Gaisler ‘¢'
Research

Functional Triple Modular Redundancy (FTMR)
VHDL Design Methodology for Redundancy in Combinatorial and Sequential Logic

Design and Assessment Report FPGA-003-01
Version 0.2

Prepared by Sandi Habinc December 2002

EUROPEAN SPACE AGENCY CONTRACT REPORT

The work described in this report was done under ESA contract, No. 15102/01/NL/FM(SC) CCN-3.
Responsibility for the contents resides in the author or organisation that prepared it.

Stora Nygatan 13 tel +46 31 802405
411 08 Goteborg fax +46 31 802407
Sweden www.gaisler.com

http://www.gaisler.com

Gaisler ‘:'
FPGA-003-01 2 Research

Table of contents

1 INTRODUGCTION ..ottt sttt st sre e s 4
11 R o0 0TS TR U URPTR PSPPI 4
12 BaCKGrOUNG ..ot 4
13 Acronyms and abbreviations............ccceveeviiieseese e s 4
14 REFErENCE AOCUMENT.......coiiee ettt ettt e be e e b e e ear e e e enneeens 5
2 SINGLE EVENT UPSET MITIGATION TECHNIQUES...........cccovevvnenee. 6
2.1 Triple Module Redundancy (TMR)cccvovevieiieie e 6
2.2 Module level MITIGATIONcoiririeeeeee e 7
2.3 Gate level MItIGaioN.........cooeiiriree s 8
3 A VHDL APPROACH TO COMBINATORIAL AND SEQUENTIAL TMR 9
31 THE @rChITECTUN ... s 9
3.2 ConfiguIation OPLIONSccueruerereeierieste ettt 10
3.3 MEthOAOIOQY ISSUES.......ccueieeerieie et ee sttt sre e 11
331 INPUE AN OULPUL ...t 11
TG T2 = 10153 1 0] o = ST 11
333 ReUseOf Old VHDL COUEccooiririiririeieie et 11
334 Configuration MEMONYccueieerueeierieerieseesieeee e seeseesreessesseesseeeesaeessesneesns 11
335 Refresh of TMR SITUCIUIES.......cooviieieiecie et 11
3.3.6 Required level of redundancCyccceveieereeiesciese e 12
3.3.7 Template based approaCh.........cccceeiiiiiieiiie i e 12
3.3.8 SYNNESISTOOIS. ... s 12
4 VHDL CODE STRUCTUREcoeiiiececese e 13
4.1 Triple Modular Redundancy D-Type Fip-FIOp.......ccocvvcieie i, 14
4.2 INtErfaCe PACKAJEc.eeieeeee e 15
4.2.1 Definitions for non-redundant clock and reset interfaces.........ccocveevvrennenne. 15
4.2.2 Déefinitions for non-redundant input / output interfaces............cccvveviieeinenne 15
4.3 ReduNdanCy PaCKagE.ccvriririeieeeeie s 16
4.3.1 Déefinition of range for Triple Modular Redundancyccccveeeveevieseennene 16
4.3.2 Definitionsfor clock and reset interfacesccvevereeneiicce s 16
4.3.3 Definitionsfor input / output iNtEIfaCeS.covveeerieeieeiererere e 16
4.3.4 Conversion from bit to integer for generics........covvevierienecce e e 17
4.35 Component declaration for generic Triple Modular Redundancy flip-flop... 17
4.4 Entity of the MOdUIE..........c.cooiiriee e 18
441 GENENIC ClAUSE.....ocvi ettt sttt ettt st bbb b enes 18
4.4.1.1 Redundancy configurationccceeieeiieeiieeiie et 18
4.4.1.2 Functionality CONfIQUIatioN..........cooeereriiiieseee e 18
4.2 PO ClAUSE.....c.eiiiee ettt st bbb b 19
4.4.2.1 Clock and reset INTEIfaCe......cooveeieiene e 19
4.4.2.2 INPULINEEITACEeoieeeiceee et e 19

4.4.2.3 OULPUL INEEITACE. ... eciveieeteeie st e s reeaesreene s 19

Gaisler ‘:'

FPGA-003-01 3 Research
4.5 Architecture of the MOUIEccveiiiieriee e 20
451 DECIaraliVE PaIT....cc.ccoveieeirieie e sieete st se et e e ae e reetesreesreenesreenne s 20
45.1.1 Déefinition of private types, constants and subprograms............ccceeeevveerunnnne. 20
4.5.1.2 Definition of typesfor sequential €lements.........ccceoeeeieicieieneneneceee 20
4.5.1.3 Déefinition of type for combinatorial elements...........ccccecevvrieieerecceseene 21
4.5.1.4 Declaration Of reSet VAIUES.........cccoveiiiriiiieniee et 21
4.5.1.5 Conversion from record to array of DitS...........ccooviiiriiiiicie, 22
4.5.1.6 Conversion from array of bitSt0 record...........ccccoceveeiiesienieie e 23
4.5.1.7 SUPPOIT FUNCLIONS.......ccuieiiiecieecee et 24
4.5.1.8 Declaration of vector typesand SIgNalSccceeererierenenenenese e 25
4.5.1.9 Definition of combinatorial DENAVIOUFccceverieiieierisere e 25
4.5.1.9.2User defined INPULSooiuiiiieeiie ettt e 25
4.5.1.9.2Pre-defined iINput @nd OULPULScoreeiiieenieie e 26
4.5.1.9.3Pre-defined variabl€S...........ccoiiiiiiiee s 26
4.5.1.9.4D€finition of unregistered variables...........ccccoviiiiie i 26
4.5.1.9.5Pre-defined registered variable ... 27
4.5.1.9.6D¢finition of combinatorial 0giC........cccvviieiieri e 27
4.5.1.9.7SYNCHIONOUS FESELocueeticeie ettt ee et ae et esreenesneenne s 28
4.5.1.9.8pre-defined variables converted to SIgNalS........ccoveeveeieneenence e 28
452 SAEMENE PAIT ..oooeiie it 28
45.2.1 Combinatorial DENaVIOU...........cccoviiiiiniceree s 28
4.5.2.2 OULPUL POITS.....eeiueieieieiteesiee et et e ste e teese e sseesseeeseesseeaseessessaneeseesnseesseesnneanns 29
4.5.2.3 Sequential BENaVIOUNcccue e 29
4.5.2.3.1Sequential behaviour with explicit flip-flop instances............cccoceveeieieennene 29
4.5.2.3.2Sequential behaviour with inferred flip-flops......ccoveveeviiiieceee 30
4.6 Graphical overview of the FTMR approachccocevveiinenene e 31
5 RESULTS FROM A SIMPLE APPLICATION.......cccoiieieienie e 32
6 RESULTS FROM A DEMONSTRATION APPLICATIONcccovvvrinnnnne 33
7 CONCLUSIONS...... .ottt sre e ere e ens 35
APPENDIX A: VHDL CODE.......ccctstiiiirieieiiesiese st 36
Al TMR D-Type Flip-FIOPooeeieeeeeee e 36
A.2 INterface PACKAgE ... i 43
A.3 Redundancy packageccocveveeiereeie e 44
A4 PSeudo-RanNOMISEYccveiiiieeeeee e 46
A.5 Xilinx entities and architectures (not necessary for synthesis)........ 54

A.6 Xilinx specific triple redundancy VOLer...........cccoecveceveeceveesiee, 55

Gaisler ‘:'

FPGA-003-01 4 Research
1 INTRODUCTION
11 Scope

This document discusses the use of Triple Modular Redundancy (TMR) for the protection of
combinatorial and sequential logic in reprogrammable logic devices. A VHDL approach has
been developed for automatic TMR insertion and a demonstration design has been devel oped.
The approach is called “Functional Triple Modular Redundancy (FTMR)”.

This document addresses the protection of random sequential and combinatorial logic. This
document does not address the protection of inputs and outputs, the usage of on-chip block
memories or dedicated shift-registers etc. It assumes a good knowledge of the Xilinx
architecture. For detailed information on Xilinx FPGAs and mitigation techniques such as
configuration memory scrubbing, see [RD7].

12 Background

Field Programmable Gate Array (FPGA) devices have been used in space for more than a
decade with amixed level of success. Until now, few reprogrammabl e devices have been used
on spacecraft due to their sensitivity to involuntary reconfiguration due to Single Event Upsets
(SEU) induced by radiation. But with the advent of reprogrammabl e devices featuring amillion
system gates or more, it is not longer feasible to disregard these technol ogies.

Triple Modular Redundancy (TMR) hastraditionally been used for protecting digital logic from
the SEUsin space born applications. The main usage has been either on module level or for the
protection of sequential elementsin digital logic. With the use of reprogrammable logic, such
as Static Random A ccess Memory (SRAM) based FPGAS, the protection of the sequential logic
is insufficient since the logical functionality of the FPGA can be changed due to a charged
particle hitting the on-chip configuration SRAM. Protection of the combinatorial logic is
therefore required to avoid involuntary changes of functionality.

Severa approaches have been made to solve this problem, most based on modular replication
and voting. These approaches have the advantage of detecting alarge range of errors, but have
the disadvantage of not being able to restore the sequential state of the module that has been
affected. A better approach isto perform TMR on the gate level. This has previously been done
for the sequential elements, but not until recently has it been considered for the combinatorial
logic aswell, aswill be discussed in this report.

13 Acronyms and abbreviations

FPGA Field Programmable Gate Array

FTMR Functional Triple Modular Redundancy
SEU Single Event Upset

SRAM Static Random Access Memory

TMR Triple Modular Redundancy

VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuits

Gaisler ‘:'

FPGA-003-01 5 Research

14 Reference document

RD1 Triple Module Redundancy Design Techniques for Virtex FPGAs, Application Note:
Virtex Series, XAPP197 (v1.0) November 2001, Xilinx Inc.

RD2 Radiation Characterization, and SEU Mitigation, of the Virtex FPGA for Space-Based
Reconfigurable Computing, E. Fuller et al., 2000 IEEE NSREC, October 2000

RD3 Radiation Testing Update, SEU Mitigation, and Availability Analysis of the Virtex
FPGA for Space Reconfigurable Computing, E. Fuller et al., 2000 MAPLD, Johns
Hopkins University, Laurel, Maryland, USA, September 2000

RD4 SEU Mitigation Techniques for Virtex FPGASs in Space Applications, C. Carmichael
et a., 1999 MAPLD, Johns Hopkins University, Laurel, Maryland, USA, September
1999

RD5 Reliability of Programmable Input/Output Pins in the Presences of Configuration
Upsets, N. Rollins et al., 2002 MAPLD, Johns Hopkins University, Laurel, Maryland,
USA, September 2002

RD6 Single-Event Upsets in SRAM FPGAs, M. Caffrey et al., 2002 MAPLD, Johns
Hopkins University, Laurel, Maryland, USA, September 2002

RD7 Suitability of reprogrammable FPGAsin space applications, S. Habinc, FPGA-002-01,
Version 0.4, September 2002, Gaisler Research, Sweden

RD8 CCSDS Unsegmented Code (CUC) & CCSDS Time Manager (CTM) Synthesizable

VHDL Cores Data Sheet, ESA D/TOS-ESM/SH/154, Issue 0.1 Rev. A, Nov. 2000

Gaisler ‘:'
FPGA-003-01 6 Research

2 SINGLE EVENT UPSET MITIGATION TECHNIQUES
2.1 Triple M odule Redundancy (TMR)

A commonly known method for SEU mitigation is Triple Module Redundancy (TMR) with
voting. This mitigation scheme uses three identical logic circuits performing the same task in
parallel with corresponding outputs being compared through a majority voter circuit. The most
common example of TMR isad-typeflip-flop that has been triplicated and to which avoter has
been added on its output. By replacing all flip-flopsin design with the circuit shown infigure 1,
one would protect the design against SEUs in the flip-flops. However, this would not protect
against SEUs in the combinatorial logic connecting the flip-flopsin the design.

D—
input D H output

Figure1: Triple Modular Redundancy with voting

The effects of SEUs are not confined to the registersin digital designs, but are also present in
the combinatorial logic for which there are several protection schemes proposed. These
schemes mostly deal with transient glitchesin the combinatorial logic that could result in upsets
in the sequential elements. This should not be confused with what will be discussed next.

