

GR740 User Day - Announcements

28 November 2019 Erasmus Auditorium - ESTEC

GR740 SBC Reference Design

GR740 SBC Reference Design

Press release - 28 November 2019

GR-VPX-GR740 & GR-VPX-BM-MEZZ

CoRA Development Board for VPX

COBHAM

- Processor board: GR-VPX-GR740
 - GR740 Quad-Core LEON4FT Processor
 - 512 MiB SDRAM
 - 128 KiB MRAM
 - 32 MiB SPI Flash
 - Backplane I/F: 6x SpaceWire
 - Frontplane I/F and drivers:
 - Mil-Std-1553B, Ethernet, GPIO
 - USB/FTDI UART/JTAG Links
 - SpaceVPX / OpenVPX compatible
- Mezzanine board: GR-VPX-BM-MEZZ
 - NX1H35S BRAVE NG-Medium FPGA
 - 256 MiB SDRAM
 - 32 MiB SPI Flash
 - GR718B 18-port SpaceWire Router
 - Backplane I/F: 10x SpaceWire
 - Frontplane I/F and drivers:
 - SpFi (eSATA)
 - 2x SpaceWire
 - USB/FTDI UART/JTAG Links

European Space Agency Agence spatiale européenne

GR740 PC104 SBC for GOMX-5 GR740 In-Orbit Demonstration

COBHAM

- GOMX-5 mission will consist of two 12U nanosatellites in the 20kg class with an improved platform for increased power handling and reliability.
- The purpose of the mission is to demonstrate new nanosatellite capabilities for the next generation of constellations requiring high speed communications links and high levels of maneuverability.
- The satellites will be equipped with advanced payloads which were announced in July 2019 to be:
 - Cobham Gaisler AB (SE) and LIRMM (FR) with powerful and radiation tolerant on-board computers
- Launch for the GOMX-5 mission is foreseen to be in 2021 which is subject to further ESA funding.

European Space Agency Agence spatiale européenne

GR740 in Organic Package

GR740 in Organic Package

Press release – 28 November 2019

COBHAM PRIVATE | Wednesday, 27 November 2019

Market transformation GEO to LEO/MEO

- Change of Mission profiles
 - Traditional GEO market significantly declining
 - Fundamental shift to LEO & MEO including constellations
 - Shift away from GEO architectures and move towards smallsat-based systems
 - User need more diversified
- Unique environmental related space requirements

No change

- Radiation
- Vacuum, microgravity and outgassing
- Customer's trade-off acknowledged;
 - SWaP
 - Performance
 - Cost
 - Lifetime
 - Time to market
 - Stock strategy

GR740 for New Space GR740 in organic package

- Existing GR740 dice
 - Electrical performance and radiation characteristics already extensively validated

Plastic Ball Grid Array (PBGA) package

- 625 balls, having 1 mm solder ball pitch
- Evaluation, screening and qualification
 Based on ECSS-Q-ST-60-13C for class 2 components
 - Daseu on ECSS-Q-SI-60-13C for class 2 compone
- Project kick-off in December 2019
 - Prototypes in August 2020

Via

1.0 mm Pitch

Solder Ball

GR740 Software and Tools

GR740 software ecosystem

Operating systems

- BCC Bare-metal environment
 - GCC/LLVM C11/C++11, Binutils, Newlib C
 - Open-source license
- Linux 4.9 (LTS/LTSI)
 - LEON build environment with buildroot
 - Toolchain with GCC, Binutils, GLIBC
 - LEON3/4 with GRLIB device drivers
 - Open-source license
- RCC RTEMS-4.10, RTEMS-4.12, RTEMS-5
 - Prebuilt toolchain GCC, Binutils, Newlib C
 - Open-source license
- ThreadX
 - Small footprint thread handler
 - Commercial from Xpresslogic
- VxWorks
 - 6.9 and 7
 - GCC, Binutils toolchain. MMU protection.
 - Commercial from WindRiver

