Introduction to Microchip's RISC-V ecosystem

A Leading Provider of Smart, Connected and Secure Embedded Control Solutions

Luca Cattaneo EMEA Aerospace & Defense Segment Technical Manager December 14, 2022

Pioneering the RISC-V FPGA Revolution

RISC-V revolution benefits

• Free and open ISA

- Clean Slate Design
- Simple, Stable
- Modular, Extendable
- RISC-V owned by everyone
- RISC-V extends Moore's Law
 - Provides a free "architectural" license enabling innovation
 - Customers can, now, influence the micro-architectural design
 - Provides lower power & higher performances
- Chairing Marketing, Debugging, Encryption ISE

Microchip RISC-V Solutions: Address Challenges at the Edge

The PolarFire[®] and RISC-V Revolution: Solving Problems No One Else Can

Enable Innovation by Offering the Most Power-efficient Programmable Solutions

Pioneering the RISC-V FPGA Revolution

2022 Microchip Technology Inc. and its subsidiaries

What is Mi-V?

"Mi-V" (pronounced My-Five) = Microchip's RISC-V Ecosystem

- A continually expanding, comprehensive RISC-V Ecosystem
- Supporting client application development using Microchip's soft-CPUs and RISC-V SoC FPGAs

Flash Technology Based SoC & FPGA Offering

Hard Processor Subsystems, Soft RISC-V CPU's

Features I	RT-FPGA SoC FPGA chnology	RT-ProASIC3 [®] SmartFusion ProASIC3 [®] , IGLOO Flash 130nm	RTG4 [™] Smartfusion2® Igloo2® Flash 65nm	RT-PolarFire PolarFire SONOS 28nm	PolarFire [®] SoC SONOS 28nm
Logic Elements		100 - 30K	5K - 150K	100K - 480K	25K - 450K
Transceiver Rate)		1-5 Gbps	250 Mbps-12.7 Gbps	250 Mbps-12.7 Gbps
I/O Speeds		400 Mbps LVDS	667 Mbps DDR3 750 Mbps LVDS	1600 Mbps DDR4 1.6 Gbps LVDS	1600 Mbps DDR4 1.6 Gbps LVDS
DSP (18x18Mult w/ pre) w/o -adder		240	1480	1420
Max RAM		144 Kb	5 Mb	33 Mb	32 Mb
Processor Optior	Soft Crypto Hard	100 MHz ARM Cortex-M3	Soft RISC-V Secure Micro 166 MHz ARM Cortex-M3	Soft RISC-V SecMcu+Crypto Co-Processor	Soft RISC-V Secure Micro + Crypto Co-Processor 5 RISC-V (1xS51 + 4xU54) Multicore System
On-board Flash		Up to 512 KB code store	Up To 512 KB code store	56 KB secure NVM	56 KB secure NVM 128KB BootFlash
Family Type		CPLD Replacements Smallest Packages	Low Density FPGAs with more resources & Lowest Power	Mid-Range Density FPGAs Lowest Power, Cost Optimized	Open, Lowest Power, Cost Optimized, Programmable SoC

CPUs: Mi-V Soft CPUs Detailed Offering

RISC-V Soft CPU	<u>MiV_RV32</u>	<u>Mi-V_RV32IMAF_L1_AHB</u>	Mi-V_RV32IMA_L1_AHB	Mi-V_RV32IMA_L1_AXI
LEs	4k-10k	26k	10k	10k
Coremark Score	0.177-2.77	2.01	2.01	2.01
Cache Size	N/A (Coming soon)	8KB I/D	8KB I/D	8KB I/D
Tightly Coupled Memory (TCM)	configurable depth upto 256Kb	N/A	N/A	N/A
Compressed	optional	N/A	N/A	N/A
Mul/Div	Optional: MACC, Pipelined-MACC, or 32 cycle fabric	Yes	Yes	Yes
Atomics	N/A	Yes	Yes	Yes
Floating Point	N/A (Coming soon)	Single Precision	N/A	N/A
Interface(s)	APB3/AHB/AXI	AHB	AHB	AXI
Debug	Optional	Yes	Yes	Yes
SECDEC	Optional	Optional	Optional	N/A
Availability	2019	2017	2017	2016