The subject SRAM-based FPGASs are not only susceptible to SEUs in the user registers but also
in the configuration SRAM memory itself. The effect of an SEU is in this case much more
difficult to predict since it can effect the logical function of the design, not only its sequential
state as protected infigure 1. This callsfor a protection technique that coversthe completelogic
of the design, both the sequential and combinatorial part.

Notethat it isnot sufficient to update the configuration SRAM memory continuously to remove
any bit errors induced by SEUSs, since the effect of the configuration change will change the
logic which in turn will potentialy lead to the change of the internal state of the design, i.e. the
state of the variousregistersand flip-flops. By correcting the configuration SRAM memory, one
can repair the logic, but not re-establish the state of the design.

Gaisler ‘:'
FPGA-003-01 7 Research

2.2 Module level mitigation

There are several approaches to module level mitigation of varied complexities, as will be
presented in this section. This type of mitigation does not automatically allow that the internal
state of an application is maintained after an SEU because the detection and correction of the
error is made on module level.

A very simple method for implementing SEU mitigation in an FPGA design is to replicate
redundant instances of an entire module and vote the final outputs of the modules. In this case
amodule may represent either the entire design for a particular device or a sub-component of
that design. Thisisavery effective means of SEU mitigation that is easy to implement and can
be performed entirely within a single device as long as the module does not utilize more than a
third of the total device.

Module Module Module

o - N
2 2 B
=} p} p}

— (=] - N
= B
> > >

uto
t

’70Ut2

1 gy [
‘ voter | ‘ voter ‘ ‘ voter ‘
FPGA
out0 outl out2

Figure 2: Modul e redundancy

Triple device redundancy and mitigation is an aternative method. It has the highest reliability
for detecting single and multiple event upsets, multiple transient upsets, and any other
functional interruptsincluding total devicefailure. However, thisisalso the most costly solution
and provides only amarginal actual improvement over methodologies.

" FPGA

FPGA ¥ voter ——

" FPGA

Figure 3: Device redundancy

The disadvantage of module level mitigation techniquesisthat they do not provide asimple and
robust recovery mechanism after an error has been detected in one of the modules. In random
logic with sequential elements, it is not ensured that the error will be detected until it manifests
itself on the output of the module where it is compared with the outputs of the redundant
modules. The internal state of the erroneous module can at that stage be very much different
from the state of the redundant modules. Any further execution will be meaningless since the
erroneous state will not be automatically recovered from. The probable consequence is that the
application has to be reset or some other means of action has to be taken to resynchronise the
modules. Thiswill lead to loss of data and operational down time.

Gaisler ‘:'
FPGA-003-01 8 Research

2.3 Gate level mitigation

In[RD1], mitigation technigques are discussed from the architectural point of view for the Xilinx
Virtex technology. Emphasis is put on protecting the user logic on the gate-level. For further
discussions, a distinction between combinatorial logic and sequential logic will be made.

combinatorial logi

combinatorial logi

sequential

sequential sequential !
logic

logic logic

Figure 4. Sequential and combinatorial logic

Since SEUs can affect both the sequential and the combinatorial logic, the combinatorial logic
needs to be made redundant aswell. Theimportance of feeding back the voted result to all voted
sequential elements is discussed in [RD1]. This is done to restore the state of all redundant
sequential elements and to avoid error build up. The voting for the redundant combinatorial
logic can be performed after the sequential elements, before the sequential elements or through
out the combinatorial logic, depending on what level of protection that is required.

‘l m .
combinatorial logi combinatorial logi

Figureb: TMR for sequential and combinatorial logic at gate level

v

voter

sequential
logic

sequential
logic

sequential
logic

The advantage of gate level mitigation techniques is that the voting between different logic
elements can take place between the sequential elements. The voted result is normally fed back
to the sequential elements, avoiding that an error is propagated between sequential elements.
The synchronisation between the redundant partsis thus maintained. Thisis because each error
is detected within aclock period and the state of the redundant partswill thus not differ for more
than aclock period. The rest of this report will discuss a gate level mitigation using high level
descriptionsin VHDL.

sequential
logic

3

“\ combinatorial logi

il

sequential
logic

voter
voter

sequential
logic

Figure6: TMR for sequential, combinatorial and voter logic at gate level

Gaisler ‘:'
FPGA-003-01 9 Research

3 A VHDL APPROACH TO COMBINATORIAL AND SEQUENTIAL TMR

While it is fairly ssmple to implement TMR for sequential elements alone, it is a challenge to
implement it in an efficient way for the combinatorial logic. The principlesarefairly simple and
it is not that difficult to implement them on the gate level with a schematic entry based design
method. It is however difficult to do it using a high level design language such as VHDL and
still obtain the desired ease of use.

The ultimate situation iswhen the designer does not need to be concerned with the TMR aspects
a all, eg. if automatically supported by the synthesis tool. Until then it is still possible to
develop aVHDL design stylethat allowsitself to high level descriptionswith little influence on
the actual work spent on describing the design functionality. An attempt to such an approach is
presented hereafter and is called Functional Triple Modular Redundancy (FTMR).

A code exampleisexplained in detail in section 4 and is provided in its entire in appendix A.
31 Thearchitecture

The architecture of Functional Triple Modular Redundancy (FTMR) is based on two main
elements; a sequential block and acombinatorial block, as showninfigure 7. This approach has
been used in other developments such as the LEON SPARC microprocessor where only the
sequential block was protected by means of modular redundancy.

: | [>
input records v v

output records

combinatorial bock >

l next state record

reset signals
sequential block

clock signals

current state record

Figure7: Sequential and combinatorial blocksin FTMR

The novelty of FTMR is however that both sequential and combinatorial blocks can be
protected by means of triple modular redundancy. The redundancy of the sequential block is
straight forward, since each flip-flop isimplemented with aspecific TMR d-typeflip-flop which
will be discussed later.

The redundancy for the combinatorial block is slightly more complicated since it requires
triplication of random logic that is less predictable than the flip-flops. This has been solved by
describing the combinatorial logic in a procedure that can be instantiated multiple timesin the
combinatorial block. This might seem simple, but it requires quite afew VHDL tricks in order
to establish the desired interconnections between the blocks, and to avoid having them removed
by the synthesis tools during optimisation.

Gaisler ‘:'
FPGA-003-01 10 Research

The same approach has been taken for the communication between the two blocks as was done
for the LEON model. Record typesin VHDL are used for describing ports going to and from
the entity aswell asfor signals going between the blocksin the VHDL architecture. The record
types can be nested to group logically different categories of information, etc.

The sequentia block has one input record signal and one output record signal, plus clock and
reset inputs. Theinput record carriesthe next state of all the sequential elements, and the output
record carriesthe current state of all the sequential elements. In synchronous designs, the output
record signal is also fed to the output record ports of the entity.

The combinatoria block has several input record signals and two output record signal. One
input record carries the current state of the sequential elements, and one output record carries
the next state of the sequential elements. Additional input record signals are used for connecting
the combinatorial block with the input ports of the entity. The second output record signal
carries combinatorial results that can be fed to the non-registered output record ports of the
entity. The combinatorial block does not include any sequential elements and can thus also be
used for describing purely combinatorial logic.

Since the record types can be of various subtypes and array structures, it is not possible to map
such a record directly and automatically to individual flip-flops by means of explicit
instantiation. Instead, the designer will have to define a function that maps the different record
elements to bits in an array, and a reverse function that maps bits from an array to the record
elements. The array type is then used for connecting the flip-flops to the record type. It is not
possible to utilise inference of flip-flops, since the flip-flop has to have some specific
characteristics for redundancy purposes as will be discussed later. This is a weakness of the
method and VHDL since it requires work not related to the design of the functionality itself.

3.2 Configuration options

The FTMR approach allows a design to be implemented in several ways, with avarying level
of redundancy. The first configuration is the behavioural in which the sequential elements are
implemented by flip-flop inference by the synthesistool. It does not allow redundancy.

In the structural configuration all sequential elements are implemented with explicitly
instantiated TMR d-type flip-flops. This configuration can be used without redundancy, and it
must be used when redundancy is required. See figure 4.

The sequential configuration provides redundancy on the sequential elements only. It provides
only asingle set of input and output ports for the entity, except for the clock and reset ports that
can be triplicated. The triplicated sequential elements can be voted with a single output voter
implemented with random logic or as specific Xilinx tri-state buffers. See figure figure 1.

The combinatorial configuration is a super set of the sequential configuration, providing
triplication of al ports and al combinatorial logic. The triplicated sequential elements can be
voted with a single, see figure5, or triplicated input and output voters, see figure6,
implemented with random logic or as specific Xilinx tri-state buffers. No explicit voting is
provided for the output ports of the actual module, since the voting occurs just before or after
the flip-flops. For purely combinatorial logic, no voting occurs in the module, only triplication
of thelogic, sinceit isassumed that thelogic will end up at aflip-flop or that explicit voting will
be made for the outputs of the device.

Gaisler ‘:'
FPGA-003-01 11 Research

33 M ethodology issues
3.3.1 Input and output

The FTMR approach currently only handles modules and not complete designs. The main parts
missing is the handling of the input and outputs of the device. There are severa ways in which
the input and outputs can be handled, all depending on what level of protection one requires.
The simplest approach would be only to have a single external input that is connected to a
triplicated input on the module level. The same could be done for the outputs, only connecting
one of thetriplicated outputs on the moduleto asingle external output. Another straight forward
approach is to triplicate all external inputs and outputs and to handle the voting outside the
device. These issues have been | eft to the user to handle for the time being.

3.3.2 Busholders

Several problems with so called bus holders, or half-latches, that are sensitive to upsets have
been reported for the Xilinx Virtex technology. In the available documentation [RD6], several
cells that can be affected by this phenomena have been listed. In the synthesis results obtained
for the two example applications discussed later in this document, no such cells have been
observed. It ishowever unclear whether thisisdueto the coding style or if it can still occur. One
should always analyse the resulting netlist for potential bus holders.

3.3.3 Re-useof old VHDL code

It was shown during the design of the demonstration application that converting an existing
design to the structure presented in the FTMR approach is feasible, provided that the original
design is described on a fairly high descriptive level. There is however definitely a learning
threshold that needs to be overcome to be able to design with FTMR.

3.34 Configuration memory

Although not discussed in this document in detail, it is assumed that the proposed FTMR
approach is combined with scrubbing of the configuration memory. The FTMR approach will
only protect the design from a single error in the configuration memory belonging to a specific
function. A second error in the configuration memory affecting the same function could render
the TMR protection inefficient. It is therefore necessary to provide continuous scrubbing of the
configuration memory to avoid an error build up.

3.35 Refresh of TMR structures

Asfor al TMR structures, it isimportant that the flip-flops are refreshed continuously with new
voted valuesin order to avoid error build up. In the FTMR approach thisis done automatically
since all flip-flops are clock with the system clock. One should note that when using an external
signal to clock flip-flops, one must be aware that the flip-flops will perhaps not be refreshed
often enough. The information from those flip-flops should therefore be moved to the system
clock domain as fast as possible, where the flip-flops are refreshed regularly.

Gaisler ‘:'
FPGA-003-01 12 Research

3.36 Required level of redundancy

The FTMR approach provides severa levels of protection against upsets in the configuration
memory as well as in the sequential elements of the design. It is however not clear what level
of protection isactually required. Thiscan only be derived from a characterisation of the FTMR
approach by means of irradiation. For example, it is not obvious how many voters are required
around a sequential element. The method allows from zero to three voters to be placed in front
and/or after the sequential element.

One could reason that only one voter after the flip-flop would be sufficient if implemented using
the Xilinx specific tri-state buffer implementation. Thisis however not evident since the buffer
structure has more than the three required inputs, which could lead to corruption of functionality
due to errors else were in the design, e.g. between the voter output and the flip-flop input. To
bring clarity to these issues, further analysis and test is required.

3.3.7 Template based approach

The FM TR approach is based on templates which the user can modify for each new modul e that
need to be developed. To reduce the design effort, one could develop an simple pre-processor
or VHDL code generator which could produce the VHDL code sections specifically needed for
the approach. This could cover the cumbersome conversion between record and array typesthat
was discussed earlier. It could also cover the copying of input ports of the entity to the inputs of
the combinatorial procedure, etc.

