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1 INTRODUCTION

1.1 Scope

This document discusses the use of Triple Modular Redundancy (TMR) for the protection of
combinatorial and sequential logic in reprogrammable logic devices. A VHDL approach has
been developed for automatic TMR insertion and a demonstration design has been developed.
The approach is called “Functional Triple Modular Redundancy (FTMR)”.

This document addresses the protection of random sequential and combinatorial logic. This
document does not address the protection of inputs and outputs, the usage of on-chip block
memories or dedicated shift-registers etc. It assumes a good knowledge of the Xilinx
architecture. For detailed information on Xilinx FPGAs and mitigation techniques such as
configuration memory scrubbing, see [RD7].

1.2 Background

Field Programmable Gate Array (FPGA) devices have been used in space for more than a
decade with a mixed level of success. Until now, few reprogrammable devices have been used
on spacecraft due to their sensitivity to involuntary reconfiguration due to Single Event Upsets
(SEU) induced by radiation. But with the advent of reprogrammable devices featuring a million
system gates or more, it is not longer feasible to disregard these technologies. 

Triple Modular Redundancy (TMR) has traditionally been used for protecting digital logic from
the SEUs in space born applications. The main usage has been either on module level or for the
protection of sequential elements in digital logic. With the use of reprogrammable logic, such
as Static Random Access Memory (SRAM) based FPGAs, the protection of the sequential logic
is insufficient since the logical functionality of the FPGA can be changed due to a charged
particle hitting the on-chip configuration SRAM. Protection of the combinatorial logic is
therefore required to avoid involuntary changes of functionality. 

Several approaches have been made to solve this problem, most based on modular replication
and voting. These approaches have the advantage of detecting a large range of errors, but have
the disadvantage of not being able to restore the sequential state of the module that has been
affected. A better approach is to perform TMR on the gate level. This has previously been done
for the sequential elements, but not until recently has it been considered for the combinatorial
logic as well, as will be discussed in this report.

1.3 Acronyms and abbreviations

FPGA Field Programmable Gate Array
FTMR Functional Triple Modular Redundancy
SEU Single Event Upset
SRAM Static Random Access Memory
TMR Triple Modular Redundancy
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuits
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Reconfigurable Computing, E. Fuller et al., 2000 IEEE NSREC, October 2000
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FPGA for Space Reconfigurable Computing, E. Fuller et al., 2000 MAPLD, Johns
Hopkins University, Laurel, Maryland, USA, September 2000
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et al., 1999 MAPLD, Johns Hopkins University, Laurel, Maryland, USA, September
1999

RD5 Reliability of Programmable Input/Output Pins in the Presences of Configuration
Upsets, N. Rollins et al., 2002 MAPLD, Johns Hopkins University, Laurel, Maryland,
USA, September 2002

RD6 Single-Event Upsets in SRAM FPGAs, M. Caffrey et al., 2002 MAPLD, Johns
Hopkins University, Laurel, Maryland, USA, September 2002

RD7 Suitability of reprogrammable FPGAs in space applications, S. Habinc, FPGA-002-01,
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2 SINGLE EVENT UPSET MITIGATION TECHNIQUES

2.1 Triple Module Redundancy (TMR)

A commonly known method for SEU mitigation is Triple Module Redundancy (TMR) with
voting. This mitigation scheme uses three identical logic circuits performing the same task in
parallel with corresponding outputs being compared through a majority voter circuit. The most
common example of TMR is a d-type flip-flop that has been triplicated and to which a voter has
been added on its output. By replacing all flip-flops in design with the circuit shown in figure 1,
one would protect the design against SEUs in the flip-flops. However, this would not protect
against SEUs in the combinatorial logic connecting the flip-flops in the design.
 

Figure 1: Triple Modular Redundancy with voting

The effects of SEUs are not confined to the registers in digital designs, but are also present in
the combinatorial logic for which there are several protection schemes proposed. These
schemes mostly deal with transient glitches in the combinatorial logic that could result in upsets
in the sequential elements. This should not be confused with what will be discussed next.

The subject SRAM-based FPGAs are not only susceptible to SEUs in the user registers but also
in the configuration SRAM memory itself. The effect of an SEU is in this case much more
difficult to predict since it can effect the logical function of the design, not only its sequential
state as protected in figure 1. This calls for a protection technique that covers the complete logic
of the design, both the sequential and combinatorial part.

Note that it is not sufficient to update the configuration SRAM memory continuously to remove
any bit errors induced by SEUs, since the effect of the configuration change will change the
logic which in turn will potentially lead to the change of the internal state of the design, i.e. the
state of the various registers and flip-flops. By correcting the configuration SRAM memory, one
can repair the logic, but not re-establish the state of the design.
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2.2 Module level mitigation

There are several approaches to module level mitigation of varied complexities, as will be
presented in this section. This type of mitigation does not automatically allow that the internal
state of an application is maintained after an SEU because the detection and correction of the
error is made on module level.

A very simple method for implementing SEU mitigation in an FPGA design is to replicate
redundant instances of an entire module and vote the final outputs of the modules. In this case
a module may represent either the entire design for a particular device or a sub-component of
that design. This is a very effective means of SEU mitigation that is easy to implement and can
be performed entirely within a single device as long as the module does not utilize more than a
third of the total device.

Figure 2: Module redundancy

Triple device redundancy and mitigation is an alternative method. It has the highest reliability
for detecting single and multiple event upsets, multiple transient upsets, and any other
functional interrupts including total device failure. However, this is also the most costly solution
and provides only a marginal actual improvement over methodologies.

Figure 3: Device redundancy

The disadvantage of module level mitigation techniques is that they do not provide a simple and
robust recovery mechanism after an error has been detected in one of the modules. In random
logic with sequential elements, it is not ensured that the error will be detected until it manifests
itself on the output of the module where it is compared with the outputs of the redundant
modules. The internal state of the erroneous module can at that stage be very much different
from the state of the redundant modules. Any further execution will be meaningless since the
erroneous state will not be automatically recovered from. The probable consequence is that the
application has to be reset or some other means of action has to be taken to resynchronise the
modules. This will lead to loss of data and operational down time.
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2.3 Gate level mitigation

In [RD1], mitigation techniques are discussed from the architectural point of view for the Xilinx
Virtex technology. Emphasis is put on protecting the user logic on the gate-level. For further
discussions, a distinction between combinatorial logic and sequential logic will be made.

Figure 4: Sequential and combinatorial logic

Since SEUs can affect both the sequential and the combinatorial logic, the combinatorial logic
needs to be made redundant as well. The importance of feeding back the voted result to all voted
sequential elements is discussed in [RD1]. This is done to restore the state of all redundant
sequential elements and to avoid error build up. The voting for the redundant combinatorial
logic can be performed after the sequential elements, before the sequential elements or through
out the combinatorial logic, depending on what level of protection that is required.

Figure 5: TMR for sequential and combinatorial logic at gate level

The advantage of gate level mitigation techniques is that the voting between different logic
elements can take place between the sequential elements. The voted result is normally fed back
to the sequential elements, avoiding that an error is propagated between sequential elements.
The synchronisation between the redundant parts is thus maintained. This is because each error
is detected within a clock period and the state of the redundant parts will thus not differ for more
than a clock period. The rest of this report will discuss a gate level mitigation using high level
descriptions in VHDL.

Figure 6: TMR for sequential, combinatorial and voter logic at gate level
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3 A VHDL APPROACH TO COMBINATORIAL AND SEQUENTIAL TMR

While it is fairly simple to implement TMR for sequential elements alone, it is a challenge to
implement it in an efficient way for the combinatorial logic. The principles are fairly simple and
it is not that difficult to implement them on the gate level with a schematic entry based design
method. It is however difficult to do it using a high level design language such as VHDL and
still obtain the desired ease of use. 

The ultimate situation is when the designer does not need to be concerned with the TMR aspects
at all, e.g. if automatically supported by the synthesis tool. Until then it is still possible to
develop a VHDL design style that allows itself to high level descriptions with little influence on
the actual work spent on describing the design functionality. An attempt to such an approach is
presented hereafter and is called Functional Triple Modular Redundancy (FTMR).

A code example is explained in detail in section 4 and is provided in its entire in appendix A.

3.1 The architecture

The architecture of Functional Triple Modular Redundancy (FTMR) is based on two main
elements; a sequential block and a combinatorial block, as shown in figure 7. This approach has
been used in other developments such as the LEON SPARC microprocessor where only the
sequential block was protected by means of modular redundancy.

Figure 7: Sequential and combinatorial blocks in FTMR

The novelty of FTMR is however that both sequential and combinatorial blocks can be
protected by means of triple modular redundancy. The redundancy of the sequential block is
straight forward, since each flip-flop is implemented with a specific TMR d-type flip-flop which
will be discussed later. 

The redundancy for the combinatorial block is slightly more complicated since it requires
triplication of random logic that is less predictable than the flip-flops. This has been solved by
describing the combinatorial logic in a procedure that can be instantiated multiple times in the
combinatorial block. This might seem simple, but it requires quite a few VHDL tricks in order
to establish the desired interconnections between the blocks, and to avoid having them removed
by the synthesis tools during optimisation.
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The same approach has been taken for the communication between the two blocks as was done
for the LEON model. Record types in VHDL are used for describing ports going to and from
the entity as well as for signals going between the blocks in the VHDL architecture. The record
types can be nested to group logically different categories of information, etc.

The sequential block has one input record signal and one output record signal, plus clock and
reset inputs. The input record carries the next state of all the sequential elements, and the output
record carries the current state of all the sequential elements. In synchronous designs, the output
record signal is also fed to the output record ports of the entity.

The combinatorial block has several input record signals and two output record signal. One
input record carries the current state of the sequential elements, and one output record carries
the next state of the sequential elements. Additional input record signals are used for connecting
the combinatorial block with the input ports of the entity. The second output record signal
carries combinatorial results that can be fed to the non-registered output record ports of the
entity. The combinatorial block does not include any sequential elements and can thus also be
used for describing purely combinatorial logic.

Since the record types can be of various subtypes and array structures, it is not possible to map
such a record directly and automatically to individual flip-flops by means of explicit
instantiation. Instead, the designer will have to define a function that maps the different record
elements to bits in an array, and a reverse function that maps bits from an array to the record
elements. The array type is then used for connecting the flip-flops to the record type. It is not
possible to utilise inference of flip-flops, since the flip-flop has to have some specific
characteristics for redundancy purposes as will be discussed later. This is a weakness of the
method and VHDL since it requires work not related to the design of the functionality itself.

3.2 Configuration options

The FTMR approach allows a design to be implemented in several ways, with a varying level
of redundancy. The first configuration is the behavioural in which the sequential elements are
implemented by flip-flop inference by the synthesis tool. It does not allow redundancy. 

In the structural configuration all sequential elements are implemented with explicitly
instantiated TMR d-type flip-flops. This configuration can be used without redundancy, and it
must be used when redundancy is required. See figure 4.

The sequential configuration provides redundancy on the sequential elements only. It provides
only a single set of input and output ports for the entity, except for the clock and reset ports that
can be triplicated. The triplicated sequential elements can be voted with a single output voter
implemented with random logic or as specific Xilinx tri-state buffers. See figure figure 1.