Mi-V_RV32 Configurable Soft CPU RT-PolarFire[®] / RTG4[™] / PolarFire[®] / IGLOO2[®]

Features

- 2.77 Coremarks / MHz
- HW breakpoint 1
- Interrupts 13
- Timer / Counter 1
- 50 MHz–150 MHz (Product dependent)
- Optional / Configurable Features
 - AHB/AXI3/AXI4/APB Bus Interfaces
 - Integer mul/div
 - Tightly coupled memory
 - Debug
 - Error Correction

MiV_RV32 Configurator GUI Configuration & Memory Map

Configurator	-		×
Mi-V RV32 Configurator MicrosemicMiV:MIV_RV32:3.0.100			
Configuration Memory Map Extension Options RISC-V Extensions: MC Multipler: Fabric			
Interface Options AHB Master: AHBLite AHB Mirrored I/F: APB Master: APB3 APB Mirrored I/F: AXI Master: None AXI Mirrored I/F:			
Reset Vector Address Upper 16bits (Hex): 0x8000 Lower 16bits (Hex): 0x0 BootROM Options RectPrOM: Receptory: RectPrOM:		0	
Tightly Coupled Memory (TCM) Options TCM: TCM 2015 TCM APB Slave (TAS): T			
External System IRQs: 0 🗹 🕄			
Internal MTIME: 🔽 🕈 MTIME Prescaler: 100			
Other Options Debug:			
Help V	ок	Cance	el

icrosemi:MiV:MIV_RV32:3.0.100	
Configuration Memory Map	
AHB Master Address	
Start Address: Upper 16bits (Hex): 0x8000	Lower 16bits (Hex): 0x0
End Address: Upper 16bits (Hex): 0x8fff	Lower 16bits (Hex): 0xffff
APB Master Address	
Start Address: Upper 16bits (Hex): 0x7000	Lower 16bits (Hex): 0x0
End Address: Upper 16bits (Hex): 0x7fff	Lower 16bits (Hex): 0xffff
AXI Master Address	
Start Address: Upper 16bits (Hex): 0x6000	Lower 16bits (Hex): 0x0
End Address: Upper 16bits (Hex): 0x6fff	Lower 16bits (Hex): 0xffff
TCM Address	
Start Address: Upper 16bits (Hex): 0x4000	Lower 16bits (Hex): 0x0
End Address: Upper 16bits (Hex): 0x4000	Lower 16bits (Hex): 0x3fff
TCM APB Slave Address	
Start Address: Upper 16bits (Hex): 0x4000	Lower 16bits (Hex): 0x0
End Address: Upper 16bits (Hex): 0x4000	Lower 16bits (Hex): 0x3fff
BootROM Address	
Source Start Address: Upper 16bits (Hex): 0x8000	Lower 16bits (Hex): 0x0
Source End Address: Upper 16bits (Hex): 0x8000	Lower 16bits (Hex): 0x3fff
Destination Address: Upper 16bits (Hex): 0x4000	Lower 16bits (Hex): 0x0

MIV_RV32 Full I/O View

r)
CLK	
RESETN	
DAP_APB_SLV	
- DEBUG	
JTAG_TCK	
JTAG_TDI	
<pre>dtag_tdo</pre>	EXT_RESETN
<pre>dtag_tdo_dr</pre>	AXI3_MSTR
JTAG_TMS	AXI4_MSTR
JTAG_TRST	AHBL_MSTR
ACCESS	APB_MSTR
► TCM_CPU_ACCESS_DISABLE	AXI3_M_SLV
► TCM_DAP_ACCESS_DISABLE	AXI4_M_SLV
- IRQ	AHBL_M_SLV
EXT_IRQ	APB_M_SLV
EXT_SYS_IRQ[5:0]	
► TMR_IRQ	
SYS_TIMER	
TIME_COUNT_IN[63:0]	
<pre>TIME_COUNT_OUT[63:0]</pre>	
	J

MIV-ESS Extended SubSystem Solution

The MIV_ESS is a highly configurable, compact, extended subsystem solution

Optional bootstrap to MIV_RV32 TCM from the following non-volatile memory sources.