3.3.8 Synthesistools

Although there are severa different synthesis tools suitable for Xilinx devices, only one has
been used to assess the proposed methodology. Synplify from Synplicity Inc. was used as the
main driver for the devel opment of the method. Synplify was chosen due to availability. Design
Compiler from Synopsys Inc. was al so used to assess the method to some extent.

Gaisler ‘:'
FPGA-003-01 13 Research

4 VHDL CODE STRUCTURE

The proposed Functional Triple Modular Redundancy (FTMR) approach is implemented in
VHDL using a TMR based d-type flip-flop, two packages, and the entity and architecture of the
module to be implemented. FTMR is based on parts that are pre-defined in atemplate and parts
that need to be defined by the user for each new module that is being designed. This will be
highlighted in the VHDL code example that is explained in detail in the following sections and
that isprovided inits entire in appendix A.

An overview of the different VHDL objects and files used in the proposed approach isgivenin
figure 8. A graphical overview of the approach is provided in figure 10 in section 4.6.

The VHDL code is based on VHDL IEEE Std 1076 - 1993, and is thus not directly backward
compatiblewith Std 1076 - 1987, although this can be achieved with some minor modifications.

Module entity

\/\ generic declaration
Redudant
package > port declaration

\J/\ Module architecture
Interface) .
package > (Combinatorial)

ek) (Conpecx)

architectural declaration _/—\
architectural statement Xilinx

X (Combinatorial) X BUFT

X (Combinatorial) X

I \ Pullup

! (Combinatorial) !

. _ . _ CombinatorialGen _ _ _ | l

ac Triple Redundancy Voter

x x| |x x| i TMR
S S S S| Triple Modular Redundancy
= = = = Flip-Flop

Figure8: Overview of VHDL objects and file hierarchy

Gaisler ‘:'
FPGA-003-01 14 Research

4.1 Triple Modular Redundancy D-Type Flip-Flop

The basis for the FTMR approach is the pre-defined Triple Modular Redundancy (TMR) flip-
flop. Thisisaconfigurable and flexible d-type flip-flop that can support the following concepts:

 single or redundant sequential element, with

» singleor triple clocks

» gingle or triple signals for asynchronous reset
 support for combinatorial redundancy, with

» singleor triple input

» gingle or triple output

* no, singleor triple input voters

* no, single or triple output voters

» logical votersor Xilinx specific tri-state buffer voters

The flip-flop has the following interfaces, but all are not used in all the above configurations:
* clk (0 to 2) clock inputs

* reset(0 to 2) reset inputs
e d(0 to 2) data inputs
* q(0 to 2) data outputs

The TMR flip-flop can thus support various levels of redundancy. For example, simple
sequential redundancy can be implement. The sequential elements can be clocked from a
common or three separate clock lines, to be able to mitigate transient effects in combinatorial
logic and the clock lines themselves. The same can be done for the asynchronous reset line.

The flip-flop can take three different inputs to feed the redundant sequential elements, where
the inputs can either be fed straight to the sequential element, or be voted in a single voter, or
be voted in a separate voter for each sequential element input. The outputs of the sequential
elements can be voted with asingle voter, or with a separate voter for each data output.

The voter can be implemented with random logic, or with a tri-state buffer specific for Xilinx
which does not consume random logic resources (and which in fact is not implemented as a tri-
stated buffer but as alogical multiplexer, see [RD1]).

The VHDL code utilises attributes specific to the Synplify synthesis tool from Synplicity Inc.
The purpose is to ensure that intentional redundancy is not removed by the synthesistool. The
attribute Syn_Keep was used to avoid signals to be removed, which could lead to combinatorial
logic being removed. The attribute Syn_Preserve was used to avoid flip-flops from being
removed. The attribute Syn_Hier was used to avoid that the tool would dissolve the hierarchy
which could lead to intentional redundancy being optimised away.

Gaisler ‘:'
FPGA-003-01 15 Research

voter

voter
voter

voter

Figure9: \oter configurations: triplicated and single
4.2 Interface package

In the interface package all types required for defining the input and output ports of the module
are defined, asif the module was to be implemented without redundancy. All types are defined
as simpletypes, without any triplication taken into account. Thisinterface package will actually
not be used for the defining the interfaces of the redundant module, since all the types will be
modified to support redundancy as described in section 4.3. The contents of this package would
not differ from a package used for of amodule not aimed for the redundancy approach proposed.
An example isthe AMBA package which was used in a design without modifications.

4.2.1 Déefinitionsfor non-redundant clock and reset interfaces
The following types are pre-defined and are used for the clock and reset.

subtype d ock_Type is Std_Logic;
subtype Reset_Type is Std_Logic;

Example 1. Type declaration for clock and reset interface

4.2.2 Déefinitionsfor non-redundant input / output interfaces

The FTMR approach is based on the usage of record types for grouping of signals that belong
to the same function or interface. One record typeis defined for the input and one for the output
of each specific interface. In this example, the inputs and outputs use the same type T_Type.

type T _Type is record

SyncMar k: Std_Logic; -- sync delinmter
Fr ameMar k: Std_Logic; -- frane delinmter
Dat aMar k: Std_Logic; -- data delinmter
Dat aSt r eam Std_Logi c; -- serial data

end record T_Type;

--## END DEFI NE RECORD TYPES FOR | NTERFACES

Example2: Type declaration for input and output interfaces

Gaisler ‘:'
FPGA-003-01 16 Research

4.3 Redundancy package

In the redundancy package, al aspects of redundancy on the interfaces is taken into account.
Thetypes declared in this package are those actually used for the interfaces of the module. This
package is based on the interface package described in section 4.2. The triplication of interfaces
isgenerally only required for combinatorial redundancy, but is always built in to the module to
support al levels of redundancy.

4.3.1 Déefinition of rangefor Triple Modular Redundancy

The basic addition madein this package isthe triplication of all inputs and outputs of amodule.
The subtype Triple is defined for this purpose. If no redundancy isimplemented, only element
Oisused. Tripleisused asan index in all arrays dedicated to the interfaces, etc.

subtype Triple is Integer range 0 to 2;
Example 3. Subtype for array indexing
4.3.2 Definitionsfor clock and reset interfaces
The clock and reset interfaces are triplicated by the following pre-defined subtypes.

subtype Reset _Triple is Std _Logic_Vector(Triple);
subtype dock _Triple is Std _Logic_Vector(Triple);

Example4: Triplicated clock and reset interfaces

4.3.3 Déefinitionsfor input / output interfaces

For each user interface, atriplicated version needsto be declared as an array that isindex by the
Triple subtype and each element is of the corresponding type defined in the interface package.

--## DEFI NE ARRAY TYPES FOR REDUNDANT | NTERFACES
type T Triple is array (Triple) of T Type;
--## END DEFI NE ARRAY TYPES FOR REDUNDANT | NTERFACES

Example5: Supporting array type for combinatorial redundancy

Gaisler ‘:'
FPGA-003-01 17 Research

4.34 Conversion from bit tointeger for generics

Since some major synthesistools do no support other genericsthan of the Integer type, aspecial
function has been pre-defined to convert a Sd _ULogic value to a set of integer values. The
function is used for trandating reset values to the Integer type that can be interpreted by the
specific TMR based d-type flip-flip used in this methodol ogy. The function support three types
of reset values: clear, preset and no reset. Thelatter ishowever not supported by some synthesis
tools and has therefore been commented out. The details of thisfunction are not required for the
understanding of the FTMR approach.

subtype | _Range is Integer range 0 to 2;
type | _Vector is array (Integer range <>) of | _Range;
function To_ | Vector(s: Std Logic Vector) return | _Vector is
vari able r: | Vector(0 to s'Length -1);
begin
for i in O to s'Length -1 |oop
i f To_X01(s(i))="0" then
r(i) :=0; -- clear
el se
-- el sif To X01(s(i))="1" then
r(i) :=1; -- set
-- el se
-- r(i) =2 -- don't care
end if;
end | oop;
return r;

end function To_|_Vector;
Example 6: Function for converting reset valuesto integer for generics
435 Component declaration for generic Triple Modular Redundancy flip-flop

The redundancy package also includes a component declaration for the TMR d-type flip-flop.
In this way it is not necessary to declare the TMR component in each module using the
redundancy package.

Gaisler ‘:'
FPGA-003-01 18 Research

4.4 Entity of the module
441 Genericclause

The generic clause contains generics for the redundancy configuration of the modules, as well
as generics for the functionality of the module

4.4.1.1 Redundancy configuration

Each module is configurable for the level and type of redundancy that is to be implemented,
featuring the following options:

» behavioura or structural implementation:

» behavioural does not allow redundancy, inferred d-type flip-flop insertion is utilised

* structural implementation allows redundancy, explicit d-typeflip-flop insertion is utilised
 gingle or redundant sequential element, with

» singleor triple clocks,

* none, single, triple asynchronous reset signal's (synchronous reset in combinatorial logic)
 support for combinatorial redundancy, with

» no combinatorial redundancy provides single inputs and outputs

» combinatorial redundancy provides triplicated input and outputs
* number and type of voters:

* no, single or triple input voters before the sequential elements (triple only with
combinatoria redundancy)

* no, single or triple output voters after the sequential elements (triple only with
combinatorial redundancy)

* logical voters or Xilinx specific tri-state buffer voters

generi c(
-- Redundancy configuration
gStructural : Integer range 0 to 1 := 1, - behavi our, structure
gRedundant : Integer range 0 to 1 := 1, - no, redundant ff
gl nVot er: Integer range 0 to 2 : = 2, - 0, 1, or 3 voters
gQut Vot er: Integer range 0 to 2 : = 2, - 0, 1, or 3 voters
gReset : Integer range 0 to 2 : = 2, - sync, async, async*3
gd ock: Integer range 0 to 1 := 1, - 1, or 3 lines
gConbi natorial: Integer range 0 to 1 := 1; - no, redundant |ogic
gVot er: Integer range 0 to 1 := 1); - logical, or tristate

Example 7. Genericsfor redundancy configuration

4.4.1.2 Functionality configuration

The generics used for configuring the functionality of a module are application dependent and
do not differ from those in other VHDL methodol ogies. Some restrictions have however been
observed when combined with this redundancy approach, e.g. it is not always possible to have
ageneric that controls the width of an array type used for a port. The width of the port will need
to be established in the interface package described earlier, since a record cannot have
unconstrained array elements.

Gaisler ‘:'
FPGA-003-01 19 Research

442 Port clause

The port clause provides the interface to the module. The ports are split in three groups: clock
and reset interface, input interface and output interface.

4421 Clock and reset interface

The FTMR approach assumes synchronous design, providing a single clock input that is a
triplet. The clock triplet is an array, for which the array elements are numbered 0 to 2. If no
combinatoria redundancy isimplemented, only element numbered O is used. The holds for the
reset triplet. The reset input can be used for synchronous or asynchronous reset. It is possible to
build a module with more than one clock domain. This requires that both the clock and reset
ports are separately declared for each clock domain. Transitions between clock domains need
to be properly synchronised in the module.

ca k: in d ock_Triple;
Rst : in Reset Tri pl e;

Example 8. Clock and reset interface

4.4.2.2 Inputinterface

All inputs are defined as triplets. Each input is normally connected to one external module or to
a higher hierarchy. Each triplet is an array of a record type, for which the array elements are
numbered O to 2. If no combinatoria redundancy is implemented, only the element 0 is used.

--## END DEFI NE | NPUT PORTS AS TRI PLETS

Example 9: Input interface

4.4.2.3 Output interface

All outputs are defined astriplets. Each output is normally connected to one external module or
to ahigher hierarchy. Each triplet is an array of arecord type, for which the array elements are
numbered O to 2. If no combinatoria redundancy isimplemented, only the element O is used.

--## END DEFI NE QUTPUT PORTS AS TRI PLETS

Example 10: Output interface

Gaisler ‘:'
FPGA-003-01 20 Research

45 Architecture of the module

The architecture of the module is also based on the assumption that the design is synchronous.
It is also assumed that there is no mixture between function and interconnectivity within the
same modul e, although this cannot always be avoided. Itispossibleto build amodulewith more
than one clock domain. This requires that the two clock domains are implemented as separate
VHDL block statements. Note that thisis only one of many possible solutions.