The combinatorial configuration is a super set of the sequential configuration, providing
triplication of all ports and all combinatorial logic. The triplicated sequential elements can be
voted with a single, see figure 5, or triplicated input and output voters, see figure 6,
implemented with random logic or as specific Xilinx tri-state buffers. No explicit voting is
provided for the output ports of the actual module, since the voting occurs just before or after
the flip-flops. For purely combinatorial logic, no voting occurs in the module, only triplication
of the logic, since it is assumed that the logic will end up at a flip-flop or that explicit voting will
be made for the outputs of the device.
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3.3 Methodology issues

3.3.1 Input and output

The FTMR approach currently only handles modules and not complete designs. The main parts
missing is the handling of the input and outputs of the device. There are several ways in which
the input and outputs can be handled, all depending on what level of protection one requires.
The simplest approach would be only to have a single external input that is connected to a
triplicated input on the module level. The same could be done for the outputs, only connecting
one of the triplicated outputs on the module to a single external output. Another straight forward
approach is to triplicate all external inputs and outputs and to handle the voting outside the
device. These issues have been left to the user to handle for the time being.

3.3.2 Bus holders

Several problems with so called bus holders, or half-latches, that are sensitive to upsets have
been reported for the Xilinx Virtex technology. In the available documentation [RD6], several
cells that can be affected by this phenomena have been listed. In the synthesis results obtained
for the two example applications discussed later in this document, no such cells have been
observed. It is however unclear whether this is due to the coding style or if it can still occur. One
should always analyse the resulting netlist for potential bus holders.

3.3.3 Re-use of old VHDL code

It was shown during the design of the demonstration application that converting an existing
design to the structure presented in the FTMR approach is feasible, provided that the original
design is described on a fairly high descriptive level. There is however definitely a learning
threshold that needs to be overcome to be able to design with FTMR.

3.3.4 Configuration memory

Although not discussed in this document in detail, it is assumed that the proposed FTMR
approach is combined with scrubbing of the configuration memory. The FTMR approach will
only protect the design from a single error in the configuration memory belonging to a specific
function. A second error in the configuration memory affecting the same function could render
the TMR protection inefficient. It is therefore necessary to provide continuous scrubbing of the
configuration memory to avoid an error build up.

3.3.5 Refresh of TMR structures

As for all TMR structures, it is important that the flip-flops are refreshed continuously with new
voted values in order to avoid error build up. In the FTMR approach this is done automatically
since all flip-flops are clock with the system clock. One should note that when using an external
signal to clock flip-flops, one must be aware that the flip-flops will perhaps not be refreshed
often enough. The information from those flip-flops should therefore be moved to the system
clock domain as fast as possible, where the flip-flops are refreshed regularly.
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3.3.6 Required level of redundancy

The FTMR approach provides several levels of protection against upsets in the configuration
memory as well as in the sequential elements of the design. It is however not clear what level
of protection is actually required. This can only be derived from a characterisation of the FTMR
approach by means of irradiation. For example, it is not obvious how many voters are required
around a sequential element. The method allows from zero to three voters to be placed in front
and/or after the sequential element. 

One could reason that only one voter after the flip-flop would be sufficient if implemented using
the Xilinx specific tri-state buffer implementation. This is however not evident since the buffer
structure has more than the three required inputs, which could lead to corruption of functionality
due to errors else were in the design, e.g. between the voter output and the flip-flop input. To
bring clarity to these issues, further analysis and test is required.

3.3.7 Template based approach

The FMTR approach is based on templates which the user can modify for each new module that
need to be developed. To reduce the design effort, one could develop an simple pre-processor
or VHDL code generator which could produce the VHDL code sections specifically needed for
the approach. This could cover the cumbersome conversion between record and array types that
was discussed earlier. It could also cover the copying of input ports of the entity to the inputs of
the combinatorial procedure, etc.

3.3.8 Synthesis tools

Although there are several different synthesis tools suitable for Xilinx devices, only one has
been used to assess the proposed methodology. Synplify from Synplicity Inc. was used as the
main driver for the development of the method. Synplify was chosen due to availability. Design
Compiler from Synopsys Inc. was also used to assess the method to some extent. 
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4 VHDL CODE STRUCTURE

The proposed Functional Triple Modular Redundancy (FTMR) approach is implemented in
VHDL using a TMR based d-type flip-flop, two packages, and the entity and architecture of the
module to be implemented. FTMR is based on parts that are pre-defined in a template and parts
that need to be defined by the user for each new module that is being designed. This will be
highlighted in the VHDL code example that is explained in detail in the following sections and
that is provided in its entire in appendix A.

An overview of the different VHDL objects and files used in the proposed approach is given in
figure 8. A graphical overview of the approach is provided in figure 10 in section 4.6.

The VHDL code is based on VHDL IEEE Std 1076 - 1993, and is thus not directly backward
compatible with Std 1076 - 1987, although this can be achieved with some minor modifications.

Figure 8: Overview of VHDL objects and file hierarchy
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4.1 Triple Modular Redundancy D-Type Flip-Flop

The basis for the FTMR approach is the pre-defined Triple Modular Redundancy (TMR) flip-
flop. This is a configurable and flexible d-type flip-flop that can support the following concepts:
• single or redundant sequential element, with

• single or triple clocks
• single or triple signals for asynchronous reset

• support for combinatorial redundancy, with
• single or triple input
• single or triple output
• no, single or triple input voters
• no, single or triple output voters
• logical voters or Xilinx specific tri-state buffer voters

The flip-flop has the following interfaces, but all are not used in all the above configurations:
• clk (0 to 2) clock inputs
• reset(0 to 2) reset inputs
• d(0 to 2) data inputs
• q(0 to 2) data outputs

The TMR flip-flop can thus support various levels of redundancy. For example, simple
sequential redundancy can be implement. The sequential elements can be clocked from a
common or three separate clock lines, to be able to mitigate transient effects in combinatorial
logic and the clock lines themselves. The same can be done for the asynchronous reset line. 

The flip-flop can take three different inputs to feed the redundant sequential elements, where
the inputs can either be fed straight to the sequential element, or be voted in a single voter, or
be voted in a separate voter for each sequential element input. The outputs of the sequential
elements can be voted with a single voter, or with a separate voter for each data output. 

The voter can be implemented with random logic, or with a tri-state buffer specific for Xilinx
which does not consume random logic resources (and which in fact is not implemented as a tri-
stated buffer but as a logical multiplexer, see [RD1]). 

The VHDL code utilises attributes specific to the Synplify synthesis tool from Synplicity Inc.
The purpose is to ensure that intentional redundancy is not removed by the synthesis tool. The
attribute Syn_Keep was used to avoid signals to be removed, which could lead to combinatorial
logic being removed. The attribute Syn_Preserve was used to avoid flip-flops from being
removed. The attribute Syn_Hier was used to avoid that the tool would dissolve the hierarchy
which could lead to intentional redundancy being optimised away.
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Figure 9: Voter configurations: triplicated and single

4.2 Interface package

In the interface package all types required for defining the input and output ports of the module
are defined, as if the module was to be implemented without redundancy. All types are defined
as simple types, without any triplication taken into account. This interface package will actually
not be used for the defining the interfaces of the redundant module, since all the types will be
modified to support redundancy as described in section 4.3. The contents of this package would
not differ from a package used for of a module not aimed for the redundancy approach proposed.
An example is the AMBA package which was used in a design without modifications.

4.2.1 Definitions for non-redundant clock and reset interfaces

The following types are pre-defined and are used for the clock and reset. 

subtype  Clock_Type     is Std_Logic;
subtype  Reset_Type     is Std_Logic;

Example 1: Type declaration for clock and reset interface

4.2.2 Definitions for non-redundant input / output interfaces

The FTMR approach is based on the usage of record types for grouping of signals that belong
to the same function or interface. One record type is defined for the input and one for the output
of each specific interface. In this example, the inputs and outputs use the same type T_Type.

-------------------------------------------------------------------------
--## DEFINE RECORD TYPES FOR INTERFACES
-------------------------------------------------------------------------
type T_Type is record

SyncMark:               Std_Logic;                 -- sync delimiter
FrameMark:              Std_Logic;                 -- frame delimiter
DataMark:               Std_Logic;                 -- data delimiter
DataStream:             Std_Logic;                 -- serial data

end record T_Type;
-------------------------------------------------------------------------
--## END DEFINE RECORD TYPES FOR INTERFACES
-------------------------------------------------------------------------

Example 2: Type declaration for input and output interfaces
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4.3 Redundancy package

In the redundancy package, all aspects of redundancy on the interfaces is taken into account.
The types declared in this package are those actually used for the interfaces of the module. This
package is based on the interface package described in section 4.2. The triplication of interfaces
is generally only required for combinatorial redundancy, but is always built in to the module to
support all levels of redundancy.

4.3.1 Definition of range for Triple Modular Redundancy

The basic addition made in this package is the triplication of all inputs and outputs of a module.
The subtype Triple is defined for this purpose. If no redundancy is implemented, only element
0 is used. Triple is used as an index in all arrays dedicated to the interfaces, etc.

subtype  Triple               is Integer range 0 to 2;

Example 3: Subtype for array indexing

4.3.2 Definitions for clock and reset interfaces

The clock and reset interfaces are triplicated by the following pre-defined subtypes.

subtype  Reset_Triple         is Std_Logic_Vector(Triple);
subtype  Clock_Triple         is Std_Logic_Vector(Triple);

Example 4: Triplicated clock and reset interfaces

4.3.3 Definitions for input / output interfaces

For each user interface, a triplicated version needs to be declared as an array that is index by the
Triple subtype and each element is of the corresponding type defined in the interface package. 

-------------------------------------------------------------------------
--## DEFINE ARRAY TYPES FOR REDUNDANT INTERFACES
type     T_Triple             is array (Triple) of T_Type;
--## END DEFINE ARRAY TYPES FOR REDUNDANT INTERFACES
-------------------------------------------------------------------------

Example 5: Supporting array type for combinatorial redundancy
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4.3.4 Conversion from bit to integer for generics

Since some major synthesis tools do no support other generics than of the Integer type, a special
function has been pre-defined to convert a Std_ULogic value to a set of integer values. The
function is used for translating reset values to the Integer type that can be interpreted by the
specific TMR based d-type flip-flip used in this methodology. The function support three types
of reset values: clear, preset and no reset. The latter is however not supported by some synthesis
tools and has therefore been commented out. The details of this function are not required for the
understanding of the FTMR approach.

subtype  I_Range              is Integer range 0 to 2;
type     I_Vector             is array (Integer range <>) of I_Range;
function To_I_Vector(s: Std_Logic_Vector) return I_Vector is

variable r:    I_Vector(0 to s'Length -1);
begin

for i in 0 to s'Length -1 loop
if    To_X01(s(i))='0' then

r(i)  := 0; -- clear
else

-- elsif To_X01(s(i))='1' then
r(i)  := 1; -- set

-- else
-- r(i)  := 2;                                -- don't care

end if;
end loop;
return r;

end function To_I_Vector;

Example 6: Function for converting reset values to integer for generics

4.3.5 Component declaration for generic Triple Modular Redundancy flip-flop

The redundancy package also includes a component declaration for the TMR d-type flip-flop.
In this way it is not necessary to declare the TMR component in each module using the
redundancy package.
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4.4 Entity of the module

4.4.1 Generic clause

The generic clause contains generics for the redundancy configuration of the modules, as well
as generics for the functionality of the module

4.4.1.1 Redundancy configuration

Each module is configurable for the level and type of redundancy that is to be implemented,
featuring the following options:
• behavioural or structural implementation:

• behavioural does not allow redundancy, inferred d-type flip-flop insertion is utilised
• structural implementation allows redundancy, explicit d-type flip-flop insertion is utilised

