

ATC18RHA - Offering Overview

MPW Workshop - ESTEC June 17th, 2004

Summary

- ATC18RHA Features
- Standard Cell Library
- I/Os Libraries
- Memory Libraries
- Die sizes
- Assembly and Packages
- ATC18RHA availability

ATC18RHA Features

- Technology
 - > 0.18µm CMOS Rad Hard technology
 - 5 metal layers
 - > 1.8V power supply for the core
 - > 1.8V and 3.3V power supply for the periphery
- Libraries
 - Standard Logic and IO Cells Libraries
 - Memory libraries
 - PLL (480MHz)
- Space standards
 - High Reliability
 - Radiation
 - TID better than 200Krads
 - SEL better than 70MeV.cm²/mg

Standard Cell library

- Buffers and Gates
- Multiplexers
- Standard and SEU Hardened Flip-flops
- Standard and SEU Hardened Scan Flip-flops
- Latches
- Adders and Subtractors

I/Os libraries

2 libraries

> IO18 : 1.65 to 1.95V

> IO33 : 3.0V to 3.6V

Buffer types

- Bidirectional
- > Tristate Output
- Output Only
- Input Only (Inverting, Non-Inverting, Schmitt Trigger)
- Additional buffers of IO33 library
 - > 3.3V PCI Bidirectional, Tristate Output and Output Only
 - LVDS Transmitter and Receiver differential (based on the ANSI/TIA/EIA-644 Standard)
 - LVPECL Receiver differential

I/Os libraries

- IO33 and IO18 buffers are Cold Sparing
 - When VCCB is "off" these pads have a negligible leakage current
- Standard IO33 buffers are tolerant (PCI,LVDS,LVPECL excepted)
 - When the pad is configured as an input, and VCCB is < 3.3V (ex 1.8V), the external signal can go up to 3.3V (max 3.6V) with negligible leakage current
- An IO33 standard buffer with VCCB=1.8V can also be used as a 1.8V Compliant Output with degraded IOL,IOH and timing performances

Memory libraries

- Compiled memories
 - VIRAGE compilers
 - SRAM (32kx16)
 - DPRAM (8kx32)
 - TP Register File (1kx16)
 - Synchronous only
 - EDAC VHDL
- Synthesized memories
 - Genesys Atmel software
 - RAM (4k)
 - TPRAM (4k)
 - DPRAM (2k)
 - Asynchronous
 - SEU hardened cells used

Die sizes

- 95µm pad pitch and pad width, except
 - LVDS transmitter
 - width= 3x95μm and pitch=190μm
 - > LVDS Receiver and LVPECL Receiver
 - width=2x95µm and pitch=95µm
- Predefined die sizes
 - To allow re use of existing MH1RT packages
 - > To ease the SMPW management

Predefined die sizes

	Equivalent	Size	Program-	Buffer	Typical
	MH1 matrix	(mm²)	mable	Power	Nbr of
	size		pads	supply	Gates
				pads	
ATC18RHA95_216	NA	6.19x6.19	216	8	1M
ATC18RHA95_324	MH1099E	8.76x8.76	324	8	2.2M
ATC18RHA95_404	MH1156E	10.66x10.66	404	8	3.5M
ATC18RHA95_504	MH1242E	13.03x13.03	504	8	5.5M

Preferred Hermetic Multi-layer Packages

£											
Y.	SMD 5962		Matrix Variant								
district.	SMD / Package Variant		Number of leads	Marketing Code	ATC18RHA95_216	ATC18RHA95_324	ATC18RHA95_404	ATC18RHA95_504			
97.64.8			T352	YC		U88N (*)	U85N (*)	U80N (*)			
3	MQFPF		256	KZ		U89N (*)	U90N (*)	U76N (*)			
7			196	К9	X(*)	U92N					
2			160		X(*)						
	MCGA		625 (**)	2D				EF401 (*)			
2			472	2C			H06N (*)	H05N (*)			
<			349	2E		H04N (*)	EF378 (*)	EF379(*)			
	Die		Die	0	0	0	0	0			

Double pad ring

- Pad pitch 95µm (ceramic package limitation)
- Inner ring for core power supply
- Outer ring for buffer power supply and IOs
- ATC18RHA95_504 'matrix'
- Prototype level only
- Future development
 - Double pad ring for FM and any 'matrix'
 - > Flip chip assembly

Development status

- Beta Design Kit available since end of March 2004
 - > 2 CDROMs : ASIC Design Kit and SIGMA Design Kit
 - NDA requested for the SIGMA Design Kit
- Beta design
 - ATC18RHA95_504, MCGA472, double pad ring
 - Design Review, mid of July
 - > 1st samples in November
- Final design kit to be released end of 2004
 - Results of V34 and V35 silicon (characterization and radiation)
 - > On DVD