- Serial peripheral interface (SPI) Flash
- I2C EEPROM
- – On-chip µPROM (PolarFire[®] and RTG4[™] devices)

Optional memory-mapped peripheral modules.

- - Timer (64-bit with pre-scaler)
- – Watchdog
- – SPI
- - I2C
- $-\mu DMA$ with AHB-Lite read port and either AHB-Lite or TAS (APE
- – Platform-Level Interrupt Controller (PLIC) with up to 31 interrup
- – GPIO
- – UART
- Seven optional external APB interfaces to connect additional per IMPRINT COLL

RISC-V Multicore on RT FPGAs

RISC-V Multi-Processors Subsystem

 Extensive list AMBA Based IP cores available AMBA Buses, LSRAM, UART, GPIO, SPI, I2C, Timer, WDOG, 1553B, Ethernet MAC 10/100/1000

- RT PolarFire[®], RTG4[™] FPGA
 - RISC-V Lockstep System AN4228
 - Single RISC-V System TU0775, AC490

Figure 1-1. Lockstep Design High-level Block Diagram

Getting Started

www.mi-v.org

- Design Tools
- Supported hardware
- Documentation:
 - Tutorials
 - Application notes & User guides

GitHub page:

- <u>https://github.com/RISCV-on-Microsemi-</u>
 <u>FPGA</u>
- Reference designs
 - Libero Projects
 - SoftConsole projects
- RTOS Ports
- Documentation and Sample Designs

Home / Products & Services / FPGA & SoC / Mi-V RISC-V Ecosystem

Mi-V RISC-V Ecosystem

Overview Getting Started Documents Renode Webinar Series Mi-V Partners Articles and News

Step 1: Download and Install the Latest Tools

Downloads	Description
Libero SoC Design Suite	Libero SoC design suite is a comprehensive tool for designing with Microsemi FPGAs and SoCs
SoftConsole	SoftConsole is a free software development environment for embedded firmware development

Step 2: Choose a Target to view the compatible reference material

The PolarFire Evaluation kit is a full-featured kit that offers evaluation of high-speed transceivers, 10GbE, IEEE1588, JESD204B, SyncE, CPRI and more. The kit includes an HPC FMC, PCIe, dual GbE, SFP+ and USB. Price: \$1500.

Step 3: Download the reference material compatible with your target

PolarFire Evaluation Kit			
Reference Material	Description		
TU0775: How to build a Mi-V soft CPU subsystem TU0775: Design file	A complete user guide to build a basic Mi-V CPU subsystem and execute a first embedded application		
Mi-V_RV32IMA_L1_AHB Handbook Mi-V_RV32IMA_L1_AXI Handbook Mi-V_RV32IMAF_L1_AHB Handbook Mi-V_RV32IMC Handbook	Handbooks for Mi-V Soft CPUs		
Mi-V RV32 Migration Guide	A guide to aid migration from the Mi-V RV32IMA(F) range of soft CPU cores to the latest high configurability Mi-V RV32 soft CPU core		
AC466: Application Note AC466: Design Files	A guide to implement Auto update and In-Application Programming using a Mi-V Soft-CPU		
DG0798: Demo Guide DG0798: Design Files	A guide to access the PolarFire FPGA System Services using a Mi-V Soft-CPU		
DG0799: Demo Guide DG0799: Design Files	A guide to run a 1G Ethernet Loopback design using IOD CDR, CoreTSE and a Mi-V Soft-CPU		
DG0802: Demo Guide DG0802: Design Files	A guide to implement, control and communicate using a PCIe Root port using a Mi- V Soft-CPU		

Libero[®] SoC Design Suite

- Comprehensive FPGA Design Suite
- Easy to Learn
 - Intuitive design flow
 - GUI wizards guiding the design process

- Easy to Adopt
 - Rich IP library of Microsemi and Partner Cores
 - Availability of complete reference designs and kits

SoftConsole Eclipse IDE

- A single tool chain supporting RISC-V MCU's
 - Easy migration from ARM to RISC-V
- Running on Linux or Windows Hosts
- Supported by a Tier 1 Supplier
- Bundled with example projects and RTOSs

Eclipse IDE Design Flow

Instruction Set Simulator

Fully integrated within SoftConsole

Pioneering the RISC-V FPGA Revolution

PolarFire® SoC and RISC-V: Freedom to Innovate

PolarFire™ SoC Architecture

Freedom to Innovate in:

PolarFire® SoC used on Internation Space Station

- Skycorp platform built around PolarFire[®] SoC FPGA device, <u>MPFS250T</u>
 - a 64-bit multicore RISC-V[®] CPU subsystem processor using following features
 - FPGA fabric logic
 - error-correcting DRAM,
 - eMMC Flash, SD[™] card,
 - Ethernet and USB systems.
 - The platform also runs the Linux Operation System (OS) in addition to FreeRTOS
- intelligent Space System Interface Modular Coupling Kit is the "USB for Space"
 - testing occurred on the robotic connector developed by iBoss GmbH to transmit power and data like a computer's USB cable
 - <u>https://www.microchip.com/en-us/about/media-</u> <u>center/blog/2022/polarfire-international-space-station</u>
- system has been working successfully for over 6 months

Pioneering the RISC-V FPGA Revolution

Get Ready for More!!

HPSC: Redefining What's Possible For Space

- NASA JPL awarded contract to Microchip to develop the next-generation High-Performance Spaceflight Computing (HPSC) processor
- Provides >100X compute over current solutions
 - Based on multi-core, fault tolerant **RISC-V architecture**
- Microchip will architect, design and deliver HPSC integrating Ethernet, AI/ML, High-Speed Standardsbased Connectivity, Fault-Tolerance, Defense-in-Depth Security and Low Power capabilities
- Global collaboration between Microchip & Industry
 - R&D, IP & Manufacturing in **Canada, Europe, U.S., SE Asia**
- Target device availability in 2024

August 15, 2022 - NASA

NASA Awards Next-Generation Spaceflight Computing Processor Contract

Photo courtesy: NASA

Extensible Space System Solution

352

Microchip Proprietary and Confidential

Extensible Space System Solution

Needs for 100G Edge Compute with Market Leading Power Efficiency

PolarFire [®] Capabilities			PolarFire [®] 2 Capabilities
Power Efficiency	Class Leading		 Support 100G Edge Compute at SAME POWER as PolarFire[®]
Aerospace and Defense	 SEU Immune Military Grade Anti- Tamper Security 	NEXT	SEU ImmuneResistant to Next Generation Threats
Smart Embedded Vision	• Up to 4K Video	GENER	• Up to 8K Video
Wireless/Wireline Infrastructure	 40G Fabric Processing 8x8 MIMO Radio 12G Multiprotocol Transceivers 	ATION	 100G Processing 64x64 MIMO Radio 32G Multiprotocol Transceivers
AI/ML/Edge IoT	 1-2 CNNs Simultaneous Real Time and OS capability 		 Multiple Concurrent CNNs Multifold CoreMark[®] Performance Increase

PolarFire® Capabilities

Previewing PolarFire® 2 *Doubling* our POWER-EFFICIENCY Again!

Military Grade Anti-tamper and Cybersecurity Configuration SEU Immune Deterministic, Asymmetric Processing HPSC Compatible Core Complex

PolarFire®2 Platform Extends Mid Range FPGA Leadership

- 2x More Power Efficient Than Current Best in Class PolarFire® 15X More TOP/S, 2X Fabric Performance at Same Power as PolarFire®
- Immune to SEU Upsets with Infinite Re-programmability and Partial Configuration
 No limits to programming cycles and can re-program specific sectors
- Next Gen Military Grade Security Resistant to emerging cyber and physical security threats

2x Power Efficiency

Exceptional reliability Zero configuration upsets

Military-grade security Best cyber- and anti-tamper security

Provides Extensibility For Lager High Performance Spaceflight Computing

2022 Microchip Technology Inc. and its subsidiaries

Summary

rich RISC-V offering to target FPGA

- Inspectable RTL
- suitable for system critical platforms
- Polarfire[®]SoC Multiprocessing
 - Linux and real time in a deterministic, coherent CPU cluster
- Low Power
 - 30-50% less than competition

Defense grade security/secure boot

Spectre/Meltdown immune

Exceptional reliability

- All memories are protected
- Longevity

Microchip Total System Solutions

Full compatibility across all platforms

Thank You!!