• single or redundant sequential element, with
• single or triple clocks,
• none, single, triple asynchronous reset signals (synchronous reset in combinatorial logic)

• support for combinatorial redundancy, with
• no combinatorial redundancy provides single inputs and outputs
• combinatorial redundancy provides triplicated input and outputs

• number and type of voters:
• no, single or triple input voters before the sequential elements (triple only with

combinatorial redundancy)
• no, single or triple output voters after the sequential elements (triple only with

combinatorial redundancy)
• logical voters or Xilinx specific tri-state buffer voters

generic(
-- Redundancy configuration
gStructural: Integer range 0 to 1 := 1;    -- behaviour, structure
gRedundant: Integer range 0 to 1 := 1;    -- no, redundant ff
gInVoter: Integer range 0 to 2 := 2;    -- 0, 1, or 3 voters
gOutVoter: Integer range 0 to 2 := 2;    -- 0, 1, or 3 voters
gReset: Integer range 0 to 2 := 2;    -- sync, async, async*3
gClock: Integer range 0 to 1 := 1;    -- 1, or 3 lines
gCombinatorial: Integer range 0 to 1 := 1;    -- no, redundant logic
gVoter: Integer range 0 to 1 := 1);   -- logical, or tristate

Example 7: Generics for redundancy configuration

4.4.1.2 Functionality configuration

The generics used for configuring the functionality of a module are application dependent and
do not differ from those in other VHDL methodologies. Some restrictions have however been
observed when combined with this redundancy approach, e.g. it is not always possible to have
a generic that controls the width of an array type used for a port. The width of the port will need
to be established in the interface package described earlier, since a record cannot have
unconstrained array elements.
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4.4.2 Port clause

The port clause provides the interface to the module. The ports are split in three groups: clock
and reset interface, input interface and output interface.

4.4.2.1 Clock and reset interface

The FTMR approach assumes synchronous design, providing a single clock input that is a
triplet. The clock triplet is an array, for which the array elements are numbered 0 to 2. If no
combinatorial redundancy is implemented, only element numbered 0 is used. The holds for the
reset triplet. The reset input can be used for synchronous or asynchronous reset. It is possible to
build a module with more than one clock domain. This requires that both the clock and reset
ports are separately declared for each clock domain. Transitions between clock domains need
to be properly synchronised in the module.

Clk:           in    Clock_Triple;
Rst:           in    Reset_Triple;

Example 8: Clock and reset interface

4.4.2.2 Input interface

All inputs are defined as triplets. Each input is normally connected to one external module or to
a higher hierarchy. Each triplet is an array of a record type, for which the array elements are
numbered 0 to 2. If no combinatorial redundancy is implemented, only the element 0 is used.

-------------------------------------------------------------------------
--## DEFINE INPUT PORTS AS TRIPLETS
-------------------------------------------------------------------------
PSRIn:         in    T_Triple;
-------------------------------------------------------------------------
--## END DEFINE INPUT PORTS AS TRIPLETS
-------------------------------------------------------------------------

Example 9: Input interface

4.4.2.3 Output interface

All outputs are defined as triplets. Each output is normally connected to one external module or
to a higher hierarchy. Each triplet is an array of a record type, for which the array elements are
numbered 0 to 2. If no combinatorial redundancy is implemented, only the element 0 is used.

-------------------------------------------------------------------------
--## DEFINE OUTPUT PORTS AS TRIPLETS
-------------------------------------------------------------------------
PSROut:        out   T_Triple;
-------------------------------------------------------------------------
--## END DEFINE OUTPUT PORTS AS TRIPLETS
-------------------------------------------------------------------------

Example 10: Output interface
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4.5 Architecture of the module

The architecture of the module is also based on the assumption that the design is synchronous.
It is also assumed that there is no mixture between function and interconnectivity within the
same module, although this cannot always be avoided. It is possible to build a module with more
than one clock domain. This requires that the two clock domains are implemented as separate
VHDL block statements. Note that this is only one of many possible solutions.

4.5.1 Declarative part

The FTMR approach is based on parts that are pre-defined in a template and parts that need to
be defined by the user for each new module that is being designed. In the declarative part of the
architecture, the user needs to declare the following items:
• private types, constants and subprograms
• record of sequential elements
• record of combinatorial elements
• reset values for sequential elements
• explicit conversion from a sequential element record to an array that is used when

instantiating d-type flip-flops
• explicit conversion back from an array to a sequential element record
• combinatorial behaviour described as a procedure

The main difference between this proposed redundancy approach and normal design is the strict
split between the different parts listed above, and the additional conversion between records and
arrays used for flip-flop instantiation, since this is normally done by inference in synthesis.

4.5.1.1 Definition of private types, constants and subprograms

In this section all private types, constants and subprograms required for describing the
functional behaviour are defined. Note that these can also be defined in a package.

4.5.1.2 Definition of types for sequential elements

All sequential elements required in the module need to be declared by the user as a single record
type. The record can be made hierarchical, or nested, for example including the records used for
the output ports as shown in the example below. The record should be constructed not using
triplet types. Instead, the non-triplicated types and records should be used.

type R_Type is record
----------------------------------------------------------------------
--## DEFINE REGISTERS
----------------------------------------------------------------------
H:                   Std_Logic_Vector(7 downto 0); -- randomiser state
PSROut:              T_Type; -- output
----------------------------------------------------------------------
--## END DEFINE REGISTERS
----------------------------------------------------------------------

end record R_Type;

Example 11: Sequential elements (registers)
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4.5.1.3 Definition of type for combinatorial elements

All purely combinatorial signals required in the module need to be declared by the user as a
single record type. The record can be made hierarchical, or nested, for example including the
records used for the output ports. The record should be constructed not using triplet types,
instead the non-triplicated types and records should be used. The difference between the
combinatorial and the sequential elements is that the former do not require any flip-flops or
latches and can be used for describing functionality that is derived combinatorially from flip-
flops and inputs. A dummy declaration must always be done when unused.

type C_Type is record
----------------------------------------------------------------------
--## DEFINE COMBINATORIAL SIGNALS
----------------------------------------------------------------------
Dummy:                  Std_ULogic;                -- unused
----------------------------------------------------------------------
--## END DEFINE COMBINATORIAL SIGNALS
----------------------------------------------------------------------

end record C_Type;

Example 12: Combinatorial elements

4.5.1.4 Declaration of reset values

For each sequential element in the module, a reset value should be declared by the user. It is
possible not to declare a reset value for an element, but this is not well supported by the
synthesis tools that have been tried with the methodology. The reset values are declared as part
of the Reset function, in which the temporary variable record r is assigned with the reset value
for each of its elements. A function declaration must always be done even when unused.

function Reset return R_Type is
variable r:          R_Type;

begin
----------------------------------------------------------------------
--## DEFINE RESET VALUES FOR REGISTERS
----------------------------------------------------------------------
r.H                  := (others => '1');
r.PSROut.SyncMark    := '0';
r.PSROut.FrameMark   := '0';
r.PSROut.DataMark    := '0';
r.PSROut.DataStream  := '0';
----------------------------------------------------------------------
--## END DEFINE RESET VALUES FOR REGISTERS
----------------------------------------------------------------------
return r;

end function Reset;

Example 13: Reset function for sequential elements
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4.5.1.5 Conversion from record to array of bits

The Pack procedure is user-defined and specific to each module. Its purpose is to map the record
type defining the sequential elements into an array of simple bits. Each array element is later
mapped to individual d-type flip-flops. It is not possible simply to map the record type directly
to d-type flip-flops due to limitations in VHDL. Each element in the record r needs to be
mapped to an element in the array s. In addition, the variable c is incremented for each element,
and returns in the end the number of elements that have been mapped. In some designs it is
preferable that c is calculated directly from the length of the different arrays that can be found
in the record types, using the ‘Length attribute, rather than assuming a fixed length. The c
variable is used for calculating the final length of the array.

In the beginning of a module development, one would normally concentrate on the behavioural
aspect of the design and not apply redundancy. It is therefore possible not to complete the Pack
and the UnPack procedures when only behavioural implementation is used. A dummy
declaration must however always be done when unused.

procedure Pack(
r:    in    R_Type;

variable s:    out   Std_Logic_Vector;
variable c:    inout Natural) is

begin
----------------------------------------------------------------------
--## DEFINE MAPPING
----------------------------------------------------------------------
c  := 0;
s(c to c+r.H'Length-1)  := r.H;
c                       := c+r.H'Length;
s(c)        := r.PSROut.SyncMark;
c := c+1;
s(c) := r.PSROut.FrameMark;
c := c+1;
s(c) := r.PSROut.DataMark;
c := c+1;
s(c) := r.PSROut.DataStream;
c := c+1;
----------------------------------------------------------------------
--## END DEFINE MAPPING
----------------------------------------------------------------------

end procedure Pack;

Example 14: User defined pack function
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4.5.1.6 Conversion from array of bits to record

The UnPack procedure is user-defined and specific to each module. Its purpose is to map back
the sequential elements from the array of simple bits to the record type. Each element in the
array s needs to be mapped to an element in the record r. In addition, the variable c is
incremented for each element, and returns in the end the number of elements that have been
mapped. In some designs it is preferable that c is calculated directly from the length of the
different arrays that can be found in the record types, using the ‘Length attribute, rather than
assuming a fixed length. A dummy declaration must always be done when unused.

procedure UnPack(
s:    in    Std_Logic_Vector;

variable r:    out   R_Type;
variable c:    inout Natural) is

begin
----------------------------------------------------------------------
--## DEFINE RE-MAPPING
----------------------------------------------------------------------
c                    := 0;
r.H                  := s(c to c+r.H'Length-1);
c                    := c+r.H'Length;
r.PSROut.SyncMark    := s(c);
c                    := c+1;
r.PSROut.FrameMark   := s(c);
c                    := c+1;
r.PSROut.DataMark    := s(c);
c                    := c+1;
r.PSROut.DataStream  := s(c);
c                    := c+1;
----------------------------------------------------------------------
--## END DEFINE RE-MAPPING
----------------------------------------------------------------------

end procedure UnPack;

Example 15: User defined unpack function
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4.5.1.7 Support functions

The following pre-defined support functions provide functionality that is required for mapping
the record type to the array type for the sequential elements. The only thing the user needs to be
concerned with is that for the function R_Length, the array width of the variable s must be larger
than the total number of sequential bits to be implemented. The R_Len constant is used for
constraining the array that carries all sequential elements as individual bits. The simplified Pack
and UnPack functions are used for direct signal conversion between records and arrays, and vice
versa.

function R_Length return Integer is
variable r:          R_Type;
variable s:          Std_Logic_Vector(0 to 1023);
variable c:          Natural;

begin
Pack(r, s, c);
-- pragma translate_off
assert c < s'Length

report "Temporal vector in R_Len function is too short"
severity Failure;

-- pragma translate_on
return c;

end function R_Length;

Example 16: Calculates the width of the array required for all sequential element bits

constant R_Len:         Integer  := R_Length;

Example 17: The width of the array required for all sequential element bits

function Pack(
r:          R_Type)

return               Std_Logic_Vector is
variable s:          Std_Logic_Vector(0 to 1023);
variable c:          Natural;

begin
Pack(r, s, c);
return s(0 to R_Len-1);

end function Pack;

Example 18: Simplified Pack function

function UnPack(
s:          Std_Logic_Vector)

return               R_Type is
variable r:          R_Type;
variable c:          Natural;

begin
UnPack(s, r, c);
return r;

end function UnPack;

Example 19: Simplified UnPack function
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4.5.1.8 Declaration of vector types and signals

The following pre-defined type and signal declarations are used for mapping the record type to
the array type for the sequential elements, and for carrying the outputs of the purely
combinatorial logic. The constant gResetValue is an array of integers, defining the asynchronous
reset values for the explicitly instantiated d-type flip-flops. The triplicated signals are used for
redundancy purposes. If no redundancy is implemented, as configured with the aforementioned
generics, only element 0 is used.

type     R_Triple    is array (Triple) of R_Type;
signal   R, Rin:        R_Triple;

Example 20: Sequential elements as record type

constant gResetValue:   I_Vector(0 to R_Len-1) := 
To_I_Vector(Pack(Reset));

subtype  S_Type      is Std_Logic_Vector(0 to R_Len-1);
type     S_Triple    is array (Triple) of S_Type;
signal   S, Sin:        S_Triple;

Example 21: Sequential elements as an array of bits

type     C_Triple    is array (Triple) of C_Type;
signal   C:             C_Triple;

Example 22: Combinatorial logic output as record type

4.5.1.9 Definition of combinatorial behaviour

The combinatorial behaviour of the module is described in the Combinatorial procedure. This
also includes the combinatorial logic required for changing the states of the sequential elements.
Thus, the only thing that is not described in the procedure is the sequential elements and
potential voters before and after the sequential elements.

procedure Combinatorial(

Example 23: Definition of the procedure for combinatorial logic

4.5.1.9.1 User defined inputs

For a module, all ports that can affect the combinatorial and sequential behaviour are fed to 
the Combinatorial procedure. This is module dependent. All signals are of the non-
triplicated types.