Simulators

- TSIM2 (single core)
- GRSIM (multi-core)
- TSIM3 (multi-core made right)

Hardware debuggers

- GRMON3
 - Tcl scripted command line interface
 - LEON2, LEON3, LEON4 based chips
 - JTAG, Ethernet, USB, UART, SpaceWire
 - GDB connection for C/C++-level dbg
 - GUI

Compiler Toolchains

- GCC
- LLVM

Boot loaders

- MKPROM
- GRBOOT (JUICE boot SW equivalent)

GRBOOT - Flight Software Boot Loader

ECSS and SAVOIR compliant

• Features

- ESA "SAVOIR Flight Computer Initialisation Sequence" (SAVOIR-GS-002)
- ECSS-E-ST-40C & ECSS-Q-ST-80C, criticality category B
- Multi-processor support (SMP, AMP)
- Initialization: CPU, FPU, caches, peripherals, etc.
- System self-tests: CPU, L1/L2 caches, ROM, external memories, etc.
- Self-test results are recorded in a Boot report, available to the loaded application
- Separation of Boot Memory and Application Storage Memory:
 - Updating application does not require updating the boot loader
- Application images can be stored in local non-volatile memory, including parallel memories & SPI Flash
- ELF-like application image format with support for in-flight patching
- Optional application compression
- · Application images are integrity checked before execution, with failover on failure
- User extension points for custom initialization and user defined Standby Mode
- Prepares environment compatible with multiple operating system:
 - RTEMS, VxWorks, Linux, BCC, SMP, AMP, etc.

• Portability

- Currently GR740 and GR712RC devices are supported
- Architecture allows additional systems to be added
- Ports available for GR-CPCI-GR740 and GR712RC development boards
- Boot memory options include parallel PROM, Flash and similar
- Application images can be loaded from memory mapped memory or from SPI flash memory
- Several main memory options are possible

TSIM3 LEON4 – GR740

Beta release for all current TSIM2 and GRSIM customers

COBHAM

- TSIM3 LEON4/GR740 beta release simulates:
 - GR740 LEON4 quad-core device
- TSIM3 2019-Q4 release:
 - Focus on default configuration and basic timing, no fault-tolerance
 - LEON4 with 128-bit AMBA AHB CPU bus model
 - L2-cache model
 - 2MiB copy-back, LRU policy, MTRR regions
 - Register interface for emulated functionality
 - SDRAM model, fixed to 64-bit wide external memory bus, configurable frequency
 - I/O support, new models and existing adapted for GR740
 - 4xSpW AHB DMA, CAN, SPI, Ethernet, UART, GPIO, Timers, IRQCtrl, etc.
 - SpW router, 1553 and PCI not part of release

• TSIM3 2020-Q1 release:

- Improved multi-core timing with AHB split modelled in L2-cache, AHB bus and LEON4
- SDRAM model with 32-bit external data bus

• Road-map for TSIM3 during 2020 include:

- More GR740 I/O models
- Fault-tolerance modeling with error injection
- Performance Optimization, AMP support, Library interface (automation now possible with Tcl)

Roadmap processor IP cores

LEON5 Processor Core Release on 25 December 2019

COBHAM

Primary goals:

- SPARC V8 32-bit compliant processor core
- Improved performance over LEON4
- Superscalar dual issue
- Goal is to have modes with deterministic, or bounded timing performance
- Reduction of configuration options
- Hardware support for virtualization
- SEU tolerance
- Leverage existing software support, maintain binary compatibility with LEON3 and LEON4

Primary feature set:

- SPARC V8e
- AHB and AXI4 bus support
- HW support for virtualization
- Local RAM (TCM)
- Copy-back cache (subject to performance evaluation in combination with multi-ported memory controllers with striped ports)
- Little endian support

Target technologies:

- ASIC implementations for space applications
- High-end space FPGAs: Kintex UltraSCALE

Target applications:

- General purpose payload processing
- Mixed platform and payload applications

Complemented by:

- New DDR2 and DDR3 SDRAM controller (FTADDR23), specifically targeted for space applications
- Multi-port L2 cache extensions allowing bandwidth extensions from L1 to off-chip memory devices

NOEL-V Processor Core Release on 25 December 2019

Primary goals:

- RISC-V 64-bit compliant processor core
- Superscalar dual issue
- Fault Tolerance Error Correction Codes (ECC)
- Cybersecurity (proprietary solutions)
- Enabled for RTCA/DO-254 (Design Assurance Guidance for Airborne Electronic Hardware)
- Enable ISO 26262/FUSA certification (Road vehicles Functional safety)
- Leverage foreseen uptake of RISC-V software and tool support in the commercial domain
- Compatible with GRLIB IP Core library

Primary feature set:

- RISC-V RV64GC
- AHB and AXI4 bus support

Supportive activities

- RISC-V Foundation Membership in 2019
- RISC-V PhD position at University of Delft with ESA

We have added RISC-V to our portfolio

Cobham Gaisler develops products based on the RISC-V ISA in parallel with the LEON SPARC processor line. The first RISC-V product is the NOEL-V RV64GC processor.

Roadmap processor components

GR7x5 – Octa-Core LEON5FT

Baseline specification – to be influenced by launch customers

Baseline specification

- Ouad-core rad-tolerant SoC device
 - 8x LEON5FT with dedicated FPU and MMU
 - 128 KiB L1 caches connected to 128-bit bus
 - 2 MiB L2 cache, 256-bit cache line, 4-ways
 - DDR2/3 SDRAM memory I/F (+32 checkbits)
 - 8-port SpaceWire router with +4 internal ports
 - 32-bit 33 MHz PCI interface
 - 2x 10/100/1000 Mbit Ethernet
 - Debug links: Ethernet, JTAG, SpaceWire
 - 2x MIL-STD-1553B, 2x CAN-FD, 2 x UART
 - SPI master/slave, GPIO, Timers & Watchdog
 - T²C interface •
 - NAND Flash controller interface
 - SpaceFibre & SRIO x4+ lanes 6.25 Gbit/s
- **LGA1752** package ceramic and <u>organic version</u>
- No pin sharing
- 65nm/28nm technology
- Worst-case frequency of 350 MHz
- Target 9'000 DMIPS

Under consideration

- Architectural changes: Multi-layer connection to L2C with processors and IO on separate ports
- TM/TC functions on-chip ٠
- Target technology change
- Extended support for HW-in-the-loop simulation
- Multi-core separation

SCD V8

GR7xV – Deep-Submicron Hexa-Core RISC-V

Closer to COTS – make do with what technology exists now, optimize later

Baseline SoC specification

- Hexa-core radiation-tolerant SoC
 - 16x RISC-V RV64GC with dedicated FPU and MMU
 - Islands of 4 processors each with dedicated L2 cache
 - DDR2/3/4 SDRAM memory I/F (+32 checkbits)
 - SpaceFibre, PCIe, (SRIO TBD) eight lanes 6.25 Gbit/s
 - JESD204B/C support
 - 8-port SpaceWire router with +4 internal ports
 - 2x 10/100/1000 Mbit Ethernet (GMII, SGMII TBD)
 - 32-bit 33 MHz PCI interface (TBD)
 - MIL-STD-1553B, CAN-FD, 8 x UART with DMA
 - SPI master/slave, I²C master/slave
 - GPIO, Timers & Watchdog
 - CCSDS TM/TC functions on-chip
 - Debug links: Ethernet, JTAG, SpaceWire
 - NAND Flash controller interface
 - Interfaces for connecting COTS accelerators (MIPI?)
- Package ceramic and organic versions
- 22/16/12/7nm technology
- Target 20'000 DMIPS
- Need to identify interfaces for leveraging COTS accelerators
- Increased focus on cyber-security and isolation (processor and SoC design features)
- Input on accelerators is welcome
- Input processing performance is welcome (int, fp, ..)

GR74055 USERDAY

Welcome back in the next decade!