test (e.g. white-box, black-box, performance, stress etc).

88 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
THE SOFTWARE VERIFICATION AND VALIDATION PLAN

The description should provide the rationale for test-case selection
and the packaging of test cases into procedures. The method for analysing
test results should be identified (e.g. compare with expected output,
compare with old results, proof of consistency etc).

 The tools required to support testing should be identified.

2.n.4 Test case identification

This section should list the test cases associated with the design
and give a brief description of each.

2.n.5 Feature pass/fail criteria

This section should specify the criteria to be used to decide whether
the feature or feature combination has passed or failed.

3 TEST CASE SPECIFICATION

3.n.1 Test Case identifier

The title of this section should specify the test case uniquely. The
content of this section should briefly describe the test case.

3.n.2 Test items

This section should identify the test items. References to other
software documents should be supplied to help understand the purpose of
the test items, how they work and how they are operated.

3.n.3 Input specifications

This section should specify the inputs required to execute the test
case. File names, parameter values and user responses are possible types
of input specification. This section should not duplicate information held
elsewhere (e.g. in test data files).

3.n.4 Output specifications

This section should specify the outputs expected from executing the
test case relevant to deciding upon pass or failure. File names and system
messages are possible types of output specification. This section should
not duplicate information held elsewhere (e.g. in log files).

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 89
THE SOFTWARE VERIFICATION AND VALIDATION PLAN

3.n.5 Environmental needs

3.n.5.1 Hardware

This section should specify the characteristics and configurations of
the hardware required to execute this test case.

3.n.5.2 Software

This section should specify the system and application software
required to execute this test case.

3.n.5.3 Other

 This section should specify any other requirements such as special
equipment or specially trained personnel.

3.n.6 Special procedural requirements

This section should describe any special constraints on the test
procedures that execute this test case.

3.n.7 Intercase dependencies

This section should list the identifiers of test cases that must be
executed before this test case. The nature of the dependencies should be
summarised.

4 TEST PROCEDURES

4.n.1 Test Procedure identifier

The title of this section should specify the test procedure uniquely.
This section should reference the related test design.

4.n.2 Purpose

This section should describe the purpose of this procedure. A
reference for each test case the test procedure uses should be given.

4.n.3 Special requirements

This section should identify any special requirements for the
execution of this procedure.

90 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
THE SOFTWARE VERIFICATION AND VALIDATION PLAN

4.n.4 Procedure steps

This section should include the steps described in the subsections
below as applicable.

4.n.4.1 Log

This section should describe any special methods or formats for
logging the results of test execution, the incidents observed, and any other
events pertinent to the test.

4.n.4.2 Set up

This section should describe the sequence of actions necessary to
prepare for execution of the procedure.

4.n.4.3 Start

This section should describe the actions necessary to begin
execution of the procedure.

4.n.4.4 Proceed

This section should describe the actions necessary during the
execution of the procedure.

4.n.4.5 Measure

This section should describe how the test measurements will be
made.

4.n.4.6 Shut down

This section should describe the actions necessary to suspend
testing when interruption is forced by unscheduled events.

4.n.4.7 Restart

This section should identify any procedural restart points and
describe the actions necessary to restart the procedure at each of these
points.

4.n.4.8 Stop

This section should describe the actions necessary to bring
execution to an orderly halt.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 91
THE SOFTWARE VERIFICATION AND VALIDATION PLAN

4.n.4.9 Wrap up

This section should describe the actions necessary to terminate
testing.

4.n.4.10 Contingencies

This section should describe the actions necessary to deal with
anomalous events that may occur during execution.

5 TEST REPORTS

5.n.1 Test Report identifier

The title of this section should specify the test report uniquely.

5.n.2 Description

This section should identify the items being tested including their
version numbers. The attributes of the environment in which testing was
conducted should be identified.

5.n.3 Activity and event entries

This section should define the start and end time of each activity or
event. The author should be identified.

One or more of the descriptions in the following subsections should
be included.

5.n.3.1 Execution description

This section should identify the test procedure being executed and
supply a reference to its specification.