----------------------------------------------------------------------
--## DEFINE INPUTS
----------------------------------------------------------------------
signal   PSRIn:   in    T_Type;
----------------------------------------------------------------------
--## END DEFINE INPUTS
----------------------------------------------------------------------

Example 24: User defined inputs



FPGA-003-01 26
4.5.1.9.2 Pre-defined input and outputs

The following inputs and outputs to the combinatorial procedure are pre-defined. Rst is the reset
input, R carries the current state of the sequential elements, Rin carries the next state of the
sequential elements, and C carries the output of combinatorial logic. All signals are of the non-
triplicated types.

signal   Rst:     in    Std_Logic;
signal   R:       in    R_Type;
signal   Rin:     out   R_Type;
signal   C:       out   C_Type) is

Example 25: Pre-defined input and outputs

4.5.1.9.3 Pre-defined variables

The following pre-defined variables are used for temporarily storing the next state of the
sequential elements, and the output of the purely combinatorial logic. Rv is used for the
sequential elements, and Cv is used for the combinatorial logic. Both variables are of the non-
triplicated basic types. All assignments are made to these variables by the user, never to the
corresponding output signals Rin and C. The variables are assigned, as pre-defined in the
template, to the corresponding outputs at the end of the procedure, to ensure that there is only
one such assignment. The user can chose to read the R input or the Rv variable, all dependent
on what functionality is required. The R input is unaffected by the assignments in the procedure,
whereas Rv can change along the execution of the VHDL code in the procedure description. Rv
can thus be used when the new (or next) combinatorial value is required, rather than the current
value of the sequential elements.

variable Rv:            R_Type;
variable Cv:            C_Type;

Example 26: Variable declarations for sequential and combinatorial elements

4.5.1.9.4 Definition of unregistered variables

For temporary variables that do not have a sequential element associated, the variable Uv can
be used. Uv should then be cleared before any usage in the procedure, not to infer any storage
elements. A dummy declaration must always be done when unused.

type     U_Type is record
----------------------------------------------------------------------
--## DEFINE UNREGISTERED VARIABLES
----------------------------------------------------------------------
Dummy:               Std_ULogic;                -- unused
----------------------------------------------------------------------
--## END DEFINE UNREGISTERED VARIABLES
----------------------------------------------------------------------

end record U_Type;
variable Uv:            U_Type;

Example 27: Type and variable declaration for temporary variable
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4.5.1.9.5 Pre-defined registered variable

At the beginning of the procedure the current state of the sequential elements R is copied to the
temporary variable Rv. This is done to ensure that Rv will not infer any storage elements.

Rv                   := R;

Example 28: Initialising the Rv variable

4.5.1.9.6 Definition of combinatorial logic

The description of the combinatorial logic is done in a sequence of statements. The Rv variable
is to be assigned with the next state of the sequential elements. The Rv variable can also be read
in the procedure when an intermediate value is required. Otherwise the R input signal is read
when the current state of the sequential elements is required. For temporary variables that do
not have a sequential element associated, the variable Uv can be used. Uv should then be cleared
before any usage in the procedure, not to infer any storage elements. No reset statement is
required in this section, since it is being taken care of later in the procedure for synchronous
reset, and in the sequential part for an asynchronous reset.

-------------------------------------------------------------------------
--## DEFINE COMBINATORIAL LOGIC
-------------------------------------------------------------------------
if PSRIn.DataMark='1' then                         -- bit delimiter

if PSRIn.SyncMark='1' then                      -- sync period
Rv.PSROut.DataStream := PSRIn.DataStream;    -- uncoded output
Rv.H                 := (others => '1');     -- initialise h(x)

else                                            -- frame or codeblock
Rv.PSROut.DataStream := -- coded output

PSRIn.DataStream xor R.H(0); 
Rv.H(7 downto 0)     := -- shift h(x)

(R.H(0) xor R.H(3) xor R.H(5) xor R.H(7)) & R.H(7 downto 1); 
end if;
Rv.PSROut.SyncMark      := PSRIn.SyncMark;      -- delay
Rv.PSROut.FrameMark     := PSRIn.FrameMark;     -- delay

else
null;

end if;
Rv.PSROut.DataMark         := PSRIn.DataMark;      -- delay
-------------------------------------------------------------------------
--## END DEFINE COMBINATORIAL LOGIC
-------------------------------------------------------------------------

Example 29: Description of the combinatorial logic
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4.5.1.9.7 Synchronous reset

The synchronous reset is optional, and is described after the user section mentioned above. The
reset can either be synchronous or asynchronous for the whole module, and is controlled by the
gReset generic. It is not possible to have synchronous reset for some sequential elements, and
asynchronous reset for other sequential elements in this basic template. If the combinatorial
logic is triplicated, so is the input for the synchronous reset.

if Rst='1' and gReset=0 then
Rv                := Reset;

end if;

Example 30: Synchronous reset

4.5.1.9.8 pre-defined variables converted to signals

A the end of the procedure, the temporary variable Rv is assigned to the output signal Rin. The
assignment to Rin is made only once not to infer any storage elements. A the end of the
procedure, the temporary variable Cv is assigned to the output signal C. The assignment to C is
made only once not to infer any storage elements. 

Rin                  <= Rv;
C                    <= Cv;

Example 31: Variable to signal assignments

4.5.2 Statement part

The statement part of the architecture instantiates the combinatorial procedure, output
assignments, and sequential elements as inferred or as explicitly instantiated d-type flip-flops.

4.5.2.1 Combinatorial behaviour

The combinatorial behaviour is described by instantiating one or three Combinatorial
procedures. If no combinatorial redundancy is implemented, only instance 0 is used.

CombinatorialGen:
for i in 0 to Triple'Right * (gCombinatorial * gStructural) generate
Combinatorial(

-------------------------------------------------------------------
--## DEFINE INPUTS
-------------------------------------------------------------------
PSRIn             => PSRIn(i),
-------------------------------------------------------------------
--## END DEFINE INPUTS
-------------------------------------------------------------------
Rst               => Rst(i),
R                 => R(i),
Rin               => Rin(i),
C                 => C(i));

end generate CombinatorialGen;

Example 32: Concurrent procedure calls to implement combinatorial logic
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4.5.2.2 Output ports

All output ports need to be connected to internal sequential elements, R, or to pure combinatorial
logic, C. Each such connection will be instantiated one or three times. If no combinatorial
redundancy is implemented, only instance 0 is used. Note the usage of the indices for the R and
C signals and the output ports.

OutputGen: for i in 0 to 
Triple'Right * (gCombinatorial*gStructural) generate

----------------------------------------------------------------------
--## DEFINE OUTPUTS
----------------------------------------------------------------------
PSROut(i)   <= R(i).PSROut;
----------------------------------------------------------------------
--## END DEFINE OUTPUTS
----------------------------------------------------------------------

end generate OutputGen;

Example 33: Output port connection to sequential elements and combinatorial logic

4.5.2.3 Sequential behaviour

The sequential behaviour can either be implemented with inferred or with explicitly instantiated
d-type flip-flops, depending on the use of redundancy. 

4.5.2.3.1 Sequential behaviour with explicit flip-flop instances

It is possible to use explicit d-type flip-flop instances without redundancy, this is called the
structural description and is enabled with the gStructural generic. In this case only instance 0
is used. 

When any kind of redundancy is used, the sequential elements are implemented with explicit d-
type flip-flop instances, and the gStructural generic must be enabled. The conversion from
record type to array type used for the instantiation of the sequential elements, and vice versa, is
performed in the ConversionGen generate statement. 

Note that the reset constant gResetValue is mapped to the rest generic of the d-type flip-flop.
The TMR d-type flip-flop implements the triplication of the sequential elements and the voter
that can be placed in front and/or after the flip-flops.
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StructuralGen: if gStructural=1 generate
ConversionGen: for i in 0 to Triple'Right * gCombinatorial generate

Sin(i)   <= Pack(Rin(i));
R(i)     <= UnPack(S(i));

end generate ConversionGen;
SequentialGen: for i in S_Type'Range generate

ff: TMR
generic map(

gRedundant     => gRedundant,
gInVoter       => gInVoter,
gOutVoter      => gOutVoter,
gReset         => gReset,
gResetValue    => gResetValue(i),
gClock         => gClock,
gCombinatorial => gCombinatorial,
gVoter         => gVoter)

port map(
clk            => Clk,
r              => Rst,
d0             => Sin(0)(i),
d1             => Sin(1)(i),
d2             => Sin(2)(i),
q0             => S(0)(i),
q1             => S(1)(i),
q2             => S(2)(i));

end generate SequentialGen;
end generate StructuralGen;

Example 34: Instantiated D-type flip-flops for sequential elements

4.5.2.3.2 Sequential behaviour with inferred flip-flops

For the behavioural description of the sequential elements, simple flip-flop inference is used. It
is not possible to combine redundancy with flip-flop inference. Note that only element 0 is used
for the clock, reset and registers signals.

BehaviouralGen: if gStructural=0 generate
Sequential: process(Clk, Rst)
begin

if gReset = 1 and Rst(0)='1' then
R(0)  <= Reset;

elsif Rising_Edge(Clk(0)) then
R(0)  <= RIn(0);

end if;
end process Sequential;

end generate BehaviouralGen;

Example 35: Inferred flip-flops for sequential elements
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4.6 Graphical overview of the FTMR approach

A graphical overview of a small design example is shown in figure 10. The design originally
includes five registers (or flip-flops). The combinatorial logic of the design has been triplicated,
as has the inputs and outputs. Some of the outputs stem directly from the flip-flops like in a
Moore machine, and some stem from combinatorial logic like in a Mealy machine. All registers
have been triplicated inside the TMR blocks, one for each register. There are three voters in
front of the triplicated flip-flops, as well as after them. Note the conversion from the record type
signals Rin and R, and the array based signals Sin and S, which is done with the Pack and
UnPack functions. All inputs and outputs are based on record type ports. The reset and clock
ports are also triplicated. The design represent the highest level of redundancy possible with the
proposed FTMR approach.

