

De-RISC: the first European space-grade RISC-V platform

Jimmy Le Rhun - Thales Research & Technology

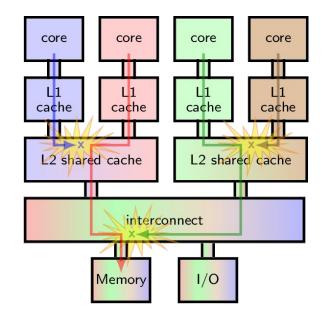
RISC-V in Space, ESTEC - 14/12/2022

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement EIC-FTI 869945

Context and Challenges

Context of safety-critical systems

- Strict requirements for dependability
 - Robustness in harsh environments
 - Fault tolerance, fail-operational
 - Deterministic real-time behaviour
- Increasing need for performance
 - Algorithms get more complex, with larger datasets
 - Adaptive or multi-mode applications, multiple applications
 - Autonomous systems
- New requirements
 - Increased connectivity
 - Cybersecurity
 - Free from export control restrictions



Context of COTS multicore processors

- To address performance needs, increase the number of processor cores
- Other resources are not duplicated accordingly
 - Memory hierarchy, peripherals, datapaths
- Timing interference
 - Delay due to concurrent access to shared resource
 - Need for interference channels identification and mitigation
 - Required by safety standards (e.g. CAST32A)
 - Often non-documented hardware arbitration policies
- Mitigation of contentions
 - Allocate resource to a single initiator
 - Global scheduling of transactions on shared resources, not just tasks on cores

Open-source opportunities

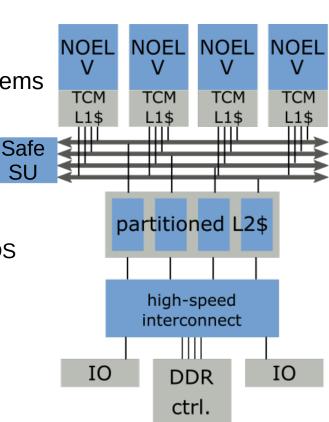
- Safety-critical systems is a small market
 - Previously not cost-effective to design dedicated hardware
 - Except for radiation-tolerance constraints in space
 - But New Space constellations need cheaper solutions
 - It's also increasingly costly to use multicore COTS
- Open-source advantages
 - Openness: observability, ability to document, cybersecurity audit
 - Respect of standards, interoperability
 - Better test coverage by a broader userbase
- Open-source Hardware
 - LEON Sparc is a European success story in Space
 - Recent rise in popularity with RISC-V
 - Opportunity to introduce safety constraints in the community

14/12/2022

RISC-V is a game-changer

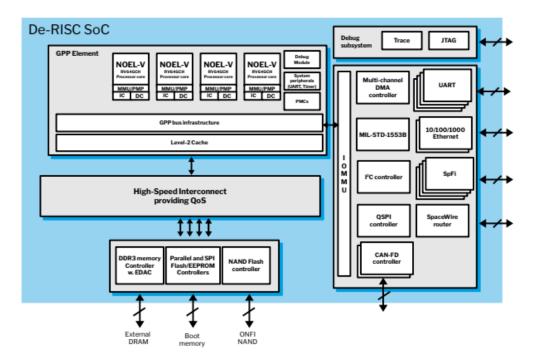
- RISC-V instruction set
 - Standard maintained by RISC-V International
 - Permissive open-source licence ensures wide adoption
 - Efficient and modular ISA, with optional extensions
 - Some peripherals : interrupt controller, MMU, etc.
- Technical Groups and Special Interest Groups
 - Security Standing Commitee
 - Cache Management Operation Task Group
 - Functional safety SIG
- Open source implementations by industrial associations
 - OpenHW Group
 - CHIPS Alliance