The people who witnessed each event should be identified.

5.n.3.2 Procedure results

For each execution, this section should record the visually
observable results (e.g. error messages generated, aborts and requests for
operator action). The location of any output, and the result of the test,
should be recorded.

92 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
THE SOFTWARE VERIFICATION AND VALIDATION PLAN

5.n.3.3 Environmental information

This section should record any environmental conditions specific for
this entry, particularly deviations from the normal.

5.8 EVOLUTION

5.8.1 UR phase

By the end of the UR review, the SR phase section of the SVVP must
be produced (SVVP/SR) (SVV09). The SVVP/SR must define how to trace
user requirements to software requirements so that each software
requirement can be justified (SVV10). It should describe how the SRD is to
be evaluated by defining the review procedures. The SVVP/SR may include
specifications of the tests to be done with prototypes.

The initiator(s) of the user requirements should lay down the
principles upon which the acceptance tests should be based. The developer
must construct an acceptance test plan in the UR phase and document it in
the SVVP (SVV11). This plan should define the scope, approach, resources
and schedule of acceptance testing activities.

5.8.2 SR phase

During the SR phase, the AD phase section of the SVVP must be
produced (SVVP/AD) (SVV12). The SVVP/AD must define how to trace
software requirements to components, so that each software component
can be justified (SVV13). It should describe how the ADD is to be evaluated
by defining the review procedures. The SVVP/AD may include specifications
of the tests to be done with prototypes.

During the SR Phase, the developer analyses the user requirements
and may insert 'acceptance testing requirements' in the SRD. These
requirements constrain the design of the acceptance tests. This must be
recognised in the statement of the purpose and scope of the acceptance
tests.

The planning of the system tests should proceed in parallel with the
definition of the software requirements. The developer may identify
'verification requirements' for the software. These are additional constraints
on the unit, integration and system testing activities. These requirements are
also stated in the SRD.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 93
THE SOFTWARE VERIFICATION AND VALIDATION PLAN

 The developer must construct a system test plan in the SR phase
and document it in the SVVP (SVV14). This plan should define the scope,
approach, resources and schedule of system testing activities.

5.8.3 AD phase

During the AD phase, the DD phase section of the SVVP must be
produced (SVVP/DD) (SVV15). The SVVP/AD must describe how the DDD
and code are to be evaluated by defining the review and traceability
procedures (SVV16).

The developer must construct an integration test plan in the AD
phase and document it in the SVVP (SVV17). This plan should describe the
scope, approach, resources and schedule of intended integration tests.
Note that the items to be integrated are the software components described
in the ADD.

5.8.4 DD phase

In the DD phase, the SVVP sections on testing are developed as the
detailed design and implementation information become available.

The developer must construct a unit test plan in the DD phase and
document it in the SVVP (SVV18). This plan should describe the scope,
approach, resources and schedule of the intended unit tests.

The test items are the software components described in the DDD.

The unit, integration, system and acceptance test designs must be
described in the SVVP (SVV19). These should specify the details of the test
approach for a software feature, or combination of software features, and
identify the associated test cases and test procedures.

The unit integration, system and acceptance test cases must be
described in the SVVP (SVV20). These should specify the inputs, predicted
results and execution conditions for a test case.

The unit, integration, system and acceptance test procedures must
be described in the SVVP (SVV21). These should provide a step-by-step
description of how to carry out each test case.

The unit, integration, system and acceptance test reports must be
contained in the SVVP (SVV22).

94 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
THE SOFTWARE VERIFICATION AND VALIDATION PLAN

This page is intentionally left blank.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) A-1
GLOSSARY

APPENDIX A
GLOSSARY

A.1 LIST OF TERMS

Definitions of SVV terms are taken from IEEE Standard Glossary of
Software Engineering Terminology ANSI/IEEE Std 610.12-1990 [Ref 6]. If no
suitable definition is found in the glossary, the definition is taken from a
referenced text or the Concise Oxford Dictionary.