Figure 10: Graphical overview of a design based on five functional registers, providing 
combinatorial redundancy and sequential redundancy with triplicated input and 
output voters for the TMR d-type flip-flops.

V
VV

V V

V

V
VV

V V

V

V
VV

V V

V

V
VV

V V

V

V
VV

V V

V

PACK PACK PACK

Registered

Inputs

UNPACK UNPACK UNPACK Outputs

Combinatorial
Outputs

Combinatorial CombinatorialCombinatorial

Clock

Reset

S(0)
S(1)

S(2)

Sin(0)
Sin(1)

Sin(2)

R(0)
R(1)

R(2)

Rin(0) Rin(1) Rin(2)C(0) C(1)
C(2)



FPGA-003-01 32
5 RESULTS FROM A SIMPLE APPLICATION

The approach presented in section 3 has been implemented as a VHDL template in which a
designer can describe the desired functionality. The TMR d-type flip-flop has been designed
taking synthesis tool optimisation into account, to avoid the removal of any redundant parts.

A simple pseudo-randomiser design has been developed to demonstrate the effects of this
approach. The corresponding VHDL source code is provided in its whole in appendix A. The
results presented in table 1 were obtained after synthesis.

As can be seen from the results above, the triplication of the sequential logic is as predicted. The
increase of the combinatorial logic varies with the selected level of protection and choice of
voter approach. The overheads for the combinatorial logic vary from a factor of 3,9 to 11.
Predictable, but low performing, results can be best obtained using the Xilinx specific tri-state
buffer voters presented in [RD1].

For a small designs as presented above, all predictions regarding increase in the number of d-
type flip-flop and combinatorial resources seem to hold.

All results are based on synthesis using Synplify from Synplicity Inc.

Design
seq.

TMR

comb.

TMR

input

voters

output

voters

voter

type

clock

lines

reset

lines

Gate 

MHz
FFs LUTs

behavioural n/a n/a n/a n/a n/a n/a n/a 224 12 10
structural n/a n/a n/a n/a n/a n/a n/a 201 12 13
sequential yes no 0 1 logic 1 1 177 36 25
sequential yes no 0 1 buffer 1 1 155 36 13
sequential - clock yes no 0 1 logic 3 3 177 36 25
sequential - clock yes no 0 1 buffer 3 3 155 36 13
combinatorial yes yes 1 1 logic 1 1 136 36 63
combinatorial yes yes 1 1 buffer 1 1 128 36 39
combinatorial yes yes 3 1 logic 1 1 158 36 87
combinatorial yes yes 3 1 buffer 1 1 129 36 39
combinatorial yes yes 1 3 logic 1 1 136 36 87
combinatorial yes yes 1 3 buffer 1 1 129 36 39
combinatorial yes yes 0 3 logic 1 1 177 36 75
combinatorial yes yes 0 3 buffer 1 1 155 36 39
combinatorial - clock & reset yes yes 1 3 logic 3 3 136 36 87
combinatorial - clock & reset yes yes 1 3 buffer 3 3 129 36 39
combinatorial - clock & reset yes yes 3 3 logic 3 3 158 33 111
combinatorial - clock & reset yes yes 3 3 buffer 3 3 129 36 39

Table 1: Synthesis results targeting the Xilinx Virtex XCV1000-6 device
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6 RESULTS FROM A DEMONSTRATION APPLICATION

A more complex demonstration application was also developed using the proposed mitigation
method. The application is the CCSDS Time Manager (CTM) [RD8], originally developed at
ESA. The design was converted using the VHDL template for the proposed redundancy
approach. The development time was about eight hours, including re-running the already
available test suite which was used for regression testing of the newly developed VHDL code.
The synthesis and place & route results of the most interesting configuration cases are presented
in table 2 and table 3.

All synthesis results are based on Synplify from Synplicity Inc. All place & route results are
based on ISE from Xilinx Corporation. Synthesis and place & route has been run using the push
button method with default values for most parameters. The target frequency was 40 MHz. For
the designs implementing combinatorial TMR, the FPGA outputs and inputs have been
triplicated without any additional voting. There was no difference in the synthesis results if the
target frequency was lowered to 1 MHz.
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TMR

comb.

TMR

input

voters

output

voters

clock

lines

reset

lines

voter

type FF
s

L
U

Ts

B
U

FG
s

B
U

FT
s Gate

MHz

P&R

MHz

original n/a n/a n/a n/a n/a n/a n/a 786 1457 1 0 42 44 1
behavioural n/a n/a n/a n/a n/a n/a n/a 784 1454 1 0 40 46 2
structural n/a n/a n/a n/a n/a n/a n/a 784 2015 1 0 38 41 11
sequential yes no 0 1 1 1 logic 2352 2793 1 0 37 n/a 24

buffer 2352 2012 1 2352 36 n/a 15
combinatorial yes yes 1 1 3 3 logic 2352 7726 3 0 33 n/a 6

buffer 2352 6139 3 4704 33 23 8
3 3 logic 2352 10861 3 0 34 30 7

buffer 2352 6139 3 >100% 33 n/a 11

Table 2: Synthesis results targeting the Xilinx Virtex XCV1000-6 device
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original n/a n/a n/a n/a n/a n/a n/a 785 1438 1072 0 1 122 17686 44 5
behavioural n/a n/a n/a n/a n/a n/a n/a 783 1429 1044 0 1 268 17640 46 5
structural n/a n/a n/a n/a n/a n/a n/a 783 1998 1049 0 1 268 21354 41 10
combinatorial yes yes 1 1 3 3 buffer 2352 6092 5484 4704 3 366 78600 23 126

9% 25% 44% 37% 75% 90% n/a
3 3 logic 2352 10751 6540 0 3 366 92475 30 12

9% 43% 53% 0% 75% 90% n/a

Table 3: Place & route results targeting the Xilinx Virtex XCV1000-6 device
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As can be seen from table 2 and table 3, there is a distinct difference between the number of
LUTs (combinatorial logic) required for implementing the original or the behavioural design,
and the structural design without any protection applied. This is probably caused by the fact that
the d-type flip-flops are instantiated in the code for the latter, but for the former it is left to the
synthesis tool to infer the flip-flops which allows better optimisation of the combinatorial logic. 

When applying protection to sequential and combinatorial logic, it can be seen that the increase
as compared to the structural design is predictable for the d-type flip-flops (FFs). The increase
factor of 4,25 for the combinatorial logic (LUTs) is close to the predictable 3 when using voters
implemented with Xilinx specific tri-state buffers (BUFTs), but explodes to 7,5 when
implementing the voters using random logic (LUTs). The performance of the circuit decreases
drastically for both the random logic and the Xilinx specific tri-state buffer based voters.

Note that a stronger protection was chosen when implementing voters with random logic, as
compared to tri-state buffers. This is because Xilinx claim that the tri-state buffer based voters
cannot lose their functionality due to SEUs [RD1], which is the case with the LUT based voters
which have been triplicated for that reason. Note also that when using 25% of the LUTs for the
design with the tri-state buffer based voters, 37% of all BUFTs were consumed. This indicates
that one would run out of BUFTs faster than LUTs, which would limit the size of any design
that could fit in the Xilinx.

The main concern is that the number of SLICEs that are required for implementing the protected
designs is increasing with a factor of 5,25 and 6,25, respectively, for the LUT and BUFT based
protection options. This about 75-110% worse than the expected factor of 3.
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7 CONCLUSIONS

The presented Functional Triple Modular Redundancy (FTMR) approach to triple modular
redundancy for combinatorial and sequential logic on the gate level has shown that it is possible
to write VHDL code in a structured yet high level coding style to obtain the required
redundancy. The coding approach is template based and only requires a moderate additional
effort to write as compared to other high level approaches. This structured method also provides
benefits to the source code review process, featuring a clear distinction between sequential and
combinatorial logic. The approach is only applicable to random logic and does not included
protection for on-chip memories and FPGA interfaces.

The synthesis and place & route results show that the increase of in terms of on-chip resource
usage is higher than expected. The increase for the protection has been observed to be a factor
of between 4,5 and 7,5 for the demonstration application. This, together with a performance
decrease of about 50%, could limit the usability of the new protection method. 

It is unclear whether the above findings and observed limitations also apply to other types of
gate level mitigation techniques envisaged for Xilinx devices.

Although not a very large design has been produced when writing the document, an assessment
has been made on whether it is possible to convert the LEON SPARC microprocessor VHDL
code to comply with the proposed FTMR approach. Since LEON is already based on record
types for all ports and it already has a clear split between combinatorial and sequential elements,
it is considered feasible to do such a conversion.
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APPENDIX A: VHDL CODE

A.1 TMR D-Type Flip-Flop

--============================================================================--
-- Design unit  : TMR (Entity & architecture declarations)
--
-- File name    : tmr.vhd
--
-- Purpose      : Triple Modular Redundacy Flip-Flop for the
--                Functional Triple Modular Redundacy (FTMR) methodology
--
-- Library      : {independent}
--
-- Authors      : Mr Sandi Alexander Habinc
--                Gaisler Research
--                Stora Nygatan 13, SE-411 08 Gteborg, Sweden
--
-- Contact      : mailto:sandi@gaisler.com
--                http://www.gaisler.com
--
-- Copyright (C): Gaisler Research 2002. No part may be reproduced in any form
--                without the prior written permission of Gaisler Research.
--
-- Disclaimer   : All information is provided “as is”, there is no warranty that
--                the information is correct or suitable for any purpose,
--                neither implicit nor explicit.
--------------------------------------------------------------------------------
-- Version  Author   Date           Changes
--
-- 0.1      SH       12 Aug 2002    New version
-- 0.2      SH        8 Dec 2002    Updated comments
--------------------------------------------------------------------------------

library IEEE;
use IEEE.Std_Logic_1164.all;

entity TMR is
   generic(

gRedundant:          Integer range 0 to 1 := 1;    -- none, or yes
      gInVoter:            Integer range 0 to 2 := 2;    -- 0, 1, or 3 voters
      gOutVoter:           Integer range 0 to 2 := 2;    -- 0, 1, or 3 voters
      gReset:              Integer range 0 to 2 := 2;    -- none, async, async*3
      gResetValue:         Integer range 0 to 2 := 2;    -- clear, set, or none
      gClock:              Integer range 0 to 1 := 1;    -- 1, or 3 lines
      gCombinatorial:      Integer range 0 to 1 := 1;    -- none, or yes
      gVoter:              Integer range 0 to 1 := 1);   -- logical, or tristate
   port(
      clk:           in    Std_Logic_Vector(0 to 2);
      r:             in    Std_Logic_Vector(0 to 2);
      d0:            in    Std_Logic;
      d1:            in    Std_Logic;
      d2:            in    Std_Logic;
      q0:            out   Std_Logic;
      q1:            out   Std_Logic;
      q2:            out   Std_Logic);
end entity TMR;
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--============================== Architecture ================================--

architecture RTL of TMR is
   attribute Syn_Hier:  String;
   attribute Syn_Hier of RTL: architecture is “hard”;

   -----------------------------------------------------------------------------
   -- Local signal declarations
   -----------------------------------------------------------------------------
   -- input data
   signal    i0:                 Std_Logic_Vector(0 to 2);
   signal    i1:                 Std_Logic_Vector(0 to 2);
   signal    i2:                 Std_Logic_Vector(0 to 2);
   attribute Syn_Keep:           Boolean;
   attribute Syn_Keep of i0: signal is True;
   attribute Syn_Keep of i1: signal is True;
   attribute Syn_Keep of i2: signal is True;