45.1 Declarativepart

The FTMR approach is based on parts that are pre-defined in atemplate and parts that need to
be defined by the user for each new module that is being designed. In the declarative part of the
architecture, the user needs to declare the following items:

* private types, constants and subprograms

 record of sequential elements

* record of combinatorial elements

» reset values for sequential elements

» explicit conversion from a sequentia element record to an array that is used when
instantiating d-type flip-flops

» explicit conversion back from an array to a sequential element record

» combinatorial behaviour described as a procedure

The main difference between this proposed redundancy approach and normal designisthe strict
split between the different parts|listed above, and the additional conversion between recordsand
arrays used for flip-flop instantiation, since thisis normally done by inference in synthesis.

45.1.1 Déefinition of private types, constants and subprograms

In this section al private types, constants and subprograms required for describing the
functional behaviour are defined. Note that these can a so be defined in a package.

4.5.1.2 Déefinition of typesfor sequential elements

All sequential elementsrequired in the modul e need to be declared by the user asasinglerecord
type. Therecord can be made hierarchical, or nested, for exampleincluding the records used for
the output ports as shown in the example below. The record should be constructed not using
triplet types. Instead, the non-triplicated types and records should be used.

type R Type is record

H: Std_Logic_Vector(7 downto 0); -- random ser state
PSRQut : T Type; -- out put

--## END DEFI NE REG STERS

end record R Type;

Example 11: Sequential elements (registers)

Gaisler ‘:'
FPGA-003-01 21 Research

4.5.1.3 Definition of typefor combinatorial elements

All purely combinatorial signals required in the module need to be declared by the user as a
single record type. The record can be made hierarchical, or nested, for example including the
records used for the output ports. The record should be constructed not using triplet types,
instead the non-triplicated types and records should be used. The difference between the
combinatorial and the sequential elements is that the former do not require any flip-flops or
latches and can be used for describing functionality that is derived combinatorially from flip-
flops and inputs. A dummy declaration must always be done when unused.

type C Type is record

--## END DEFI NE COVBI NATORI AL SI GNALS

end record C Type;
Example 12: Combinatorial elements

45.1.4 Declaration of reset values

For each sequential element in the module, a reset value should be declared by the user. It is
possible not to declare a reset value for an element, but this is not well supported by the
synthesis tools that have been tried with the methodology. The reset values are declared as part
of the Reset function, in which the temporary variable record r is assigned with the reset value
for each of its elements. A function declaration must always be done even when unused.

function Reset return R Type is
variable r: R Type;
begin

r.H = (others => '1")
r. PSRQut . SyncMar k ='0";
r. PSRQut . Fr anmeMar k = '0";
r. PSRCQut . Dat aMar k ='0";
r. PSRCQut . DataStream :="'0";

return r;
end function Reset;

Example 13: Reset function for sequential elements

Gaisler ‘:'
FPGA-003-01 22 Research

45.1.5 Conversion from record to array of bits

The Pack procedureis user-defined and specific to each module. Its purposeisto map therecord
type defining the sequential elements into an array of ssimple bits. Each array element is later
mapped to individual d-type flip-flops. It is not possible ssmply to map the record type directly
to d-type flip-flops due to limitations in VHDL. Each element in the record r needs to be
mapped to an element in the array s. In addition, the variable c isincremented for each element,
and returns in the end the number of elements that have been mapped. In some designs it is
preferable that c is calculated directly from the length of the different arrays that can be found
in the record types, using the ‘Length attribute, rather than assuming a fixed length. The ¢
variable is used for calculating the final length of the array.

In the beginning of a module devel opment, one would normally concentrate on the behavioural
aspect of the design and not apply redundancy. It is therefore possible not to complete the Pack
and the UnPack procedures when only behavioural implementation is used. A dummy
declaration must however always be done when unused.

procedure Pack(

r: in R Type;
vari abl e s: out Std_Logi ¢c_Vect or;
vari abl e c: i nout Natural) is

begi n

s(c to c+r.H Length-1)
c

r.H
c+r. H Lengt h;

s(c) = r. PSRQut . SyncMar k;

c = c+1;

s(c) = r. PSRQut . Fr aneMar k;
c = c+1;

s(c) = r. PSRQut . Dat aMar k;

c = c+1;

s(c) = r. PSRQut . Dat aSt r eam
c = c+l

--## END DEFI NE MAPPI NG

end procedure Pack;

Example 14: User defined pack function

Gaisler ‘:'
FPGA-003-01 23 Research

45.1.6 Conversion from array of bitstorecord

The UnPack procedure is user-defined and specific to each module. Its purpose is to map back
the sequential elements from the array of ssmple bits to the record type. Each element in the
array s needs to be mapped to an element in the record r. In addition, the variable c is
incremented for each element, and returns in the end the number of elements that have been
mapped. In some designs it is preferable that ¢ is calculated directly from the length of the
different arrays that can be found in the record types, using the ‘Length attribute, rather than
assuming afixed length. A dummy declaration must always be done when unused.

procedur e UnPack(

S: in Std_Logi c_Vector;
variable r: out R Type;
vari abl e c: i nout Natural) is

begin

c = 0;

r.H = s(c to c+r.H Length-1);
c = c+r. H Lengt h;
r. PSRQut . SyncMar k = s(c);

c 1= Cc+1;

r. PSRQut . Fr aneMar k .= s(c);

c 1= Cc+1;

r. PSRQut . Dat aMar k = s(c);

C = c+1;

r. PSRQut . DataStream := s(c);

C = c+1;

end procedure UnPack;

Example 15: User defined unpack function

Gaisler ‘:'
FPGA-003-01 24 Research

4.5.1.7 Support functions

The following pre-defined support functions provide functionality that is required for mapping
the record type to the array type for the sequential elements. The only thing the user needsto be
concerned with isthat for thefunction R_Length, the array width of the variable s must be larger
than the total number of sequential bits to be implemented. The R _Len constant is used for
constraining the array that carries all sequential elementsasindividual bits. The ssmplified Pack
and UnPack functions are used for direct signal conversion between recordsand arrays, and vice
versa

function R Length return Integer is

variable r: R Type;
vari abl e s: Std _Logic_Vector(0 to 1023);
vari abl e c: Nat ur al ;

begin

Pack(r, s, c¢);

-- pragma translate off

assert ¢ < s'lLength
report "Tenporal vector in R Len function is too short"
severity Fail ure;

-- pragma transl ate_on

return c;

end function R Length;

Example 16: Calculates the width of the array required for all sequential element bits
constant R _Len: Integer := R Length;
Example 17: The width of the array required for all sequential element bits

function Pack(

r: R Type)
return Std _Logic_Vector is
vari abl e s: Std _Logic_Vector(0 to 1023);
vari abl e c: Nat ur al ;

begin

Pack(r, s, ¢);

return s(0 to R _Len-1);
end function Pack;

Example 18: Smplified Pack function

function UnPack(

S: Std_Logi c_Vector)
return R Type is
variable r: R Type;
vari abl e c: Nat ur al ;

begin
UnPack(s, r, c);
return r;

end function UnPack;

Example 19: Smplified UnPack function

Gaisler ‘:'
FPGA-003-01 25 Research

4.5.1.8 Declaration of vector typesand signals

The following pre-defined type and signal declarations are used for mapping the record type to
the array type for the sequentia elements, and for carrying the outputs of the purely
combinatorial logic. The constant gResetValueisan array of integers, defining the asynchronous
reset values for the explicitly instantiated d-type flip-flops. The triplicated signals are used for
redundancy purposes. If no redundancy isimplemented, as configured with the af orementioned
generics, only element O is used.

type R Triple is array (Triple) of R Type;
si gnal R Rin: R Triple;

Example 20: Sequential elements as record type

const ant gReset Val ue: | _Vector(0 to R Len-1) :=

To | _Vector(Pack(Reset));
subtype S Type is Std _Logic_Vector(0 to R Len-1);
type S Triple is array (Triple) of S Type;
si gnal S, Sin: S Triple;

Example 21: Sequential elements as an array of bits

type C Triple is array (Triple) of C Type;
si gnal C C Triple;

Example 22: Combinatorial logic output as record type

4519 Definition of combinatorial behaviour

The combinatorial behaviour of the module is described in the Combinatorial procedure. This
also includesthe combinatorial logic required for changing the states of the sequential elements.
Thus, the only thing that is not described in the procedure is the sequential elements and
potential voters before and after the sequential elements.

procedure Conbi natori al (
Example 23: Definition of the procedure for combinatorial logic

4.5.1.9.1 User defined inputs
For amodule, all portsthat can affect the combinatorial and sequential behaviour are fed to

the Combinatorial procedure. Thisis module dependent. All signals are of the non-
triplicated types.

Example 24: User defined inputs

Gaisler ‘:'
FPGA-003-01 26 Research

4.5.1.9.2 Pre-defined input and outputs

Thefollowing inputs and outputs to the combinatorial procedure are pre-defined. Rst isthe reset
input, R carries the current state of the sequentia elements, Rin carries the next state of the
sequential elements, and C carries the output of combinatorial logic. All signals are of the non-
triplicated types.

si gnal Rst : in Std_Logi c;
si gnal R: in R Type;
si gnal Ri n: out R Type;
si gnal C. out C Type) is

Example 25: Pre-defined input and outputs

45.1.9.3 Pre-defined variables

The following pre-defined variables are used for temporarily storing the next state of the
sequential elements, and the output of the purely combinatorial logic. Rv is used for the
sequential elements, and Cv is used for the combinatorial logic. Both variables are of the non-
triplicated basic types. All assignments are made to these variables by the user, never to the
corresponding output signals Rin and C. The variables are assigned, as pre-defined in the
template, to the corresponding outputs at the end of the procedure, to ensure that there is only
one such assignment. The user can chose to read the R input or the Rv variable, all dependent
on what functionality isrequired. The Rinput is unaffected by the assignmentsin the procedure,
whereas Rv can change aong the execution of the VHDL code in the procedure description. Rv
can thus be used when the new (or next) combinatorial value isrequired, rather than the current
value of the sequential elements.

vari abl e Rv: R Type;
vari abl e Cv: C Type;

Example 26: Variable declarations for sequential and combinatorial elements

4.5.1.9.4 Definition of unregistered variables

For temporary variables that do not have a sequential element associated, the variable Uv can
be used. Uv should then be cleared before any usage in the procedure, not to infer any storage
elements. A dummy declaration must always be done when unused.

--## END DEFI NE UNREG STERED VARI ABLES

end record U Type;
vari abl e Uv: U Type;

Example 27: Type and variable declaration for temporary variable

Gaisler ‘:'
FPGA-003-01 27 Research

4.5.1.9.5 Pre-defined registered variable

At the beginning of the procedure the current state of the sequential elements Ris copied to the
temporary variable Rv. Thisis done to ensure that Rv will not infer any storage elements.

Rv = R
Example 28: Initialising the Rv variable

4.5.1.9.6 Definition of combinatorial logic

The description of the combinatorial logic is done in a sequence of statements. The Rv variable
Isto be assigned with the next state of the sequential elements. The Rv variable can also be read
in the procedure when an intermediate value is required. Otherwise the R input signal is read
when the current state of the sequential elements is required. For temporary variables that do
not have asequential element associated, the variable Uv can be used. Uv should then be cleared
before any usage in the procedure, not to infer any storage elements. No reset statement is
required in this section, since it is being taken care of later in the procedure for synchronous
reset, and in the sequential part for an asynchronous reset.

i f PSRIn.DataMark="1" then -- bit delimter
i f PSRIn.SyncMark="1" then -- sync period
Rv. PSRQut . Dat aStream : = PSRI n. Dat aSt r eam -- uncoded out put
Rv. H := (others =>"1"); -- initialise h(x)
el se -- frane or codebl ock

Rv. PSRQut . Dat aStream :
PSRI n. Dat aSt ream xor R H(0);

coded out put

Rv. H(7 downto 0) D= -- shift h(x)
(R H(0) xor RH(3) xor RH(5 xor RH7)) & RH(7 downto 1);
end if;
Rv. PSRQut . SyncMar k = PSRl n. SyncMar k; -- del ay
Rv. PSRQut . Fr aneMar k = PSRl n. Fr aneMar k; -- del ay
el se
nul I ;
end if;
Rv. PSRQut . Dat aMar k : = PSRI n. Dat aMar k; -- del ay

--## END DEFI NE COMBI NATORI AL LOG C

Example 29: Description of the combinatorial logic

Gaisler ‘:'
FPGA-003-01 28 Research

4.5.1.9.7 Synchronous reset

The synchronous reset is optional, and is described after the user section mentioned above. The
reset can either be synchronous or asynchronous for the whole module, and is controlled by the
gReset generic. It is not possible to have synchronous reset for some sequential elements, and
asynchronous reset for other sequential elements in this basic template. If the combinatorial
logicistriplicated, so isthe input for the synchronous reset.

if Rst="1" and gReset=0 then
Rv : = Reset;
end if;

Example 30: Synchronous reset

4.5.1.9.8 pre-defined variables converted to signals

A the end of the procedure, the temporary variable Rv is assigned to the output signal Rin. The
assignment to Rin is made only once not to infer any storage elements. A the end of the
procedure, the temporary variable Cv is assigned to the output signal C. The assignment to Cis
made only once not to infer any storage elements.