Acceptance testing

Formal testing conducted to determine whether or not a system satisfies its
acceptance criteria (i.e. the user requirements) to enable the customer (i.e.
initiator) to determine whether or not to accept the system [Ref 6].

Assertion

A logical expression specifying a program state that must exist or a set of
conditions that program variables must satisfy at a particular point during
program execution [Ref 6].

Audit

An independent examination of a work product or set of work products to
assess compliance with specifications, baselines, standards, contractual
agreements or other criteria [Ref 6].

Back-to-back test

Back-to-back tests execute two or more variants of a program with the same
inputs. The outputs are compared, and any discrepancies are analysed to
check whether or not they indicate a fault [Ref 6].

Comparator

A software tool that compares two computer programs, files, or sets of data
to identify commonalities and differences [Ref 6].

Component

One of the parts that make up a system [Ref 6]. A component may be a
module, a unit or a subsystem. This definition is similar to that used in
Reference 1 and more general than the one in Reference 5.

A-2 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
GLOSSARY

Critical design review

A review conducted to verify that the detailed design of one or more
configuration items satisfies specified requirements [Ref 6]. Critical design
reviews must be held in the DD phase to review the detailed design of a
major component to certify its readiness for implementation (DD10).

Decision table

A table used to show sets of conditions and the actions resulting from them
[Ref 6].

Defect

An instance in which a requirement is not satisfied [Ref 22].

Driver

A software module that invokes and, perhaps, controls and monitors the
execution of one or more other software modules [Ref 6].

Dynamic analysis

The process of evaluating a computer program based upon its behaviour
during execution [Ref 6].

Formal

Used to describe activities that have explicit and definite rules of procedure
(e.g. formal review) or reasoning (e.g. formal method and formal proof).

Formal review

A review that has explicit and definite rules of procedure such as a technical
review, walkthrough or software inspection [Ref 1].

Inspection

A static analysis technique that relies on visual examination of development
products to detect errors, violations of development standards, and other
problems [Ref 6]. Same as 'software inspection'.

Integration

The process of combining software elements, hardware elements or both
into an overall system [Ref 6].

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) A-3
GLOSSARY

Integration testing

Testing in which software components, hardware components, or both are
combined and tested to evaluate the interaction between them [Ref 6]. In
ESA PSS-05-0, the lowest level software elements tested during integration
are the lowest level components of the architectural design.

Module

A program unit that is discrete and identifiable with respect to compiling,
combining with other units, and loading; for example the input or output
from a compiler or linker; also a logically separable part of a program [Ref
6].

Regression test

Selective retesting of a system or component to verify that modifications
have not caused unintended effects and that the system or component still
complies with its specified requirements [Ref 6].

Review

A process or meeting during which a work product, or set of work products,
is presented to project personnel, managers, users, customers, or other
interested parties for comment or approval [Ref 6]].

Semantics

The relationships of symbols and groups of symbols to their meanings in a
given language [Ref 6].

Semantic analyser

A software tool that substitutes algebraic symbols into the program
variables and present the results as algebraic formulae [Ref 17].

Static analysis

The process of evaluating a system or component based on its form,
structure, content or documentation [Ref 6].

Stress test

A test that evaluates a system or software component at or beyond the
limits of its specified requirements [Ref 6].

A-4 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
GLOSSARY

System

A collection of components organised to accomplish a specific function or
set of functions [Ref 6]. A system is composed of one or more subsystems.

Subsystem

A secondary or subordinate system within a larger system [Ref 6]. A
subsystem is composed of one or more units.

System testing

Testing conducted on a complete, integrated system to evaluate the
system’s compliance with its specified requirements [Ref 6].

Test

An activity in which a system or component is executed under specified
conditions, the results are observed or recorded, and an evaluation is made
of some aspect of the system or component [Ref 6].

Test case

A set of test inputs, execution conditions, and expected results developed
for a particular objective, such as to exercise a particular program path or to
verify compliance with a specified requirement [Ref 6].

