
RISC-V in Space Workshop
14th December 2022

Michael Ryan, CTO, O.C.E.Technology Ltd

OCEOSmp - a multicore RISC-V
RTOS to police high-reliability

applications

2

The police ?
• Things can go wrong ..

• Best to anticipate crime before it actually occurs
• Keep an eye on the likely culprits

• All designs are based on assumptions
• Are things happening more often than expected?
• Are things taking longer than expected?
• Are things taking more space than expected?
• Are expected things not happening (or not being noticed)?
• Is the environment worse than expected?

• Is hardware developing a fault?
• Do harts agree?

• Robust societies require policing…
OCEOSmp on Polarfire

about:blank

3

System policing vs. application policing
• System police automatically collect data on likely culprits

• Respond automatically in some cases
• Update system log
• Call application function
• Exit RTOS if needed

• Application police can check system data and own data
• Policing checks (low priority task?)
• Policing tests (higher priority task?)

• Application police can use system police to handle miscreants
• Take hart/s out of use
• Release hart/s back into use
• Disable tasks, enable tasks
• Kill tasks that are in execution
• Exit RTOS with appropriate code

OCEOSmp on NOEL-V

about:blank

4

OCEOSmp: design (1)
• Support policing

• Static allocation of activity records
• System log used by system and application
• Record and log still visible if have to exit

• Exclude some temptations - stack resource policy (Baker 1991)
• Unbounded priority inversion cannot occur
• Chained blocking cannot occur
• Deadlocks excluded if single hart, warning otherwise

• Save space – stack resource policy (Baker 1991)
• Single system stack per hart rather than per task

• Symmetric – all harts used equal after initialisation
• Harts can be reserved for other uses, e.g. Linux
• Harts can be reserved for higher priority tasks

• Support schedulability analysis
OCEOSmp on NASA HPSC

about:blank

5

OCEOSmp: design (2)
• Task priority fixed

• based on task importance
• Task pre-emption threshold

• task pre-empted only by tasks with higher priority than threshold
• Multiple execution instances

• multiple same task ‘jobs’ can be in execution typically using different data
• Same priority jobs run to completion in turn

• no time slicing
• Timed actions independent of scheduling

• being early can also be a problem…
• data output at specific time
• task start request at specific time

OCEOSmp for SiFive

about:blank

6

OCEOSmp: design (3)
• Mutexes

• unbounded priority inversion cannot occur
• deadlock warning, cannot occur if single core

• Read-Write Mutexes
• allow simultaneous reads when not held for write
• prevent writing if being read
• prioritize write requests over reads
• order writes first come first served
• unbounded priority inversion cannot occur

• Counting Semaphores
• support wait with timeout

• Data Queues
• support read with timeout

Solar array drive

about:blank

7

OCEOSmp: design (4)
• System time

• in microseconds, 64 bit
• Context switch timing

• context switching shared across all cores
• context switch time minimized

• Interrupts
• interrupt disabled timing minimized
• high priority timer interrupt reserved for timed actions

• Some numbers
• 1 <= cores <= 255
• 1 <= tasks <= 255, 1 <= execution instances (jobs) <= 255*15
• 0 <= mutexes <= 63, 0 <= 63 read-write mutexes <= 63
• 0 <= counting semaphores <= 63, 0 <= data queues <= 63
• memory < 20 KiB

GNSS system using OCEOS

about:blank

8

Single
stack

Single
stackDynamic data

Area
Fixed data

Area

Startup

Initialization

Application
Configuration

Initial CPU select

OCEOSmp config

Create tasks etc.

OCEOSmp validate

Log & system
state Area

Fixed priority premptive scheduler

Mutexes Timed ActionsData QueuesSemaphores

Fault
handling

Task 1 Task 2 Task nTask n-1

 oceos.png

C
P
U
1

C
P
U
2

C
P
U
n

Single
stack

All CPUs

OCEOSmp
Start

Scheduling

about:blank

9

OCEOSmp: Using it
• Library - components not used not linked into the executable
• Servant not Master – started by application main()
• Step 1 : Create application configuration, pass to oceos_init()

what cores to use, what stack space, log entries
how many tasks, jobs per task, timed actions,
how many mutexes, semaphores, data queues

• Step 2: Create corresponding tasks, mutexes, etc.
using oceos_task_create() etc.

• Step 3: Use oceos_init_finish() to complete fixed data and checksum
• Step 4: Pass fixed data and initial task (if any) to oceos_start()

dynamic data area is set up
multi-core scheduling begins

OCEOS for smart manufacturing

about:blank

10

Debug support - DMON

about:blank

Current Status
• OCEOS (single core)

• SPARC and ARM versions complete
(with additional support for GR716 microcontroller)
ESA Flight Level B qualification ready

• OCEOSmp (multicore)
• Checking initial scheduler design on multicore SPARC & RISC-V (ARM later)
• Initial quad core results (Gaisler GR740 and Microchip PolarFire RISC)

• Check scheduler distributes work symmetrically
• 1001 task starts : Per CPU 251,250,250,250

• Check task can be run in parallel to provide speed up
• 4096 sample FFT (complex number entries)
• one task, four jobs in parallel on different parts of FFT
• speedup factor 3.6 - 3.7 (haven’t tried to optimise)

• Design closure pending with ESA
• Availability

• OCEOS - single-core development kit on-sale
• OCEOS - multicore beta evaluations available soon

OCEOS task usage & debug screen

about:blank

FFT

12

Initialisation
Start CPUs

Startup
Power down

Startup
Power down

Startup
Power down

¼ Rearrange ¼ Rearrange ¼ Rearrange ¼ Rearrange

¼ Main FFT
n-2 stages

where
array size = 2^n

¼ Main FFT
n-2 stages

where
array size = 2^n

Power down

¼ Main FFT
n-2 stages

where
array size = 2^n

Power down

¼ Main FFT
n-2 stages

where
array size = 2^n

Power down

Setup control
block

Restart CPUs

Process ¼ 2nd
last stage

Process ¼ 2nd
last stage

Power down

Process ¼ 2nd
last stage

Power down

Process ¼ 2nd
last stage

Power down

Setup control
blocks for 2nd

last stage
Restart CPUs

Process ¼ last
stage

Process ¼ last
stage

Power down

Process ¼ last
stage

Power down

Process ¼ last
stage

Power down

Setup control
blocks for last

stage
Restart CPUs

Process ¼
conversion

Process ¼
conversion

Process ¼
conversion

Process ¼
conversion

Setup control
blocks

Restart CPUs

CPU0 CPU1 CPU2 CPU3Time % Processing
(4096 array)

84%

5%

5%

Preprocessing

Main Stage

2nd Last

Last Stage

Conversion
Stage

(if necessary)

(rearrange if
necessary)

about:blank

Finally

• Thanks to ESA for their support

• Thank you for listening

• Any Questions?

• Any Answers?
• Would welcome ideas or suggestions

e.g. policing data that might be of interest

michael.ryan@ocetechnology.com www.ocetechnology.com

about:blank

	Slide Number 1
	The police ?
	System policing vs. application policing
	OCEOSmp: design (1)
	OCEOSmp: design (2)
	OCEOSmp: design (3)
	OCEOSmp: design (4)
	Slide Number 8
	OCEOSmp: Using it
	Debug support - DMON
	Current Status
	FFT
	Finally