R n <= Rv;
C <= Cv;

Example 31: Variableto signal assignments

452 Satement part

The statement part of the architecture instantiates the combinatorial procedure, output
assignments, and sequential elements as inferred or as explicitly instantiated d-type flip-flops.

45.2.1 Combinatorial behaviour

The combinatorial behaviour is described by instantiating one or three Combinatorial
procedures. If no combinatorial redundancy isimplemented, only instance O is used.

Conbi nat ori al Gen:
for i in O to Triple Right * (gConbinatorial * gStructural) generate
Combi nat ori al (

--## END DEFI NE | NPUTS

Rst => Rst (i)
R => R(i)

Ri n => Rin(i)
C = (i))

end generate Conbinatori al Gen;

Example 32: Concurrent procedure calls to implement combinatorial logic

Gaisler ‘:'
FPGA-003-01 29 Research

45.2.2 Output ports

All output ports need to be connected to internal sequential elements, R, or to pure combinatorial
logic, C. Each such connection will be instantiated one or three times. If no combinatorial
redundancy isimplemented, only instance O is used. Note the usage of the indices for the R and
C signals and the output ports.

QutputGen: for i in O to
Triple R ght * (gConbinatorial *gStructural) generate

--## END DEFI NE OUTPUTS

end generate Qut put Gen;
Example 33: Output port connection to sequential elements and combinatorial logic

4.5.2.3 Sequential behaviour

The sequential behaviour can either beimplemented with inferred or with explicitly instantiated
d-type flip-flops, depending on the use of redundancy.

4.5.2.3.1 Sequential behaviour with explicit flip-flop instances

It is possible to use explicit d-type flip-flop instances without redundancy, this is called the
structural description and is enabled with the gSructural generic. In this case only instance O
IS used.

When any kind of redundancy is used, the sequential elements are implemented with explicit d-
type flip-flop instances, and the gSructural generic must be enabled. The conversion from
record type to array type used for the instantiation of the sequential elements, and viceversa, is
performed in the ConversionGen generate statement.

Note that the reset constant gResetValue is mapped to the rest generic of the d-type flip-flop.
The TMR d-type flip-flop implements the triplication of the sequential elements and the voter
that can be placed in front and/or after the flip-flops.

FPGA-003-01 30

Gaisler ‘:'
Research

Structural Gen: if gStructural =1 generate

ConversionCGen: for i in O to Triple' Right

Sin(i) <= Pack(Rin(i));
R(i) <= UnPack(S(i));
end generate ConversionCen;

* gConbi natorial generate

Sequential Gen: for i in S Type' Range generate
ff: TMR
generic map(
gRedundant => gRedundant,
gl nVot er => gl nVot er,
gQut Vot er => gQut Vot er,
gReset => gReset,
gReset Val ue => gReset Val ue(i),
gd ock => gd ock,
gConbi natori al => gConbi natori al,
gVot er => gVoter)
port nmap(
cl k => d k,
r => Rst,
do => Sin(0) (i),
di => Sin(l) (i),
d2 => Sin(2)(i),
q0 => S(0) (i),
ql => S(1) (i),
a2 => 8(2)(i));

end generate Sequenti al Gen;
end generate Structural Gen;

Example 34: Instantiated D-type flip-flops for sequential elements

4.5.2.3.2 Sequential behaviour with inferred flip-flops

For the behavioural description of the sequential elements, simple flip-flop inference is used. It
is not possible to combine redundancy with flip-flop inference. Note that only element O is used

for the clock, reset and registers signals.

Behavi oural Gen: if gStructural =0 generate
Sequential: process(C k, Rst)
begin
if gReset = 1 and Rst(0)="1" then
R(0) <= Reset;
el sif Rising_Edge(d k(0)) then
R(0) <= RIn(0);
end if;
end process Sequenti al;
end generat e Behavi oural Gen;

Example 35: Inferred flip-flops for sequential elements

Gaisler ‘:'
FPGA-003-01 31 Research

4.6 Graphical overview of the FTMR approach

A graphical overview of a small design example is shown in figure 10. The design originally
includesfiveregisters (or flip-flops). The combinatoria logic of the design has been triplicated,
as has the inputs and outputs. Some of the outputs stem directly from the flip-flops like in a
M oore machine, and some stem from combinatorial logic likein aMealy machine. All registers
have been triplicated inside the TMR blocks, one for each register. There are three voters in
front of thetriplicated flip-flops, aswell as after them. Note the conversion from the record type
signals Rin and R, and the array based signals Sn and S which is done with the Pack and
UnPack functions. All inputs and outputs are based on record type ports. The reset and clock
ports are also triplicated. The design represent the highest level of redundancy possible with the
proposed FTMR approach.

Inputs
1 A l A 4 l l
Combinatorial Combinatorial Combinatorial Combinatorial
Outputs
Rin(0) |C(O) rRinw| [c@ Rin@)| 1 €@
@) @) @)
Sin(0)
sin(1)
Reset I I T T] Sin(2)
=3[0 0 6 © 60 6 © 0 6 © 0 6 © 0 6
MM M| (MM M| MMM MM M| (MMM]
—=3|| © © Gl) © 6 @ © 6 @ © O GID © 6 @
Clock I I 1 1 lS(2)
S(1)
S(0)
Registered
UNPACK UNPACK (UNPACKR) @ Outputs
|R(1) ¢
R(0)

Figure10: Graphical overview of a design based on five functional registers, providing
combinatorial redundancy and sequential redundancy with triplicated input and
output voters for the TMR d-type flip-flops.

Gaisler ‘:'
FPGA-003-01 32 Research

5 RESULTSFROM A SIMPLE APPLICATION

The approach presented in section 3 has been implemented as a VHDL template in which a
designer can describe the desired functionality. The TMR d-type flip-flop has been designed
taking synthesistool optimisation into account, to avoid the removal of any redundant parts.

A simple pseudo-randomiser design has been developed to demonstrate the effects of this
approach. The corresponding VHDL source code is provided in its whole in appendix A. The
results presented in table 1 were obtained after synthesis.

) seqg. | comb. | input | output | voter | clock | reset | Gate
Design FFs|LUTs
TMR | TMR | voters| voters | type | lines | linesfMHz

behavioural n/a n/a n/a n/a n/a na | nia] 224112 | 10
structural n/a n/a n/a n/a n/a na | na| 201 | 12 13
sequential yes no 0 1 logic 1 1 177 1 36 | 25
sequential yes no 0 1 buffer 1 1 155136 | 13
sequentia - clock yes no 0 1 logic 3 3 177 136 | 25
sequential - clock yes no 0 1 buffer | 3 3 155136 | 13
combinatorial yes | yes 1 1 logic 1 1 113636 | 63
combinatorial yes | yes 1 1 buffer 1 1 128 | 36 | 39
combinatorial yes | yes 3 1 logic 1 1 158 | 36 | 87
combinatorial yes | yes 3 1 buffer | 1 1 1129136 | 39
combinatorial yes | yes 1 3 logic 1 1 136 | 36 | 87
combinatorial yes | yes 1 3 buffer | 1 1 1129136 | 39
combinatorial yes | yes 0 3 logic 1 1 177 1 36 | 75
combinatorial yes | yes 0 3 buffer 1 1 155|136 | 39
combinatorial - clock & reset yes | yes 1 3 logic 3 3 136 | 36 | 87
combinatorial - clock & reset yes | yes 1 3 buffer 3 3 129136 | 39
combinatorial - clock & reset yes | yes 3 3 logic 3 3 158 1 33 | 111
combinatorial - clock & reset yes | yes 3 3 buffer | 3 3 129136 | 39
Table 1: Synthesis results targeting the Xilinx Virtex XCV1000-6 device

As can be seen from the results above, the triplication of the sequential logicisas predicted. The
increase of the combinatorial logic varies with the selected level of protection and choice of
voter approach. The overheads for the combinatorial logic vary from a factor of 3,9 to 11.
Predictable, but low performing, results can be best obtained using the Xilinx specific tri-state
buffer voters presented in [RD1].

For asmall designs as presented above, all predictions regarding increase in the number of d-
type flip-flop and combinatorial resources seem to hold.

All results are based on synthesis using Synplify from Synplicity Inc.

Gaisler ‘:'
FPGA-003-01 33 Research

6 RESULTSFROM A DEMONSTRATION APPLICATION

A more complex demonstration application was also developed using the proposed mitigation
method. The application is the CCSDS Time Manager (CTM) [RD8], originally developed at
ESA. The design was converted using the VHDL template for the proposed redundancy
approach. The development time was about eight hours, including re-running the already
available test suite which was used for regression testing of the newly developed VHDL code.
The synthesisand place & route results of the most interesting configuration cases are presented
in table 2 and table 3.

Configuration Synthesis results Performance]
Design seqg. |comb.| input |output|clock | reset| voter o 2 é E Gate | P&R ?;’
TMR| TMR|voters| voters| lines|lines| type - 3 a 8 MHz | MHz| £
original na| nfa | nla na | na| na| na | 786 1457 1 (0 42 41 1
behavioural na| nla | nla na | na| na| nla | 784 1454 1 o 40 46 2
structural na | nla | nla na | na| na| na | 784/ 2015 1 0 38 411 11
sequential yes | no 0 1 1 1 | logic |2352| 2793 1 O 37| nla 24
buffer|2352| 2012 1| 2352 36| n/a 15
combinatorial | yes | yes 1 1 3 3 | logic | 2352 7726] 3 (0 33| n/a 6
buffer|2352| 6139 3 4704 33 23] 8
3 3 logic]2352/ 10861 3 0 34 300 7
buffer| 2352 6139 3|>100% 33| nla 19
Table 2: Synthesis results targeting the Xilinx Virtex XCV1000-6 device
Configuration P & Rresults =5
Design seg. [comb.| input |output|clock|reset| voter 0 g g I %) 4 % N é’
TMR| TMR |voters| voters| lines|lines| type| = | = | @ 2 8 ° 6 |= =
original na| na| nla | nfa | nla| na| nfa] 785 1438/1072] 0 1| 122/1768¢ 44 S
behavioural nNa| na| na| na | nfa|nfa| nfa] 783 14291044 O 1| 268/17640] 49 5
structural na| na| nla | nfa | nfa| na| nfa] 783 19981049 0 1| 268/21354 41 10
combinatorial] yes | yes 1 1 3 3 |buffer]2352| 609254844704 3| 366|78600] 23 126
9%| 25%)| 44%| 37%]| 75%| 90%| n/a
3 3 logic]2352/10751/6540, 0O 3| 36692479 30§ 12
9%| 43%| 53%| 0% 75%]|90%| n/a
Table 3: Place & route results targeting the Xilinx Virtex XCV1000-6 device

All synthesis results are based on Synplify from Synplicity Inc. All place & route results are
based on | SE from Xilinx Corporation. Synthesis and place & route has been run using the push
button method with default values for most parameters. The target frequency was 40 MHz. For
the designs implementing combinatorial TMR, the FPGA outputs and inputs have been
triplicated without any additional voting. There was no differencein the synthesis resultsif the
target frequency was lowered to 1 MHz.