Test design

Documentation specifying the details of the test approach for a software
feature or combination of software features and identifying associated tests
[Ref 6].

Test case generator

A software tool that accepts as input source code, test criteria,
specifications, or data structure definitions; uses these inputs to generate
test input data, and, sometimes, determines the expected results [Ref 6].

Test coverage

The degree to which a given test or set of tests addresses all specified
requirements for a given system or component [Ref 6]; the proportion of
branches in the logic that have been traversed during testing.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) A-5
GLOSSARY

Test harness

A software module used to invoke a module under test and, often, provide
test inputs, control and monitor execution, and report test results [Ref 6].

Test plan

A document prescribing the scope, approach resources, and schedule of
intended test activities [Ref 6].

Test procedure

Detailed instructions for the setup, operation, and evaluation of the results
for a given test [Ref 6].

Test report

A document that describes the conduct and results of the testing carried out
for a system or component [Ref 6].

Testability

The degree to which a system or component facilitates the establishment of
test criteria and the performance of tests to determine whether those criteria
have been met [Ref 6].

Tool

A computer program used in the development, testing, analysis, or
maintenance of a program or its documentation [Ref 6].

Tracing

The act of establishing a relationship between two or more products of the
development process; for example, to establish the relationship between a
given requirement and the design element that implements that requirement
[Ref 6].

Unit

A separately testable element specified in the design of a computer software
component [Ref 6]. A unit is composed of one or more modules.

A-6 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
GLOSSARY

Validation

The process of evaluating a system or component during or at the end of
the development process to determine whether it satisfies specified
requirements [Ref 6].

Verification

The act of reviewing, inspecting, testing, checking, auditing, or
otherwise establishing and documenting whether items, processes, services
or documents conform to specified requirements [Ref 5].

Walkthrough

A static analysis technique in which a designer or programmer leads
members of the development team and other interested parties through a
segment of documentation or code, and the participants ask questions and
make comments about possible errors, violation of development standards,
and other problems [Ref 6].

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) A-7
GLOSSARY

A.2 LIST OF ACRONYMS

AD Architectural Design
AD/R Architectural Design Review
ADD Architectural Design Document
ANSI American National Standards Institute
AT Acceptance Test
BSSC Board for Software Standardisation and Control
CASE Computer Aided Software Engineering
DCR Document Change Record
DD Detailed Design and production
DD/R Detailed Design and production Review
DDD Detailed Design and production Document
ESA European Space Agency
ICD Interface Control Document
IEEE Institute of Electrical and Electronics Engineers
IT Integration Test
PSS Procedures, Specifications and Standards
QA Quality Assurance
RID Review Item Discrepancy
SCMP Software Configuration Management Plan
SCR Software Change Request
SMR Software Modification Report
SPR Software Problem Report
SR Software Requirements
SR/R Software Requirements Review
SRD Software Requirements Document
ST System Test
SUT Software Under Test
SVV Software Verification and Validation
SVVP Software Verification and Validation Plan
UR User Requirements
UR/R User Requirements Review
URD User Requirements Document
UT Unit Test

A-8 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
GLOSSARY

This page is intentionally left blank.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) B-1
REFERENCES

APPENDIX B
REFERENCES

1. ESA Software Engineering Standards, ESA PSS-05-0 Issue 2, February
1991.

2. Guide to the Software Requirements Definition Phase, ESA PSS-05-03,
Issue 1, October 1991.

3. Guide to the Detailed Design and Production Phase, ESA PSS-05-05,
Issue 1, May 1992.

4. Guide to Software Configuration Management, ESA PSS-05-09, Issue 1,
November 1992.

5. ANSI/ASQC A3-1978, Quality Systems Terminology
6. IEEE Standard Glossary of Software Engineering Terminology,

ANSI/IEEE Std 610.12-1990.
7. IEEE Standard for Software Test Documentation, ANSI/IEEE Std 829-

1983.
8. IEEE Standard for Software Unit Testing, ANSI/IEEE Std 1008-1987.
9. IEEE Standard for Software Verification and Validation Plans, ANSI/IEEE

Std 1012-1986.
10. IEEE Standard for Software Reviews and Audits, ANSI/IEEE Std 1028-

1988.
11. Managing the Software Process, Watts S. Humphrey, SEI Series in

Software Engineering, Addison-Wesley, August 1990.
12. Software Testing Techniques, B.Beizer, Van Nostrand Reinhold, 1983.
13. Structured Testing: A Software Testing Methodology Using the

Cyclomatic Complexity Metric, T.J.McCabe, National Bureau of
Standards Special Publication 500-99, 1982.