   -- combinatorial input voter
   signal    v:                  Std_Logic_Vector(0 to 2);

   -- data to flip-flop
   signal    w:                  Std_Logic_Vector(0 to 2);

   -- flip-flop register
   signal    f:                  Std_Logic_Vector(0 to 2);
   attribute Syn_Preserve:       Boolean;
   attribute Syn_Preserve of  f: signal is True;

   -- combinatorial output voter
   signal    f0:                 Std_Logic_Vector(0 to 2);
   signal    f1:                 Std_Logic_Vector(0 to 2);
   signal    f2:                 Std_Logic_Vector(0 to 2);
   attribute Syn_Keep  of    f0: signal is True;
   attribute Syn_Keep  of    f1: signal is True;
   attribute Syn_Keep  of    f2: signal is True;
   signal    o:                  Std_Logic_Vector(0 to 2);

   -----------------------------------------------------------------------------
   -- Component declarations
   -----------------------------------------------------------------------------
   component TRV is                                      -- Xilinx specific
      port(                                              -- tri-state voter
         TR0:  in    Std_Logic;
         TR1:  in    Std_Logic;
         TR2:  in    Std_Logic;
         V:    out   Std_Logic);
   end component TRV;

begin
   -- redundant flip-flops
   r1: if gRedundant=1 generate
      -- multiple data inputs
      k1: if gCombinatorial=1 generate
         -- multiple combinatorial input voters
         w2: if gInVoter=2 generate
            -- copy input to three vectors
            i0    <= d0 & d1 & d2;
            i1    <= d0 & d1 & d2;
            i2    <= d0 & d1 & d2;
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            -- implement one voter for each input copy
            -- logical voter
            u0: if gVoter=0 generate
               v(0)  <= (i0(0) and i0(1)) or
                        (i0(0) and i0(2)) or
                        (i0(1) and i0(2));

               v(1)  <= (i1(0) and i1(1)) or
                        (i1(0) and i1(2)) or
                        (i1(1) and i1(2));

               v(2)  <= (i2(0) and i2(1)) or
                        (i2(0) and i2(2)) or
                        (i2(1) and i2(2));
            end generate;

            -- Xilinx tri-state buffer
            u1: if gVoter=1 generate
               t0: TRV port map (i0(0), i0(1), i0(2), v(0));
               t1: TRV port map (i1(0), i1(1), i1(2), v(1));
               t2: TRV port map (i2(0), i2(1), i2(2), v(2));
            end generate;

            -- concatenate voter results
            w     <= v;
         end generate;
         -- single combinatorial input voter
         w1: if gInVoter=1 generate
            -- implement a single voter
            -- logical voter
            u0: if gVoter=0 generate
               v(0)  <= (d0 and d1) or
                        (d0 and d2) or
                        (d1 and d2);
            end generate;

            -- Xilinx tri-state buffer
            u1: if gVoter=1 generate
               t0: TRV port map (d0, d1, d2, v(0));
            end generate;

            -- copy and concatenate voter result
            w     <= v(0) & v(0) & v(0);
         end generate;
         -- no combinatorial input voter
         w0: if gInVoter=0 generate
            w     <= d0 & d1 & d2;
         end generate;
      end generate;

      -- single data input, no combinatorial input voter
      k0: if gCombinatorial=0 generate
         w        <= d0 & d0 & d0;
      end generate;
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      -- redundant multiple clock line
      c1: if gClock=1 generate
         p0: process(clk, r)
         begin
            if    gReset=2 and r(0)=’1’ then
               if    gResetValue=0 then
                  f(0)  <= ‘0’;
               elsif gResetValue=1 then
                  f(0)  <= ‘1’;
               end if;
            elsif gReset=1 and r(0)=’1’ then
               if    gResetValue=0 then
                  f(0)  <= ‘0’;
               elsif gResetValue=1 then
                  f(0)  <= ‘1’;
               end if;
            elsif Rising_Edge(clk(0)) then
               f(0)     <= w(0);
            end if;
         end process;

         p1: process(clk, r)
         begin
            if    gReset=2 and gResetValue < 2 and r(1)=’1’ then
               if    gResetValue=0 then
                  f(1)  <= ‘0’;
               elsif gResetValue=1 then
                  f(1)  <= ‘1’;
               end if;
            elsif gReset=1 and gResetValue < 2 and r(0)=’1’ then
               if    gResetValue=0 then
                  f(1)  <= ‘0’;
               elsif gResetValue=1 then
                  f(1)  <= ‘1’;
               end if;
            elsif Rising_Edge(clk(1)) then
               f(1)     <= w(1);
            end if;
         end process;

         p2: process(clk, r)
         begin
            if    gReset=2 and gResetValue < 2 and r(2)=’1’ then
               if    gResetValue=0 then
                  f(2)  <= ‘0’;
               elsif gResetValue=1 then
                  f(2)  <= ‘1’;
               end if;
            elsif gReset=1 and gResetValue < 2 and r(0)=’1’ then
               if    gResetValue=0 then
                  f(2)  <= ‘0’;
               elsif gResetValue=1 then
                  f(2)  <= ‘1’;
               end if;
            elsif Rising_Edge(clk(2)) then
               f(2)     <= w(2);
            end if;
         end process;
      end generate;
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      -- single clock line
      c0: if gClock=0 generate
         p0: process(clk, r)
         begin
            if    gReset=2 and gResetValue < 2 and r(0)=’1’ then
               if    gResetValue=0 then
                  f(0)  <= ‘0’;
               elsif gResetValue=1 then
                  f(0)  <= ‘1’;
               end if;
            elsif gReset=1 and gResetValue < 2 and r(0)=’1’ then
               if    gResetValue=0 then
                  f(0)  <= ‘0’;
               elsif gResetValue=1 then
                  f(0)  <= ‘1’;
               end if;
            elsif Rising_Edge(clk(0)) then
               f(0)     <= w(0);
            end if;
         end process;

         p1: process(clk, r)
         begin
            if    gReset=2 and gResetValue < 2 and r(1)=’1’ then
               if    gResetValue=0 then
                  f(1)  <= ‘0’;
               elsif gResetValue=1 then
                  f(1)  <= ‘1’;
               end if;
            elsif gReset=1 and gResetValue < 2 and r(0)=’1’ then
               if    gResetValue=0 then
                  f(1)  <= ‘0’;
               elsif gResetValue=1 then
                  f(1)  <= ‘1’;
               end if;
            elsif Rising_Edge(clk(0)) then
               f(1)     <= w(1);
            end if;
         end process;

         p2: process(clk, r)
         begin
            if    gReset=2 and gResetValue < 2 and r(2)=’1’ then
               if    gResetValue=0 then
                  f(2)  <= ‘0’;
               elsif gResetValue=1 then
                  f(2)  <= ‘1’;
               end if;
            elsif gReset=1 and gResetValue < 2 and r(0)=’1’ then
               if    gResetValue=0 then
                  f(2)  <= ‘0’;
               elsif gResetValue=1 then
                  f(2)  <= ‘1’;
               end if;
            elsif Rising_Edge(clk(0)) then
               f(2)     <= w(2);
            end if;
         end process;
      end generate;
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      -- no combinatorial output voter
      o0: if gOutVoter=0 generate
         q0 <= f(0);
         q1 <= f(1);
         q2 <= f(2);
      end generate;

      -- single combinatorial output voter, one output
      o10: if (gOutVoter=1 and gCombinatorial=0) or
              (gOutVoter=2 and gCombinatorial=0) generate

         -- logical voter
         u0: if gVoter=0 generate
            o(0) <= (f(0) and f(1)) or
                    (f(0) and f(2)) or
                    (f(1) and f(2));
         end generate;

         -- Xilinx tri-state buffer
         u1: if gVoter=1 generate
            t0: TRV port map (f(0), f(1), f(2), o(0));
         end generate;

         q0 <= To_X01(o(0));
         q1 <= ‘-’;
         q2 <= ‘-’;
      end generate;

      -- single combinatorial output voter, multiple outputs
      o11: if gOutVoter=1 and gCombinatorial=1 generate
         -- logical voter
         u0: if gVoter=0 generate
            o(0) <= (f(0) and f(1)) or
                    (f(0) and f(2)) or
                    (f(1) and f(2));
         end generate;

         -- Xilinx tri-state buffer
         u1: if gVoter=1 generate
            t0: TRV port map (f(0), f(1), f(2), o(0));
         end generate;

         q0 <= To_X01(o(0));
         q1 <= To_X01(o(0));
         q2 <= To_X01(o(0));
      end generate;

      -- multiple combinatorial output voter
      o2: if gOutVoter=2 and gCombinatorial=1 generate
         -- copy input to three vectors
         f0    <= f;
         f1    <= f;
         f2    <= f;
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         -- implement one voter for each input copy
         -- logical voter
         u0: if gVoter=0 generate
            o(0) <= (f0(0) and f0(1)) or
                    (f0(0) and f0(2)) or
                    (f0(1) and f0(2));

            o(1) <= (f1(0) and f1(1)) or
                    (f1(0) and f1(2)) or
                    (f1(1) and f1(2));

            o(2) <= (f2(0) and f2(1)) or
                    (f2(0) and f2(2)) or
                    (f2(1) and f2(2));
         end generate;

         -- Xilinx tri-state buffer
         u1: if gVoter=1 generate
            t0: TRV port map (f0(0), f0(1), f0(2), o(0));
            t1: TRV port map (f1(0), f1(1), f1(2), o(1));
            t2: TRV port map (f2(0), f2(1), f2(2), o(2));
         end generate;

         -- concatenate voter results
         q0   <= To_X01(o(0));
         q1   <= To_X01(o(1));
         q2   <= To_X01(o(2));
      end generate;
   end generate;

   -- no flip-flop redundancy (no combinatorial redundancy)
   r0: if gRedundant=0 generate
      p0: process(clk, r)
      begin
         if gReset > 0 and gResetValue < 2 and r(0)=’1’ then
            if    gResetValue=0 then
               q0  <= ‘0’;
            elsif gResetValue=1 then
               q0  <= ‘1’;
            end if;
         elsif Rising_Edge(clk(0)) then
            q0 <= d0;
         end if;
      end process;
      -- unused outputs
      q1 <= ‘-’;
      q2 <= ‘-’;
   end generate;
end architecture RTL; -======================================================--
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A.2 Interface package

--============================================================================--
-- Design unit  : Interface (Package header and body declarations)
--
-- File name    : interface.vhd
--
-- Purpose      : Interface types
--
-- Library      : {independent}
--
-- Authors      : Mr Sandi Alexander Habinc
--                Gaisler Research
--                Stora Nygatan 13, SE-411 08 Gteborg, Sweden
--
-- Contact      : mailto:sandi@gaisler.com
--                http://www.gaisler.com
--
-- Copyright (C): Gaisler Research 2002. No part may be reproduced in any form
--                without the prior written permission of Gaisler Research.
--
-- Disclaimer   : All information is provided “as is”, there is no warranty that
--                the information is correct or suitable for any purpose,
--                neither implicit nor explicit.
--------------------------------------------------------------------------------
-- Version  Author   Date           Changes
--
-- 0.1      SH       12 Aug 2002    New version
--------------------------------------------------------------------------------

library IEEE;
use IEEE.Std_Logic_1164.all;

package Interface is
   -----------------------------------------------------------------------------
   -- Definitions for clock and reset interfaces
   -----------------------------------------------------------------------------
   subtype  Reset_Type     is Std_Logic;
   subtype  Clock_Type     is Std_Logic;
   subtype  Tick_Type      is Std_Logic;