Gaisler ‘:'
FPGA-003-01 34 Research

As can be seen from table 2 and table 3, there is a distinct difference between the number of
LUTs (combinatorial logic) required for implementing the original or the behavioural design,
and the structural design without any protection applied. Thisis probably caused by the fact that
the d-type flip-flops are instantiated in the code for the latter, but for the former it is left to the
synthesistool to infer the flip-flops which allows better optimisation of the combinatorial logic.

When applying protection to sequential and combinatorial logic, it can be seen that the increase
as compared to the structural design is predictable for the d-type flip-flops (FFs). The increase
factor of 4,25 for the combinatorial logic (LUTS) is close to the predictable 3 when using voters
implemented with Xilinx specific tri-state buffers (BUFTS), but explodes to 7,5 when
implementing the voters using random logic (LUTS). The performance of the circuit decreases
drastically for both the random logic and the Xilinx specific tri-state buffer based voters.

Note that a stronger protection was chosen when implementing voters with random logic, as
compared to tri-state buffers. Thisis because Xilinx claim that the tri-state buffer based voters
cannot lose their functionality due to SEUs[RD1], whichisthe case with the LUT based voters
which have been triplicated for that reason. Note also that when using 25% of the LUTsfor the
design with the tri-state buffer based voters, 37% of al BUFTs were consumed. This indicates
that one would run out of BUFTSs faster than LUTSs, which would limit the size of any design
that could fit in the Xilinx.

The main concernisthat the number of SLICEsthat are required for implementing the protected
designsisincreasing with afactor of 5,25 and 6,25, respectively, for the LUT and BUFT based
protection options. This about 75-110% worse than the expected factor of 3.

Gaisler ‘:'
FPGA-003-01 35 Research

7 CONCLUSIONS

The presented Functional Triple Modular Redundancy (FTMR) approach to triple modular
redundancy for combinatorial and sequential logic on the gate level has shown that it is possible
to write VHDL code in a structured yet high level coding style to obtain the required
redundancy. The coding approach is template based and only requires a moderate additional
effort to write as compared to other high level approaches. This structured method also provides
benefits to the source code review process, featuring a clear distinction between sequential and
combinatorial logic. The approach is only applicable to random logic and does not included
protection for on-chip memories and FPGA interfaces.

The synthesis and place & route results show that the increase of in terms of on-chip resource
usage is higher than expected. The increase for the protection has been observed to be a factor
of between 4,5 and 7,5 for the demonstration application. This, together with a performance
decrease of about 50%, could limit the usability of the new protection method.

It is unclear whether the above findings and observed limitations also apply to other types of
gate level mitigation techniques envisaged for Xilinx devices.

Although not avery large design has been produced when writing the document, an assessment
has been made on whether it is possible to convert the LEON SPARC microprocessor VHDL
code to comply with the proposed FTMR approach. Since LEON is already based on record
typesfor all portsand it already hasaclear split between combinatorial and sequential elements,
it is considered feasible to do such a conversion.

Gaisler ‘:'
FPGA-003-01 36 Research

APPENDIX A: VHDL CODE

Al TMR D-Type Flip-Flop

-- Design unit : TMR (Entity & architecture declarations)

File nane : tnr.vhd

Pur pose : Triple Mdul ar Redundacy Flip-Flop for the

-- Functional Triple Mdul ar Redundacy (FTMR) mnet hodol ogy
Li brary . {independent}

Aut hor s : M Sandi Al exander Habinc

-- Gai sl er Research
-- Stora Nygatan 13, SE-411 08 G eborg, Sweden

-- Contact : mailto:sandi @ai sl er.com
-- http://ww. gai sl er.com

-- Copyright (C): Gaisler Research 2002. No part may be reproduced in any form
-- wi thout the prior witten perm ssion of Gaisler Research.

-- Disclainer : Al information is provided “as is”, there is no warranty that
-- the information is correct or suitable for any purpose,
-- neither inplicit nor explicit.

-- Version Author Dat e Changes

-- 0.1 SH 12 Aug 2002 New versi on

-- 0.2 SH 8 Dec 2002 Updat ed coments
library | EEE;

use | EEE. Std Logic_1164. all;

entity TMRis

generi c(
gRedundant : Integer range 0 to 1 := 1, -- none, or yes
gl nVoter: Integer range 0 to 2 := 2; -- 0, 1, or 3 voters
gQut Vot er: Integer range 0 to 2 := 2; -- 0, 1, or 3 voters
gReset : Integer range 0 to 2 : = 2; -- none, async, async*3
gReset Val ue: Integer range 0 to 2 := 2; -- clear, set, or none
gd ock: Integer range 0 to 1 := 1; -- 1, or 3 lines
gConbi nat ori al : Integer range 0 to 1 := 1; -- none, or yes
gVoter: Integer range 0 to 1 := 1); -- logical, or tristate
port (
cl k: in Std_Logi c_Vector(0 to 2);
r: in Std_Logi c_Vector(0 to 2);
do: in Std_Logi c
di: in Std_Logi c
dz2: in Std_Logic
qo: out Std_Logic
ql: out Std_Logic
g2: out Std_Logic);

end entity TMR

Gaisler ‘:'
FPGA-003-01 37 Research

- - ========= = Architecture ====== —=======- -

architecture RTL of TMRis
attribute Syn_H er: String;
attribute Syn_H er of RTL: architecture is “hard”;

-- Local signal declarations

-- input data

si gnal i 0: Std_Logi c_Vector (0 to 2);
si gnal i1: Std_Logic_Vector(0 to 2);
si gnal i2: Std_Logic_Vector(0 to 2);
attribute Syn_Keep: Bool ean;

attribute Syn_Keep of i0: signal is True;
attribute Syn_Keep of i1l: signal is True;
attribute Syn_Keep of i2: signal is True;

-- conbi natorial input voter
si gnal V: Std_Logic_Vector(0 to 2);

-- data to flip-flop
si gnal w. Std_Logic_Vector(0 to 2);

-- flip-flop register

si gnal f: Std_Logic_Vector(0 to 2);
attribute Syn_Preserve: Bool ean;

attribute Syn_Preserve of f: signal is True;

-- conbinatorial output voter

si gnal fO: Std_Logic_Vector(0 to 2);
si gnal f1: Std_Logic_Vector(0 to 2);
si gnal f2: Std_Logic_Vector(0 to 2);
attribute Syn_Keep of f0: signal is True;
attribute Syn_Keep of f1l: signal is True;
attribute Syn_Keep of f2: signal is True;
si gnal o: Std_Logic_Vector(0 to 2);

-- Conponent decl arations
conponent TRV is -- Xilinx specific
port (-- tri-state voter
TRO: in St d_Logi c;
TRL: in St d_Logi c;
TR2: in St d_Logi c;
V: out Std_Logic);
end conponent TRV,

begin
-- redundant flip-flops
rl: if gRedundant=1 generate
-- multiple data inputs
k1: if gConbinatorial =1 generate
-- multiple conbinatorial input voters
w2: if glnVoter=2 generate
-- copy input to three vectors
i0 <= d0 & d1 & d2;
il <= d0 & d1 & d2;
i2 <= d0 & dl1 & dz;

FPGA-003-01

38

Gaisler ‘:'
Research

u0:

i mpl ement one voter for each input copy
| ogi cal voter
if gVoter=0 generate
v(0) <= (i0(0) and i0(1)) or
(i0(0) and i0(2)) or
(i0(1) and i0(2));

v(1l) <= (i1(0) and i1(1)) or
(i2(0) and i1(2)) or
(i1(1) and i1(2));

v(2) <= (i2(0) and i2(1)) or
(i2(0) and i2(2)) or
(i2(1) and i2(2));

end generate;

ul:

Xilinx tri-state buffer
if gVoter=1 generate

t0: TRV port map (i0(0), i0(1), i0(2), v(0));
tl: TRV port map (il1(0), il1(1), il1(2), v(1));
t2: TRV port map (i2(0), i2(1), i2(2), v(2));

end generate;

w

concatenate voter results
<= v;

end generate;
-- single conbinatorial input voter
i f glnVoter=1 generate

Wl:

u0:

i mpl ement a single voter

| ogi cal voter

if gVoter=0 generate

v(0) <= (dO0 and di1) or
(d0 and d2) or
(d1 and d2);

end generate;

ul:

Xilinx tri-state buffer
if gVoter=1 generate
t0: TRV port map (dO, di1, d2, v(0));

end generate;

w

copy and concatenate voter result
<= v(0) & v(0) & v(0);

end generate;

wO:

no

combi natorial input voter

if glnVoter=0 generate

w

<= d0 & d1 & d2;

end generate;
end generate;

-- single data input, no conbinatorial input voter
i f gConbi natorial =0 generate

kO:

w

<= d0 & dO & dO;

end generate;

Gaisler ‘:'

FPGA-003-01 39 Research
-- redundant nultiple clock line
cl: if gdock=1l generate
p0: process(clk, r)
begin
if gReset=2 and r(0)="1" then
i f gReset Val ue=0 t hen
f(0) <='0";
el sif gResetVal ue=1 then
f(0) <="*'1";
end if;
el sif gReset=1 and r(0)="1" then
i f gReset Val ue=0 t hen
f(0) <=+'0;
el sif gResetVal ue=1 then
f(0) <=*1";
end if;
el sif Rising_Edge(clk(0)) then
f(0) <= W0);
end if;

end process;

pl: process(clKk,
begin
if

r

gReset =2 and gReset Val ue
gReset Val ue=0 t hen
f(1) <='0;
el sif gResetVal ue=1 then
f(l) <='1;
end if;
el sif gReset=1 and gReset Val ue

if

i f gReset Val ue=0 t hen
f(l) <='0;
el sif gResetVal ue=1 then
f(l) <='1;
end if;
el sif Rising_Edge(clk(1l)) then
f(1) <= wW(1);
end if;

end process;

p2: process(clk,
begin
if

r

gReset =2 and gReset Val ue
gReset Val ue=0 t hen

f(2) <='0;
el sif gResetVal ue=1 then

f(2) <='1;

end if;

el sif gReset=1 and gReset Val ue
i f gReset Val ue=0 t hen

i f

f(2) <=0}
el sif gResetVal ue=1 then
f(2) <='1;
end if;
el sif Rising_Edge(clk(2)) then
f(2) <= W(2);
end if;

end process;
end generate;

<2 and r(l)="1 then
<2 and r(0)="1 then
<2 and r(2)="1 then
<2 and r(0)="1" then

FPGA-003-01 40

Gaisler ‘:'
Research

-- single clock line
cO0: if gdock=0 generate
p0: process(clk, r)
begin
if gReset =2 and gReset Val ue
gReset Val ue=0 t hen
f(0) <='0";
el sif gResetVal ue=1 then
f(0) <="*'1";
end if;
el sif gReset=1 and gReset Val ue
i f gReset Val ue=0 t hen

i f

f(0) <=+'0;
el sif gResetVal ue=1 then
f(0) <='1";
end if;
el sif Rising_Edge(clk(0)) then
f(0) <= W0);
end if;

end process;

pl: process(clKk,
begin
if

r

gReset =2 and gReset Val ue
gReset Val ue=0 t hen
f(1) <='0;
el sif gResetVal ue=1 then
f(l) <='1;
end if;
el sif gReset=1 and gReset Val ue

if

i f gReset Val ue=0 t hen
f(l) <='0;
el sif gResetVal ue=1 then
f(l) <='1;
end if;
el sif Rising_Edge(clk(0)) then
f(1) <= wW(1);
end if;

end process;

p2: process(clk,
begin
if

r

gReset =2 and gReset Val ue
gReset Val ue=0 t hen

f(2) <='0;
el sif gResetVal ue=1 then

f(2) <='1;

end if;

el sif gReset=1 and gReset Val ue
i f gReset Val ue=0 t hen

i f

f(2) <=0}
el sif gResetVal ue=1 then
f(2) <='1;
end if;
el sif Rising_Edge(clk(0)) then
f(2) <= W(2);
end if;

end process;
end generate;