14. The Art of Software Testing, G.J.Myers, Wiley-Interscience, 1979.
15. Design Complexity Measurement and Testing, T.J.McCabe and

C.W.Butler, Communications of the ACM, Vol 32, No 12, December
1989.

16. Software Engineering, I.Sommerville, Addison-Wesley, 1992.
17. The STARTs Guide - a guide to methods and software tools for the

construction of large real-time systems, NCC Publications, 1987.
18. Engineering software under statistical quality control, R.H. Cobb and

H.D.Mills, IEEE Software, 7 (6), 1990.

B-2 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
REFERENCES

 19. Dynamic Testing Tools, a Detailed Product Evaluation, S.Norman,
Ovum, 1992.

20. Managing Computer Projects, R.Gibson, Prentice-Hall, 1992.
21. Design and Code Inspections to Reduce Errors in Program

Development, M.E.Fagan, IBM Systems Journal, No 3, 1976
22. Advances in Software Inspections, M.E. Fagan, IEEE Transactions on

Software Engineering, Vol. SE-12, No. 7, July 1986.
23. The Cleanroom Approach to Quality Software Development, Dyer, Wiley,

1992.
24. System safety requirements for ESA space systems and related

equipment, ESA PSS-01-40 Issue 2, September 1988, ESTEC

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) C-1
MANDATORY PRACTICES

APPENDIX C
MANDATORY PRACTICES

This appendix is repeated from ESA PSS-05-0, appendix D.10.
SVV01 Forward traceability requires that each input to a phase shall be traceable to

an output of that phase.
SVV02 Backward traceability requires that each output of a phase shall be

traceable to an input to that phase.
SVV03 Functional and physical audits shall be performed before the release of the

software.
SVV04 All software verification and validation activities shall be documented in the

Software Verification and Validation Plan (SVVP).
The SVVP shall ensure that the verification activities:

SVV05 • are appropriate for the degree of criticality of the software;
SVV06 • meet the verification and acceptance testing requirements (stated in the

SRD);
SVV07 • verify that the product will meet the quality, reliability, maintainability and

safety requirements (stated in the SRD);
SVV08 • are sufficient to assure the quality of the product.
SVV09 By the end of the UR review, the SR phase section of the SVVP shall be

produced (SVVP/SR).
SVV10 The SVVP/SR shall define how to trace user requirements to software

requirements, so that each software requirement can be justified.
SVV11 The developer shall construct an acceptance test plan in the UR phase and

document it in the SVVP.
SVV12 During the SR phase, the AD phase section of the SVVP shall be produced

(SVVP/AD).
SVV13 The SVVP/AD shall define how to trace software requirements to

components, so that each software component can be justified.
SVV14 The developer shall construct a system test plan in the SR phase and

document it in the SVVP.
SVV15 During the AD phase, the DD phase section of the SVVP shall be produced

(SVVP/DD).
SVV16 The SVVP/AD shall describe how the DDD and code are to be evaluated by

defining the review and traceability procedures.

C-2 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
MANDATORY PRACTICES

SVV17 The developer shall construct an integration test plan in the AD phase and
document it in the SVVP.

SVV18 The developer shall construct a unit test plan in the DD phase and
document it in the SVVP.

SVV19 The unit, integration, system and acceptance test designs shall be
described in the SVVP.

SVV20 The unit integration, system and acceptance test cases shall be described
in the SVVP.

SVV21 The unit, integration, system and acceptance test procedures shall be
described in the SVVP.