   -----------------------------------------------------------------------------
   -- Definitions for input / output interfaces
   -----------------------------------------------------------------------------
   type T_Type is record
      SyncMark:               Std_Logic;                 -- sync delimiter
      FrameMark:              Std_Logic;                 -- frame delimiter
      DataMark:               Std_Logic;                 -- data delimiter
      DataStream:             Std_Logic;                 -- serial data
   end record T_Type;
end package Interface; --=====================================================--



FPGA-003-01 44
A.3 Redundancy package

--============================================================================--
-- Design unit  : Redundant (Package header and body declarations)
--
-- File name    : redundant.vhd
--
-- Purpose      : Redundant interface types
--
-- Limitations  : Does not support don’t care for asynchronous reset due to
--                limitations in Synplify, bug to be reported to Synplicity.
--
-- Library      : {independent}
--
-- Authors      : Mr Sandi Alexander Habinc
--                Gaisler Research
--                Stora Nygatan 13, SE-411 08 Gteborg, Sweden
--
-- Contact      : mailto:sandi@gaisler.com
--                http://www.gaisler.com
--
-- Copyright (C): Gaisler Research 2002. No part may be reproduced in any form
--                without the prior written permission of Gaisler Research.
--
-- Disclaimer   : All information is provided “as is”, there is no warranty that
--                the information is correct or suitable for any purpose,
--                neither implicit nor explicit.
--------------------------------------------------------------------------------
-- Version  Author   Date           Changes
--
-- 0.1      SH       12 Aug 2002    New version
--------------------------------------------------------------------------------
library IEEE;
use IEEE.Std_Logic_1164.all;

library Work;
use Work.Interface.all;

package Redundant is
   -----------------------------------------------------------------------------
   -- Definition of range for Triple Modular Redundancy
   -----------------------------------------------------------------------------
   subtype  Triple               is Integer range 0 to 2;

   -----------------------------------------------------------------------------
   -- Definitions for clock and reset interfaces
   -----------------------------------------------------------------------------
   subtype  Reset_Triple         is Std_Logic_Vector(Triple);
   subtype  Clock_Triple         is Std_Logic_Vector(Triple);
   subtype  Tick_Triple          is Std_Logic_Vector(Triple);

   -----------------------------------------------------------------------------
   -- Definitions for input / output interfaces
   -----------------------------------------------------------------------------
   -- supporting array types for combinatorial redundancy
   type     T_Triple             is array (Triple) of T_Type;
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   -----------------------------------------------------------------------------
   -- Conversion from bit to integer for generics
   -----------------------------------------------------------------------------
   subtype  I_Range              is Integer range 0 to 2;
   type     I_Vector             is array (Integer range <>) of I_Range;
   function To_I_Vector(s: Std_Logic_Vector) return I_Vector;

   -----------------------------------------------------------------------------
   -- Component declaration for generic Triple Modular Redundancy register
   -----------------------------------------------------------------------------
   component TMR is
      generic(
         gRedundant:          Integer range 0 to 1 := 1;
         gInVoter:            Integer range 0 to 2 := 2;
         gOutVoter:           Integer range 0 to 2 := 2;
         gReset:              Integer range 0 to 2 := 2;
         gResetValue:         Integer range 0 to 2 := 2;
         gClock:              Integer range 0 to 1 := 1;
         gCombinatorial:      Integer range 0 to 1 := 1;
         gVoter:              Integer range 0 to 1 := 1);
      port(
         clk:           in    Std_Logic_Vector(0 to 2);
         r:             in    Std_Logic_Vector(0 to 2);
         d0:            in    Std_Logic;
         d1:            in    Std_Logic;
         d2:            in    Std_Logic;
         q0:            out   Std_Logic;
         q1:            out   Std_Logic;
         q2:            out   Std_Logic);
   end component TMR;

end package Redundant; --=====================================================--

package body Redundant is
   -----------------------------------------------------------------------------
   -- Conversion from bit to integer for generics
   -----------------------------------------------------------------------------
   function To_I_Vector(s: Std_Logic_Vector) return I_Vector is
      variable r:    I_Vector(0 to s’Length -1);
   begin
      for i in 0 to s’Length -1 loop
         if    To_X01(s(i))=’0’ then
            r(i)  := 0;                                  -- clear
         else
--         elsif To_X01(s(i))=’1’ then
            r(i)  := 1;                                  -- set
--         else
--            r(i)  := 2;                                -- don’t care
         end if;
      end loop;
      return r;
   end function To_I_Vector;
end package body Redundant; --================================================--
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A.4 Pseudo-Randomiser

--============================================================================--
-- Design unit  : PseudoRandomiser (Entity & architecture declarations)
--
-- File name    : psr.vhd
--
-- Purpose      : Pseudo-Randomiser
--
-- Library      : {independent}
--
-- Authors      : Mr Sandi Alexander Habinc
--                Gaisler Research
--                Stora Nygatan 13, SE-411 08 Gteborg, Sweden
--
-- Contact      : mailto:sandi@gaisler.com
--                http://www.gaisler.com
--
-- Copyright (C): Gaisler Research 2002. No part may be reproduced in any form
--                without the prior written permission of Gaisler Research.
--
-- Disclaimer   : All information is provided “as is”, there is no warranty that
--                the information is correct or suitable for any purpose,
--                neither implicit nor explicit.
--------------------------------------------------------------------------------
-- Version  Author   Date           Changes
--
-- 0.1      SH       12 Aug 2002    New version
-- 0.2      SH        8 Dec 2002    Updated comments
--                                  'Length used for Pack/UnPack
--------------------------------------------------------------------------------

library Work;
use Work.Redundant.all;

entity PseudoRandomiser is
   generic(
      -- Redundancy configuration
      gStructural:         Integer range 0 to 1 := 1;    -- behaviour, structure
      gRedundant:          Integer range 0 to 1 := 1;    -- no, redundant ff
      gInVoter:            Integer range 0 to 2 := 2;    -- 0, 1, or 3 voters
      gOutVoter:           Integer range 0 to 2 := 2;    -- 0, 1, or 3 voters
      gReset:              Integer range 0 to 2 := 2;    -- sync, async, async*3
      gClock:              Integer range 0 to 1 := 1;    -- 1, or 3 lines
      gCombinatorial:      Integer range 0 to 1 := 1;    -- no, redundant logic
      gVoter:              Integer range 0 to 1 := 1);   -- logical, or tristate 
port(
      -- Bit clock and reset interface
      Clk:           in    Clock_Triple;
      Rst:           in    Reset_Triple;

      --------------------------------------------------------------------------
      --## DEFINE PORTS AS TRIPLETS
      --------------------------------------------------------------------------
      -- Input interface (bit clock)
      PSRIn:         in    T_Triple;

      -- Output interface (bit clock)
      PSROut:        out   T_Triple);
      --------------------------------------------------------------------------
      --## END DEFINE PORTS AS TRIPLETS
      --------------------------------------------------------------------------
end entity PseudoRandomiser;
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--============================== Architecture ================================--
library IEEE;
use IEEE.Std_Logic_1164.all;

library Work;
use Work.Interface.all;
use Work.Redundant.all;

architecture RTL of PseudoRandomiser is
   -----------------------------------------------------------------------------
   --## DEFINE PRIVATE TYPES, CONSTANTS AND SUBPROGRAMS
   -----------------------------------------------------------------------------
   -----------------------------------------------------------------------------
   --## END DEFINE PRIVATE TYPES, CONSTANTS AND SUBPROGRAMS
   -----------------------------------------------------------------------------

   -----------------------------------------------------------------------------
   -- Type record and array of bits for register file
   -----------------------------------------------------------------------------
   type R_Type is record
      --------------------------------------------------------------------------
      --## DEFINE REGISTERS
      --------------------------------------------------------------------------
      H:                   Std_Logic_Vector(7 downto 0); -- randomiser state
      PSROut:              T_Type;
      --------------------------------------------------------------------------
      --## END DEFINE REGISTERS
      --------------------------------------------------------------------------
   end record R_Type;

   -----------------------------------------------------------------------------
   -- Type record for combinatorial signals
   -----------------------------------------------------------------------------
   type C_Type is record
      --------------------------------------------------------------------------
      --## DEFINE COMBINATORIAL SIGNALS
      --------------------------------------------------------------------------
      Dummy:                  Std_ULogic;                -- unused
      --------------------------------------------------------------------------
      --## END DEFINE COMBINATORIAL SIGNALS
      --------------------------------------------------------------------------
   end record C_Type;

   -----------------------------------------------------------------------------
   -- Declaration of reset values for register file
   -----------------------------------------------------------------------------
   function Reset return R_type is
      variable r:          R_Type;
   begin
      --------------------------------------------------------------------------
      --## DEFINE RESET VALUES FOR REGISTERS
      --------------------------------------------------------------------------
      r.H                  := (others => ‘1’);
      r.PSROut.SyncMark    := ‘0’;
      r.PSROut.FrameMark   := ‘0’;
      r.PSROut.DataMark    := ‘0’;
      r.PSROut.DataStream  := ‘0’;
      --------------------------------------------------------------------------
      --## END DEFINE RESET VALUES FOR REGISTERS
      --------------------------------------------------------------------------
      return r;
   end function Reset;
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   -----------------------------------------------------------------------------
   -- Conversion from record to array of bits
   -----------------------------------------------------------------------------
   procedure Pack(
               r:    in    R_Type;
      variable s:    out   Std_Logic_Vector;
      variable c:    inout Natural) is
   begin
      --------------------------------------------------------------------------
      --## DEFINE MAPPING
      --------------------------------------------------------------------------

c                       := 0;
      s(c to c+r.H'Length-1)  := r.H;
      c                       := c+r.H'Length;
      s(c)                    := r.PSROut.SyncMark;
      c                       := c+1;
      s(c)                    := r.PSROut.FrameMark;
      c                       := c+1;
      s(c)                    := r.PSROut.DataMark;
      c                       := c+1;
      s(c)                    := r.PSROut.DataStream;
      c                       := c+1;
      --------------------------------------------------------------------------
      --## END DEFINE MAPPING
      --------------------------------------------------------------------------
   end procedure Pack;

   -----------------------------------------------------------------------------
   -- Conversion from array of bits to record
   -----------------------------------------------------------------------------
   procedure UnPack(
               s:    in    Std_Logic_Vector;
      variable r:    out   R_Type;
      variable c:    inout Natural) is
   begin
      --------------------------------------------------------------------------
      --## DEFINE MAPPING
      --------------------------------------------------------------------------

c                    := 0;
      r.H                  := s(c to c+r.H'Length-1);
      c                    := c+r.H'Length;
      r.PSROut.SyncMark    := s(c);
      c                    := c+1;
      r.PSROut.FrameMark   := s(c);
      c                    := c+1;
      r.PSROut.DataMark    := s(c);
      c                    := c+1;
      r.PSROut.DataStream  := s(c);
      c                    := c+1;
      --------------------------------------------------------------------------
      --## END DEFINE MAPPING
      --------------------------------------------------------------------------
   end procedure UnPack;
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   -----------------------------------------------------------------------------
   -- Support funcions
   -----------------------------------------------------------------------------
   function R_Length return Integer is
      variable r:          R_Type;
      variable s:          Std_Logic_Vector(0 to 1023);
      variable c:          Natural;
   begin
      Pack(r, s, c);
      -- pragma translate_off
      assert c < s’Length
         report “Temporal vector in R_Len function is too short”
         severity Failure;
      -- pragma translate_on
      return c;
   end function R_Length;

   constant R_Len:         Integer  := R_Length;

   function Pack(
               r:          R_Type)
      return               Std_Logic_Vector is
      variable s:          Std_Logic_Vector(0 to 1023);
      variable c:          Natural;
   begin
      Pack(r, s, c);
      return s(0 to R_Len-1);
   end function Pack;

   function UnPack(
               s:          Std_Logic_Vector)
      return               R_Type is
      variable r:          R_Type;
      variable c:          Natural;
   begin
      UnPack(s, r, c);
      return r;
   end function UnPack;