<2 and r(0)="1 then
<2 and r(0)="1 then
<2 and r(l)="1 then
<2 and r(0)="1 then
<2 and r(2)="1 then
<2 and r(0)="1" then

FPGA-003-01 41

Gaisler ‘:'
Research

-- no conbi natorial output voter
00: if gQutVoter=0 generate

g0 <= f(0);

gl <= f(1)

g2 <= f(2);
end generate;

-- single conmbinatorial output voter, one output
010: if (gQutVoter=1 and gConbi natorial =0) or
(gQut Vot er =2 and gConbi natori al =0) generate

-- logical voter
u0: if gVoter=0 generate
o(0) <= (f(0) and f(1)) or
(f(0) and f(2)) or
(f(1) and £(2));
end generate

-- Xilinx tri-state buffer
ul: if gVoter=1 generate

t0: TRV port map (f(0), f(1), f(2), 0o(0));
end generate

g0 <= To_X01(0o(0))

ql <= ‘-,
q2 <= '-';

end generate;

-- single conbinatorial output voter, multiple outputs
0l11: if gQutVoter=1 and gConbi natorial =1 generate
-- logical voter
u0: if gVoter=0 generate
0(0) <= (f(0) and f(1)) or
(f(0) and f(2)) or
(f(1) and f(2));
end generate

-- Xilinx tri-state buffer
ul: if gVoter=1 generate

t0: TRV port map (f(0), f(1), f(2), 0o(0));
end generate

g0 <= To_X01(o(0))

gl <= To_X01(0o(0));

g2 <= To_X01(o(0));
end gener at e;

-- multiple conmbinatorial output voter
02: if gQutVoter=2 and gConbi natorial =1 generate
-- copy input to three vectors
fo <= f;
f1l <= f;
f2 <= f;

Gaisler ‘:'
FPGA-003-01 42 Research

-- inmplement one voter for each input copy
-- logical voter
u0: if gVoter=0 generate
0(0) <= (f0(0) and fO(1l)) or
(fo(0) and f0O(2)) or
(fo(1) and f0(2));

o(1l) <= (f1(0) and f1(1)) or
(f1(0) and f1(2)) or
(f1(1) and f1(2));

o(2) <= (f2(0) and f2(1)) or
(f2(0) and f2(2)) or
(f2(1) and f2(2));
end generate

-- Xilinx tri-state buffer

ul: if gVoter=1 generate
t0: TRV port map (fO(0), fO(1), f0(2), o(0));
tl: TRV port map (f1(0), f1(1), f1(2), o(1));
t2: TRV port map (f2(0), f2(1), f2(2), o(2));

end generate

-- concatenate voter results
qo0 <= To_X01(o(0));
ql <= To_X01(o(1));
g2 <= To_X01(o0(2));
end generate;
end generate;

-- no flip-flop redundancy (no conbi natorial redundancy)
r0: if gRedundant=0 generate
p0: process(clk, r)
begi n
if gReset > 0 and gResetValue < 2 and r(0)="1" then
if gReset Val ue=0 t hen
g0 <='0
el sif gResetVal ue=1 then
g0 <='1
end if;
el sif Rising_Edge(clk(0)) then
g0 <= do
end if;
end process;
-- unused outputs
ql <= *-";
qz2 <= *-';
end generate;
end architecture RTL; - ==== =—===== =—======-__

Gaisler ‘:'
FPGA-003-01 43 Research

A.2 Interface package

-- Design unit : Interface (Package header and body decl arations)
Fil e nane : interface. vhd

Pur pose : Interface types

Li brary . {independent}

Aut hor s . M Sandi Al exander Habinc

-- Gai sl er Research
-- Stora Nygatan 13, SE-411 08 G eborg, Sweden

-- Contact : mailto:sandi @ai sl er.com
-- http://ww. gai sl er.com

-- Copyright (C: Gaisler Research 2002. No part may be reproduced in any form
-- without the prior witten pernission of Gaisler Research.

-- Disclainer : Al information is provided “as is”, there is no warranty that
-- the information is correct or suitable for any purpose,
-- neither inplicit nor explicit.

-- Version Author Dat e Changes
-- 0.1 SH 12 Aug 2002 New ver si on
l'ibrary | EEE;

use | EEE. Std_Logi c_1164. al | ;

package Interface is

-- Definitions for clock and reset interfaces

subtype Reset_Type is Std_Logic;
subtype d ock_Type is Std_Logic;
subtype Tick_Type is Std_Logic;

type T_Type is record

SyncMar k: Std_Logi c; -- sync delimter
Fr aneMar k: Std_Logi c; -- frame delimter
Dat aMar k: Std_Logi c; -- data delimter
Dat aSt r eam Std_Logi c; -- serial data

end record T_Type;
end paCkage Interf ace;, -- =—=== —===== —=======- -

Gaisler ‘:'
FPGA-003-01 44 Research

A.3 Redundancy package

-- Design unit : Redundant (Package header and body decl arations)

Fil e nane : redundant. vhd

Pur pose . Redundant interface types

Limtations : Does not support don’t care for asynchronous reset due to

-- limtations in Synplify, bug to be reported to Synplicity.
-- Library . {independent}

-- Authors . M Sandi Al exander Habi nc
-- Gai sl er Research
-- Stora Nygatan 13, SE-411 08 G eborg, Sweden

-- Contact : mailto:sandi @ai sl er.com
-- http://ww. gai sl er.com

-- Copyright (C): Gaisler Research 2002. No part may be reproduced in any form
-- wi thout the prior witten perm ssion of Gaisler Research.

-- Disclainer . Al information is provided “as is”, there is no warranty that
-- the information is correct or suitable for any purpose,
-- neither inplicit nor explicit.

-- Version Author Dat e Changes
-- 0.1 SH 12 Aug 2002 New ver si on
l'ibrary | EEE;

use | EEE. Std_Logi c_1164. al | ;

library Wrk;
use Wrk. Interface.all;

package Redundant is

-- Definition of range for Triple Mdul ar Redundancy

subtype Triple is Integer range 0 to 2;

-- Definitions for clock and reset interfaces

subtype Reset _Triple is Std_Logic_Vector(Triple);
subtype Cock_Triple is Std_Logic_Vector(Triple);
subtype Tick_Triple is Std_Logic_Vector(Triple);

-- Definitions for input / output interfaces

-- supporting array types for conbinatorial redundancy
type T Triple is array (Triple) of T_Type;

Gaisler ‘:'
FPGA-003-01 45 Research

subtype | _Range is Integer range 0 to 2;
type | _Vector is array (Integer range <>) of |_Range
function To_l _Vector(s: Std_Logic_Vector) return |I_Vector;

conponent TMR is

generi c(
gRedundant : Integer range 0 to 1 := 1;
gl nVot er: Integer range 0 to 2 := 2;
gQut Vot er : Integer range 0 to 2 := 2;
gReset : Integer range 0 to 2 := 2;
gReset Val ue: Integer range 0 to 2 : = 2;
gd ock: Integer range 0 to 1 :=1
gConbi nat ori al : Integer range 0 to 1 := 1;
gVot er : Integer range O to 1 := 1);
port (
cl k: in Std_Logi c_Vector(0 to 2);
r: in Std_Logi c_Vector(0 to 2);
do: in Std_Logi c;
di: in Std_Logi c;
d2: in Std_Logi c;
qo: out Std_Logi c;
ql: out Std_Logi c;
q2: out Std_Logic);

end conponent TMR;

end package Redundant; -- =—=== ====== —=======- -

package body Redundant is

function To | _Vector(s: Std_Logic_Vector) return | _Vector is

variable r: | _Vector(0 to s’Length -1);
begin
for i in 0 to s’'Length -1 |oop
if To_X01(s(i))="0" then
r(i) :=0; -- clear
el se
-- el sif To_X01(s(i))="1" then
r¢i) =1, -- set
-- el se
-- r(i)y =2 -- don't care
end if;
end | oop;
return r;

end function To_| _Vector;
end package b()dy Redundant ; --====================== —=======- -

Gaisler ‘:'

FPGA-003-01 46 Research
A4 Pseudo-Randomiser

=:D::I=;;=;nl t PseudoRandomi :Zr::(Entity & ar:z;i:t::ct ure declarati ons)::::::::- -
File nane psr.vhd

: Pur pose Pseudo- Randomi ser

Li brary {i ndependent }

Aut hor s M Sandi Al exander Habi nc

-- Gai sl er Research

-- Stora Nygatan 13, SE-411 08 G eborg, Sweden

Cont act mai | t o: sandi @ai sl er. com

-- Copyright (O:

-- Disclainer

-- Version Author
-- 0.1 SH

-- 0.2 SH
library Work;

http://ww. gai sl er.com

Gai sl er Research 2002. No part may be reproduced in any form
wi thout the prior witten perm ssion of Gaisler Research.

Al information is provided “as is”, there is no warranty that
the information is correct or suitable for any purpose,
neither inplicit nor explicit.

Dat e Changes
12 Aug 2002 New ver si on
8 Dec 2002 Updat ed conment s

"Lengt h used for Pack/ UnPack

use Wirk. Redundant . al | ;

entity PseudoRandomi ser is

generi c(

-- Redundancy configuration

gStructural : Integer range 0 to 1 := 1; -- behaviour, structure

gRedundant : Integer range 0 to 1 := 1; -- no, redundant ff

gl nVoter: Integer range 0 to 2 := 2; -- 0, 1, or 3 voters

gQut Vot er: Integer range 0 to 2 := 2; -- 0, 1, or 3 voters

gReset : Integer range 0 to 2 := 2; -- sync, async, async*3

gd ock: Integer range 0 to 1 := 1; -- 1, or 3 lines

gConbi natori al : Integer range 0 to 1 := 1, -- no, redundant |ogic

gVot er: Integer range 0 to 1 := 1); -- logical, or tristate
port (

-- Bit clock and reset interface

a k: in C ock_Triple;

Rst : in Reset _Tri pl e;

-- | nput
PSRI n:

-- CQut put
PSRQut :

interface (bit clock)

in T Triple;

interface (bit clock)

out T Triple);

end entity PseudoRandomi ser;

Gaisler ‘:'
FPGA-003-01 47 Research

- - ========= = Architecture ====== —=======- -
library | EEE;
use | EEE. Std_Logi c_1164. al | ;

library Work;
use Wrk.Interface. all;
use Work. Redundant. al | ;

architecture RTL of PseudoRandom ser is

-- Type record and array of bits for register file

H: Std_Logi c_Vector(7 downto 0); -- randomni ser state
PSRCut : T _Type;

-- Type record for conbinatorial signals

-- Declaration of reset values for register file
function Reset return Rtype is

variable r: R Type;
begin

r (others => ‘1");
r. PSRQut . SyncMar k ‘0
r. PSRQut . Fr ameMar k =10
r. PSRQut . Dat aMar k =10
r. PSRQut . DataStream := ‘0';

return r;
end function Reset;

Gaisler ‘:'

FPGA-003-01 48 Research

procedure Pack(

r: in R Type;
vari abl e s: out Std_Logi c_Vector;
variabl e c: i nout Natural) is

begin

c = 0;

s(c to c+r.H Length-1) =r.H

c = c+r. H Lengt h;

s(c) = r. PSRQut . SyncMark;
c = Cc+1;

s(c) = r. PSRQut . FraneMar k;
c = c+1;

s(c) = r. PSRQut . Dat aMar k;
c = c+l,

s(c) ;= r.PSRQut . Dat aStream
c i = Cc+l;

procedur e UnPack(

S: in Std_Logi c_Vector;
variable r: out R Type;
vari abl e c: i nout Natural) is

begin

c+1;
. PSRQut . Dat aSt r eam

c = 0;

r.H = s(c to c+r.H Length-1);
c = c+r. H Lengt h;
r. PSRQut . SyncMar k = s(c);

c = c+1;

r. PSRQut . Fr aneMar k = s(c);

c = c+1;

r. PSRCut . Dat aMar k = s(c);

c

r

c

Inmn
(%]
)
(g]
-~

end procedure UnPack;

Gaisler ‘:'
FPGA-003-01 49 Research

function R Length return Integer is

variable r: R Type;
vari abl e s: Std_Logi c_Vector(0 to 1023);
vari abl e c: Nat ur al ;

begin

Pack(r, s, c¢);

-- pragma transl ate_off

assert ¢ < s’Length
report “Tenporal vector in R Len function is too short”
severity Failure;

-- pragma translate_on

return c;

end function R _Length;

constant R Len: Integer := R Length;

function Pack(

r: R Type)
return Std_Logi c_Vector is
vari abl e s: Std_Logi c_Vector(0 to 1023);
vari abl e c: Nat ur al ;

begin

Pack(r, s, c¢);

return s(0 to R Len-1);
end function Pack;

function UnPack(

s: St d_Logi c_Vect or)
return R Type is
variable r: R Type;
vari abl e c: Nat ur al ;

begin
UnPack(s, r, c);
return r;

end function UnPack;

type R Triple is array (Triple) of R Type;

si gnal R Rin: R Tri pl e;

const ant gReset Val ue: | _Vector(0 to R Len-1) := To_l_Vector(Pack(Reset));
subtype S Type is Std_Logic_Vector(0 to R Len-1);

type S Triple is array (Triple) of S Type;

si gnal S, Sin: S Triple;

type CTriple is array (Triple) of C _Type;

si gnal C C Triple;

Gaisler ‘:'
FPGA-003-01 50 Research

-- This defines the conbinatorial behaviour.

si gnal Rst : in Std_Logi c;
si gnal R in R Type;
si gnal Ri n: out R Type;
si gnal C out C Type) is
vari abl e Rv: R Type;
variabl e Cv: C Type;

type U Type is record

Dumy: Std_ULogi c; -- unused
end record U _Type;
variabl e Uv: U Type;

begi n
-- pre-defined registered variable
Rv = R

-- This architecture pseudo-random ses the incomng bit streamusing the
-- followi ng standard polynonial: h(x) = x*"8 + x"7 + x5 + x"3 + 1.