SVV22 The unit, integration, system and acceptance test reports shall be described
in the SVVP.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) D-1
INDEX

APPENDIX D
INDEX

D-2 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
INDEX

acceptance test, 6, 40
acceptance test case, 41
acceptance test design, 40
acceptance test plan, 40, 92
acceptance test procedure, 42
acceptance test result, 42
acceptance testing requirement, 92
AD phase, 93
AD16, 7
ANSI/IEEE Std 1012-1986, 76
ANSI/IEEE Std 1028-1988, 7, 13, 16, 44
ANSI/IEEE Std 829-1983, 76
assertion, 49
audit, 7, 15
backward traceability, 18
baseline method, 25, 54
black-box integration test, 32
branch testing, 54
cause-effect graph, 27
cleanroom method, 49
comparator, 69, 73
control flow analysis, 64
control flow testing, 60
control graph, 51
coverage analyser, 68, 72
criticality, 76
cyclomatic complexity, 23, 51, 68
data-use analysis, 64
DD06, 23, 50, 54
DD07, 30, 31, 32, 50
DD08, 30, 31, 50, 60
DD09, 33
DD10, 7, 2
DD11, 7
debugger, 31, 68, 72
debugging, 25
decision table, 27, 34
design integration testing method, 31, 60
diagnostic code, 25
driver, 24, 29
dynamic analyser, 68, 73
equivalence classes, 26
equivalence partitioning, 68
error guessing, 28, 34
formal method, 48
formal proof, 19
forward traceability, 18
function test, 26, 34
functional audit, 15
informal review, 6
information flow analysis, 64
inspection, 43

instrumentation, 68
integration complexity, 68
integration complexity metric, 30
integration test, 6
integration test case, 32
integration test design, 30
integration test plan, 93
integration test procedure, 32
integration test result, 33
interface analysis, 64
interface test, 35
life cycle verification approach, 5
logic test, 25
LOTOS, 48
maintainability test, 37
miscellaneous test, 38
operations test, 35
partition, 26
path test, 25
performance analyser, 68, 69, 73
performance test, 34
physical audit, 15
portability test, 37
profiler, 69
program verification, 49
range-bound analysis, 64
regression test, 38
reliability test, 37
resource test, 36
reverse engineering tools, 65
review, 6
safety test, 38
SCM01, 74
script, 68
security test, 36
semantic analyser, 67
semantic analysis, 67
sensitising the path, 25
software inspection, 43
software verification and validation, 3
SR09, 7
state-transition table, 27, 34
static analyser, 68, 69
static analysers, 64
stress test, 34, 39
structure test, 25
structured integration testing, 30, 31, 55, 68
structured testing, 23, 25, 50, 68
SVV, 3
SVV01, 18
SVV02, 18
SVV03, 15

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) D-3
INDEX

SVV04, 75
SVV05, 76
SVV06, 76
SVV07, 76
SVV08, 76
SVV09, 92
SVV10, 92
SVV11, 40, 92
SVV12, 92
SVV13, 92
SVV14, 33, 93
SVV15, 93
SVV16, 93
SVV17, 29, 93
SVV18, 22, 93
SVV19, 23, 30, 33, 40, 93
SVV20, 28, 32, 39, 41, 93
SVV21, 28, 32, 39, 42, 93
SVV22, 93
system monitoring, 69
system test, 6, 33
system test design, 33
system test plan, 33, 93
system test result, 40
technical review, 7
test case generator, 70
test case generators, 68
test harness, 68, 70
test manager, 69, 74
testability, 20, 50, 56
testing, 19
thread testing, 32
tools, 63
traceability matrix, 18
tracing, 18
tracing tool, 65
unit test, 5
unit test case, 28
unit test design, 23
unit test plan, 22, 93
unit test procedure, 28
Unit test result, 29
UR phase, 92
UR08, 7
validation, 4
VDM, 48
verification, 4
volume test, 39
walkthrough, 7, 12
white-box integration test, 31
white-box unit test, 25
Z, 48