   -----------------------------------------------------------------------------
   -- Declaration of vector types and signals
   -----------------------------------------------------------------------------
   type     R_Triple    is array (Triple) of R_Type;
   signal   R, Rin:        R_Triple;
   constant gResetValue:   I_Vector(0 to R_Len-1) := To_I_Vector(Pack(Reset));

   subtype  S_Type      is Std_Logic_Vector(0 to R_Len-1);
   type     S_Triple    is array (Triple) of S_Type;
   signal   S, Sin:        S_Triple;

   type     C_Triple    is array (Triple) of C_Type;
   signal   C:             C_Triple;
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   -----------------------------------------------------------------------------
   -- This defines the combinatorial behaviour.
   -----------------------------------------------------------------------------
   procedure Combinatorial(
      --------------------------------------------------------------------------
      --## DEFINE INPUTS
      --------------------------------------------------------------------------
      signal   PSRIn:   in    T_Type;
      --------------------------------------------------------------------------
      --## END DEFINE INPUTS
      --------------------------------------------------------------------------

      signal   Rst:     in    Std_Logic;
      signal   R:       in    R_Type;
      signal   Rin:     out   R_Type;
      signal   C:       out   C_Type) is
      variable Rv:            R_Type;
      variable Cv:            C_Type;

      --------------------------------------------------------------------------
      --## DEFINE UNREGISTERED VARIABLES
      --------------------------------------------------------------------------
      type     U_Type is record
         Dummy:               Std_ULogic;                -- unused
      end record U_Type;
      variable Uv:            U_Type;
      --------------------------------------------------------------------------
      --## END DEFINE UNREGISTERED VARIABLES
      --------------------------------------------------------------------------

   begin
      -- pre-defined registered variable
      Rv                   := R;

      --------------------------------------------------------------------------
      --## DEFINE COMBINATORIAL LOGIC
      --------------------------------------------------------------------------
      --------------------------------------------------------------------------
      -- This architecture pseudo-randomises the incoming bit stream using the
      -- following standard polynomial: h(x) = x^8 + x^7 + x^5 + x^3 + 1.
      --
      --
      --    +---XOR<----XOR<----XOR<--------------+   input
      --    |    ^       ^       ^                |     |
      --    |    |       |       |                |     |
      --    |  +-+-+---+-+-+---+-+-+---+---+---+  |     v
      --    +->| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |--+----XOR-> output
      --       +---+---+---+---+---+---+---+---+
      --
      --    x^8 x^7 x^6 x^5 x^4 x^3 x^2 x^1 x^0
      --
      --     (0 xor 3 xor 5 xor 7) & 7654321 => 7 & 6543210
      --
      -- Many-to-one implementation: Fibonacci version of LFSR
      --
      -- The generator is initialised to all ones durin the ASM period.
      -- The generated pseudo-random bit stream is xor-ed with the incoming
      -- bit stream.
      --
      -- Sync and Frame delimiters are delayed one bit clock to match output.
      --------------------------------------------------------------------------
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      if PSRIn.DataMark=’1’ then                         -- bit delimiter
         if PSRIn.SyncMark=’1’ then                      -- sync period
            Rv.PSROut.DataStream := PSRIn.DataStream;    -- uncoded output
            Rv.H                 := (others => ‘1’);     -- initialise h(x)
         else                                            -- frame or codeblock
            Rv.PSROut.DataStream := PSRIn.DataStream xor R.H(0); -- coded output

            Rv.H(7 downto 0)     := (R.H(0) xor R.H(3) xor R.H(5) xor R.H(7)) &
                                     R.H(7 downto 1);    -- shift h(x)
         end if;
         Rv.PSROut.SyncMark      := PSRIn.SyncMark;      -- delay
         Rv.PSROut.FrameMark     := PSRIn.FrameMark;     -- delay
      else
         null;
      end if;
      Rv.PSROut.DataMark         := PSRIn.DataMark;      -- delay
      --------------------------------------------------------------------------
      --## END DEFINE COMBINATORIAL LOGIC
      --------------------------------------------------------------------------

      --------------------------------------------------------------------------
      -- synchronous reset
      --------------------------------------------------------------------------
      if Rst=’1’ and gReset=0 then
         Rv                := Reset;
      end if;
      --------------------------------------------------------------------------
      -- pre-defined registered variable converted to signal
      --------------------------------------------------------------------------
      Rin                  <= Rv;
      --------------------------------------------------------------------------
      -- pre-defined combinatorial variable converted to signal
      --------------------------------------------------------------------------
      C                    <= Cv;
   end procedure Combinatorial;

begin
   -----------------------------------------------------------------------------
   -- This implements the combinatorial behaviour
   -----------------------------------------------------------------------------
   CombinatorialGen:
      for i in 0 to Triple’Right * (gCombinatorial * gStructural) generate
      Combinatorial(
         -----------------------------------------------------------------------
         --## DEFINE INPUTS
         -----------------------------------------------------------------------
         PSRIn             => PSRIn(i),
         -----------------------------------------------------------------------
         --## END DEFINE INPUTS
         -----------------------------------------------------------------------
         Rst               => Rst(i),
         R                 => R(i),
         Rin               => Rin(i),
         C                 => C(i));
   end generate CombinatorialGen;
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   -----------------------------------------------------------------------------
   -- Output ports
   -----------------------------------------------------------------------------
   OutputGen: for i in 0 to Triple’Right * (gCombinatorial*gStructural) generate
      --------------------------------------------------------------------------
      --## DEFINE OUTPUTS
      --------------------------------------------------------------------------
      PSROut(i)   <= R(i).PSROut;
      --------------------------------------------------------------------------
      --## END DEFINE OUTPUTS
      --------------------------------------------------------------------------
   end generate OutputGen;

   -----------------------------------------------------------------------------
   -- This implements the sequential behaviour
   -----------------------------------------------------------------------------
   StructuralGen: if gStructural=1 generate
      --------------------------------------------------------------------------
      -- Conversion between arrays of records and bits
      --------------------------------------------------------------------------
      ConversionGen:
         for i in 0 to Triple’Right * gCombinatorial generate
         Sin(i)   <= Pack(Rin(i));
         R(i)     <= UnPack(S(i));
      end generate ConversionGen;

      --------------------------------------------------------------------------
      -- Sequential behaviour with dedicated flip-flops
      --------------------------------------------------------------------------
      SequentialGen: for i in S_Type’Range generate
         ff: TMR
            generic map (
               gRedundant     => gRedundant,
               gInVoter       => gInVoter,
               gOutVoter      => gOutVoter,
               gReset         => gReset,
               gResetValue    => gResetValue(i),
               gClock         => gClock,
               gCombinatorial => gCombinatorial,
               gVoter         => gVoter)
            port map(
               clk            => Clk,
               r              => Rst,
               d0             => Sin(0)(i),
               d1             => Sin(1)(i),
               d2             => Sin(2)(i),
               q0             => S(0)(i),
               q1             => S(1)(i),
               q2             => S(2)(i));
      end generate SequentialGen;
   end generate StructuralGen;
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   BehaviouralGen: if gStructural=0 generate
      --------------------------------------------------------------------------
      -- Sequential behaviour without dedicated flip-flops
      --------------------------------------------------------------------------
      Sequential: process(Clk, Rst)
      begin
         if gReset = 1 and Rst(0)=’1’ then
            R(0)  <= Reset;
         elsif Rising_Edge(Clk(0)) then
            R(0)  <= RIn(0);
         end if;
      end process Sequential;
   end generate BehaviouralGen;
end architecture RTL; --======================================================--
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A.5 Xilinx entities and architectures (not necessary for synthesis)

--============================================================================--
-- Design unit  : BUFT and PULLUP (Entity & architecture declarations)
--
-- File name    : xilinx.vhd
--
-- Purpose      : Buffer and pullup
--
-- Library      : {independent}
--
-- Authors      : Xilinx Inc.
--
-- Contact      : http://www.xilinx.com
--
-- Copyright (C): Xilinx Inc. 2001.
--
-- Disclaimer   : All information is provided “as is”, there is no warranty that
--                the information is correct or suitable for any purpose,
--                neither implicit nor explicit.
--------------------------------------------------------------------------------
-- Version  Author   Date           Changes
--
-- 1.0      CC       19 Oct 2001    New version
--------------------------------------------------------------------------------

library IEEE;
use IEEE.Std_Logic_1164.all;

entity BUFT is
   port(
      T: in    Std_Logic;
      I: in    Std_Logic;
      O: out   Std_Logic);
end entity BUFT;

architecture Behavioural of BUFT is
begin
   O  <= To_X01(I) after 5 ns when (T=’0’) else
         ‘Z’       after 5 ns;
end architecture Behavioural;

library IEEE;
use IEEE.Std_Logic_1164.all;

entity PULLUP is
   port(
      O: out   Std_Logic);
end entity PULLUP;

architecture Behavioural of PULLUP is
begin
   O <= ‘H’;
end architecture Behavioural;
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A.6 Xilinx specific triple redundancy voter

--============================================================================--
-- Design unit  : TRV (Entity & architecture declarations)
--
-- File name    : trv.vhd
--
-- Purpose      : Triple Redundancy Voter
--
-- Library      : {independent}
--
-- Authors      : Xilinx Inc.
--
-- Contact      : http://www.xilinx.com
--
-- Copyright (C): Xilinx Inc. 2001.
--
-- Disclaimer   : All information is provided “as is”, there is no warranty that
--                the information is correct or suitable for any purpose,
--                neither implicit nor explicit.
--------------------------------------------------------------------------------
-- Version  Author   Date           Changes
--
-- 1.0      CC       19 Oct 2001    New version
--------------------------------------------------------------------------------

library IEEE;
use IEEE.Std_Logic_1164.all;

entity TRV is
   port (
      TR0 : in    Std_Logic;
      TR1 : in    Std_Logic;
      TR2 : in    Std_Logic;
      V   : out   Std_Logic);
end entity TRV;
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--============================== Architecture ================================--

architecture RTL of TRV is
   component BUFT
      port (I : in std_logic;
            T : in std_logic;
            O : out std_logic);
   end component;

   component PULLUP
      port (O : out std_logic);
   end component;
begin
   BUFT0: BUFT
      port map (
         I => TR0,
         T => TR2,
         O => V);

   BUFT1: BUFT
      port map (
         I => TR1,
         T => TR0,
         O => V);

   BUFT2: BUFT
      port map (
         I => TR2,
         T => TR1,
         O => V);

   PLLP: PULLUP
      port map (O => V);

end architecture RTL; --======================================================--
Copyright © 2002  Gaisler Research. Company confidential material and document. This document may not
be distributed under any circumstances. All information is provided as is, there is no warranty that it is correct
or suitable for any purpose, neither implicit nor explicit.
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