-- +-- - XOR<- - - - XOR<- - - - XOR<- - === === ------ + input

- | A A A | |

-- I I I I I I

-- | R R R e S L S S e | \%

-- +-> 71 6| 5] 4| 3] 2] 1] 0 |[--+----XOR > output
-- e I e T S

-- X"8 XN7 x"6 x"5 x"4 x"3 x"2 x*1 x"0

-- (0 xor 3 xor 5 xor 7) & 7654321 => 7 & 6543210

-- Many-to-one inplenentation: Fibonacci version of LFSR

-- The generator is initialised to all ones durin the ASM peri od.
-- The generated pseudo-randombit streamis xor-ed with the inconing
-- bit stream

-- Sync and Frane delimters are del ayed one bit clock to match out put.

Gaisler ‘:'

FPGA-003-01 51 Research
i f PSRIn.DataMark="1" then -- bit delimter
if PSRIn.SynchMark="1" then -- sync period
Rv. PSRCQut . Dat aSt ream : = PSRI n. Dat aSt r eam -- uncoded out put
Rv. H := (others => *1"); -- initialise h(x)
el se -- frame or codebl ock

Rv. PSRQut . Dat aSt ream : = PSRl n. Dat aStream xor R H(0); -- coded out put

Rv. H(7 downto 0) := (R H(0) xor RH(3) xor RH(5) xor RH7)) &
R H 7 downto 1); -- shift h(x)
end if;
Rv. PSRCQut . SyncMar k = PSRI n. SyncMar k; -- del ay
Rv. PSRQut . Fr ameMar k = PSRI n. Fr aneMar k; -- del ay
el se
nul | ;
end if;
Rv. PSRCQut . Dat aMar k : = PSRI n. Dat aMar k; -- del ay

if Rst="1 and gReset=0 then
Rv .= Reset;

-- pre-defined conbinatorial variable converted to signal

C <= Cv;
end procedure Conbinatorial;

-- This inplenents the conbinatorial behavi our

Conbi nat ori al Gen:
for i in O to Triple’ Right * (gConbinatorial * gStructural) generate
Conbi natori al (

Rst => Rst (i),
R => R(i),

Ri n => Rin(i),
C = (i));

end generate Conbinatorial Gen;

Eﬁaﬂ;ker‘o'
FPGA-003-01 52 Research

QutputGen: for i in O to Triple Right * (gConbinatorial*gStructural) generate

-- This inplenents the sequential behaviour

Structural Gen: if gStructural =1 generate

-- Conversion between arrays of records and bits
Conver si onGen:
for i in O to Triple' Right * gConbinatorial generate
Sin(i) <= Pack(Rin(i));
R(i) <= UnPack(S(i));
end generate Conversi onCen;

-- Sequential behaviour with dedicated flip-flops

Sequential Gen: for i in S _Type Range generate

ff: TMR

generic map (
gRedundant => gRedundant,
gl nVot er => gl nVoter,
gQut Vot er => gQut Vot er,
gReset => gReset,
gReset Val ue => gReset Val ue(i),
gd ock => gd ock,
gConbi natorial => gConbi natori al,
gVot er => gVoter)

port map(
cl k => dKk,
r => Rst,
do => Sin(0) (i),
di => Sin(1) (i),
d2 => Sin(2)(i),
a0 => S(0) (i),
ql => S(1) (i),
a2 => §(2)(i));

end generate Sequenti al Gen;
end generate Structural Gen;

Gaisler ‘:'
FPGA-003-01 53 Research

Behavi oural Gen: if gStructural =0 generate

-- Sequential behaviour w thout dedicated flip-flops
Sequential : process(d k, Rst)
begi n
if gReset = 1 and Rst(0)="1" then
R(0) <= Reset;
el sif Rising_Edge(dk(0)) then
R(0) <= RIn(0);
end if;
end process Sequenti al;
end generate Behavi oural Gen;
end architecture RTL; -- ==== =—===== —==—=====-_-

Gaisler ‘:'
FPGA-003-01 54 Research

A.5 Xilinx entities and architectures (not necessary for synthesis)

-- Design unit : BUFT and PULLUP (Entity & architecture declarations)
:: File nane : xilinx.vhd

:: Pur pose : Buffer and pullup

:: Li brary . {independent}

:: Aut hor s : Xilinx I'nc

:: Cont act :ohttp://ww xilinx. com

-- Copyright (©: Xilinx Inc. 2001

-- Disclainer . Al information is provided “as is”, there is no warranty that
-- the information is correct or suitable for any purpose
-- neither inplicit nor explicit.

-- Version Author Dat e Changes
-- 1.0 cc 19 Cct 2001 New ver si on
library | EEE;

use | EEE. Std_Logi c_1164. al |

entity BUFT is
port (
T in Std_Logi c;
l: in Std_Logi c;
O out Std_Logic);
end entity BUFT;

architecture Behavioural of BUFT is
begin
O <= To_X01(l) after 5 ns when (T="0") else
‘'z after 5 ns;
end architecture Behavioural;

library | EEE;
use | EEE. Std_Logi c_1164. al |

entity PULLUP is
port (
O out Std_Logic);
end entity PULLUP

archi tecture Behavioural of PULLUP i
begin

O<="'H;
end architecture Behavioural;

(7]

Gaisler ‘:'
FPGA-003-01 55 Research

A.6 Xilinx specific triple redundancy voter

-- Design unit : TRV (Entity & architecture declarations)
File nane : trv.vhd

Pur pose : Triple Redundancy Voter

Li brary . {independent}

Aut hor s : Xilinx Inc.

Cont act o http://ww xilinx.com

-- Copyright (©: Xilinx Inc. 2001.

-- Disclainer . Al information is provided “as is”, there is no warranty that
-- the information is correct or suitable for any purpose,
-- neither inplicit nor explicit.

-- Version Author Dat e Changes
-- 1.0 cc 19 Cct 2001 New ver si on
library | EEE;

use | EEE. Std_Logi c_1164. al | ;

entity TRV is
port (
TRO : in St d_Logi c;
TR1 : in Std_Logi c;
TR2 : in Std_Logi c;
vV : out Std_Logic);
end entity TRV,

FPGA-003-01

56 of 56

Gaisler ‘:'
Research

architecture RTL of TRV is
conponent BUFT
port (I : in std_logic;
T : in std_logic;
O: out std_logic);
end conponent;

conponent PULLUP
port (O: out std_logic);
end conponent;

begin
BUFTO: BUFT
port map (
I => TRO,
T => TR2,
0O =V);
BUFT1: BUFT
port map (
I => TR1,
T => TRO,
0O =V);
BUFT2: BUFT
port map (
I => TR2,
T => TR1,
0O =>V);

PLLP: PULLUP
port map (O => V);

= Architecture

end architecture RTL; --

Copyright © 2002 Gaisler Research. Company confidential material and document. This document may not
be distributed under any circumstances. All information is provided asis, thereis no warranty that it is correct
or suitable for any purpose, neither implicit nor explicit.

	Functional Triple Modular Redundancy (FTMR)
	Table of contents
	1 INTRODUCTION
	1.1 Scope
	1.2 Background
	1.3 Acronyms and abbreviations
	1.4 Reference document

	2 SINGLE EVENT UPSET MITIGATION TECHNIQUES
	2.1 Triple Module Redundancy (TMR)
	2.2 Module level mitigation
	2.3 Gate level mitigation

	3 A VHDL APPROACH TO COMBINATORIAL AND SEQUENTIAL TMR
	3.1 The architecture
	3.2 Configuration options
	3.3 Methodology issues
	3.3.1 Input and output
	3.3.2 Bus holders
	3.3.3 Re-use of old VHDL code
	3.3.4 Configuration memory
	3.3.5 Refresh of TMR structures
	3.3.6 Required level of redundancy
	3.3.7 Template based approach
	3.3.8 Synthesis tools

	4 VHDL CODE STRUCTURE
	4.1 Triple Modular Redundancy D-Type Flip-Flop
	4.2 Interface package
	4.2.1 Definitions for non-redundant clock and reset interfaces
	4.2.2 Definitions for non-redundant input / output interfaces

	4.3 Redundancy package
	4.3.1 Definition of range for Triple Modular Redundancy
	4.3.2 Definitions for clock and reset interfaces
	4.3.3 Definitions for input / output interfaces
	4.3.4 Conversion from bit to integer for generics
	4.3.5 Component declaration for generic Triple Modular Redundancy flip-flop

	4.4 Entity of the module
	4.4.1 Generic clause
	4.4.1.1 Redundancy configuration
	4.4.1.2 Functionality configuration

	4.4.2 Port clause
	4.4.2.1 Clock and reset interface
	4.4.2.2 Input interface
	4.4.2.3 Output interface

	4.5 Architecture of the module
	4.5.1 Declarative part
	4.5.1.1 Definition of private types, constants and subprograms
	4.5.1.2 Definition of types for sequential elements
	4.5.1.3 Definition of type for combinatorial elements
	4.5.1.4 Declaration of reset values
	4.5.1.5 Conversion from record to array of bits
	4.5.1.6 Conversion from array of bits to record
	4.5.1.7 Support functions
	4.5.1.8 Declaration of vector types and signals
	4.5.1.9 Definition of combinatorial behaviour
	4.5.1.9.1 User defined inputs
	4.5.1.9.2 Pre-defined input and outputs
	4.5.1.9.3 Pre-defined variables
	4.5.1.9.4 Definition of unregistered variables
	4.5.1.9.5 Pre-defined registered variable
	4.5.1.9.6 Definition of combinatorial logic
	4.5.1.9.7 Synchronous reset
	4.5.1.9.8 pre-defined variables converted to signals

	4.5.2 Statement part
	4.5.2.1 Combinatorial behaviour
	4.5.2.2 Output ports
	4.5.2.3 Sequential behaviour
	4.5.2.3.1 Sequential behaviour with explicit flip-flop instances
	4.5.2.3.2 Sequential behaviour with inferred flip-flops

	4.6 Graphical overview of the FTMR approach

	5 RESULTS FROM A SIMPLE APPLICATION
	6 RESULTS FROM A DEMONSTRATION APPLICATION
	7 CONCLUSIONS
	APPENDIX A: VHDL CODE
	A.1 TMR D-Type Flip-Flop
	A.2 Interface package
	A.3 Redundancy package
	A.4 Pseudo-Randomiser
	A.5 Xilinx entities and architectures (not necessary for synthesis)
	A.6 Xilinx specific triple redundancy voter