De-RISC approach


De-RISC project overview

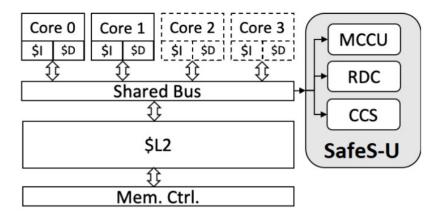
- Dependable realtime infrastructure for Safety-critical Computers
 - H2020 Fast Track to Innovation project
 - 4 partners: <u>fentISS</u>, Barcelona Supercomputing Center, CAES Gaisler, Thales Research & Technology
 - Started in October 2019 for 36 months
- Goal: to develop a full computing platform for space
 - Fault-tolerant multicore NOEL-V architecture on FPGA
 - XtratuM NG space-qualified hypervisor
 - Advanced monitoring and interference mitigation
 - Validation with space applications
- Made in Europe 🔘

De-RISC solution


- Leveraging the RISC-V architecture for critical systems
 - High-performance NOEL-V core
 - Designed with fault-tolerance capabilities
- Building a full platform
 - A complete MPSoC with a wide selection of peripherals
 - A full software stack with certifiable hypervisor and RTOS
 - Advanced monitoring capabilities with SafeSU
- Minimized interference channels
 - Private scratchpad memories
 - Low-interference interconnect
 - Multichannel DDR controller

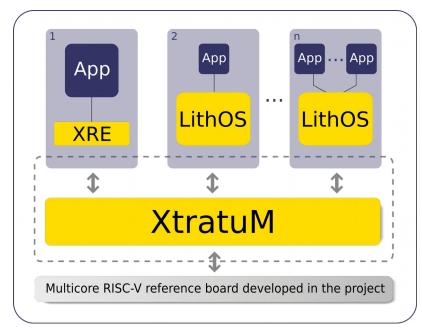
14/12/2022

De-RISC hardware overview


- Quad-core SoC
 - Extensible to multiple clusters
 - Provision for Accelerators
- Implemented on FPGA
 - Xilinx KCU105 prototype board
 - DeRISC embedded board
 - Plans of future ASIC version
- Space-grade IO
 - SpaceWire, SpaceFibre, CANbus
 - MIL-STD-1553 provision

Hardware focus: SafeSU Statistics Unit

- Connected to the cluster local AMBA bus
- Timing verification \rightarrow RDC
 - Collects maximum latency values for WCET estimation
- Timing validation/diagnosis \rightarrow CCS
 - Statistics on how much contention (interference) each core causes on every other core
- Implementation of safety measures related to timing \rightarrow MCCU
 - Allows setting interference quotas and raise interrupts when user-defined interference quotas are exceeded

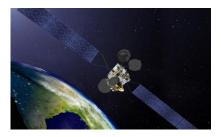


14/12/2022

11

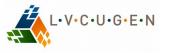
De-RISC software overview

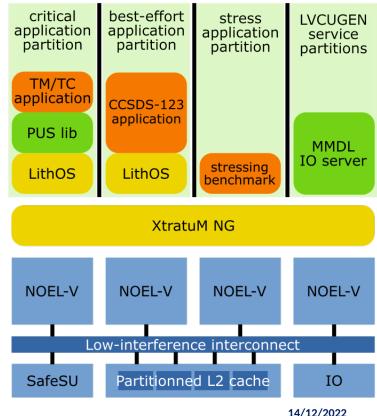
- XNG XtratuM Next Generation
 - Lightweight hypervisor
 - Simple XRE execution environment
 - Support of LithOS and RTEMS as guest-OS, support of Linux in development
 - Used in OneWeb constellation
- LithOS
 - ARINC-653 RTOS running in a XNG partition
 - Planned qualification ECSS level B (expected after end of project)



De-RISC validation use cases

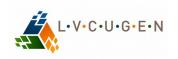
- Basic benchmarks
 - Standards for performance estimation such as Dhrystone, Coremark
 - Usual compute kernels with larger datasets
 - Stressing benchmarks to characterize interference channels
- Space use case for comparison with previous platforms
 - Control & Data Handling application from Thales Alenia Space Italy
 - Previously used in EMC² project on LEON-4 platform
- Representative space payload software
 - Based on LVCUGEN from CNES
 - Hyperspectral image compression as data-intensive application
 - Realtime services as critical application





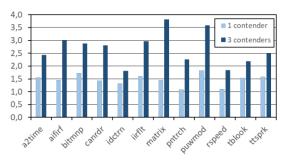
Flight software use-case

- Critical partition based on LVCUGEN services
 - TM/TC messaging
 - IO server
- Memory-intensive partition
 - CCSDS-123 lossless image compression
 - Hyperspectral data cube
 - Predictor and propagation
- Validation of time and space isolation
 - Using hardware counters to monitor timing interference

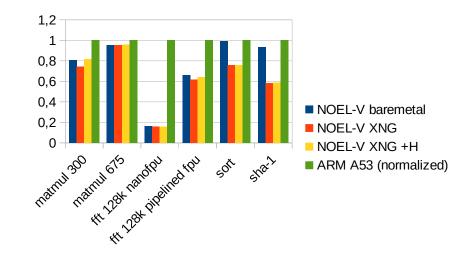

Results

Results

- De-RISC SoC is functional on FPGA
 - Integration of new features (incl. H extension, new FPU)
 - Integration of SafeSU monitoring unit
 - Development of GR-CPCIS-XCKU 6U cPCI Space Serial board
 - Radiation tests published in RADECS 2022
- Successful porting and integration of hypervisor and RTOS
 - XtratuM Next Generation with SMP support, LithOS guest OS
 - RTEMS ported as guest OS
 - Development tools incl. Xoncrete schedulabilty analyser
- Validation phase
 - Performance and stressing benchmarks ported
 - LVCUGEN ported to RISC-V and 64-bits
 - Integration of space use-cases



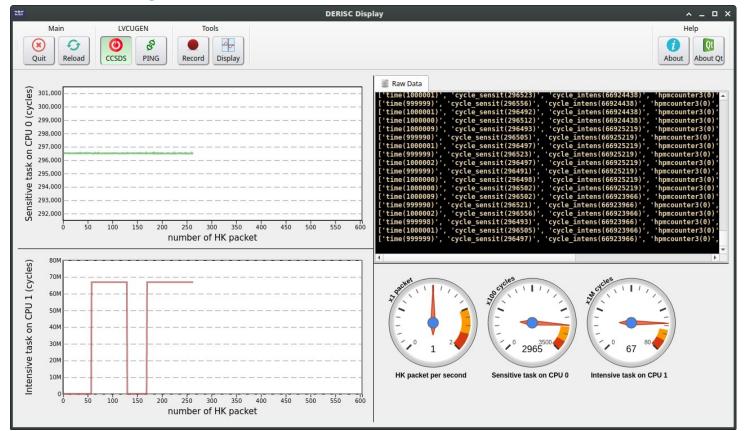
14/12/2022


Results

• Benchmarks

(higher is better)	NOEL-V	ARM A53
DMIPS/MHz	2.82	2.31
Coremark/MHz	4.41	3.27

- Command & Data Handling platform
 - Inter-partition communications
 - Floating-point quaternion computation


Time in μ s (lower is better)	NOEL-V XNG	LEON-4 XtratuM
Enqueue TC	55	95
Dequeue TC	56	57
Dequeue TM	29	36
Work (float)	60	316

www.derisc-project.eu

Flight software use-case

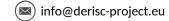
- Based on LVCUGEN
 - Data-intensive application on one core : CCSDS123 hyperspectral image compression
 - Time-sensitive application + LVCUGEN service partitions on another core : TM/TC process, reporting execution time and activating the data-intensive app
- Simple ground station simulator
 - Visualisation interface, showing execution time variation
 - Activation of data-intensive app has very little effect on critical task
- Live demo shown at DeRISC workwhop, HiPEAC 2022, Budapest

Result : Flight software use-case

Conclusion

- De-RISC solution
 - Open-source, safety- and determinism-oriented multicore SoC
 - Complete and certifiable software stack
 - Advanced interference measurement and mitigation techniques
 - Validation with representative use-cases
- The De-RISC platform is available now
 - NOEL-V open-source design and evaluation bitstreams
 - XNG, LithOS and their toolchain
 - SafeSU under permissive open-source licence
- Follow-up projects
 - ESA ITT Fifth-gen Space Multicore Processor Prototype
 - ASIC implementation
 - KDT Isolde
 - RISC-V Multicore for safety and security, all De-RISC partners involved

14/12/2022



www.derisc-project.eu

(in) De-RISC

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement EIC-FTI 869945