

FreNox RISC-V

processor implementations for secure and reliable applications

Dr. ir. Gerard Rauwerda Business Developer (high-tech & big science) +31 182 59 4000 gerard.rauwerda@technolution.nl www.technolution.com/advance

Redefining solutions

Technolution Advance High-tech & big science

Technolution Prime Security

Technolution Perform Manufacturing

High-speed data acquisition & control

Classified line encryption & network diodes

Al computer vision & predictive maintenance

= open standard; ≠ open source

Flexibility & Portability

- Heterogeneous systems
- Hybrid solutions
 - Control flow in software
 - Data flow in hardware
- Security, safety & reliability
 - separation of concerns,
 - by executing each software component,
 - on multiple isolated cores in mixed criticality systems

Flexibility & Portability

- Technology agnostic platform development
 - Target multiple FPGA vendors

intel

- \Rightarrow NIOS II soft processor (Intel)
- ⇒ MicroBlaze soft processor (Xilinx)
- Our RISC-V processor IP allows for portability without vendor lock-in
 - Re-using hardware sources
 - Re-using software tools
 - Re-using software sources
- \Rightarrow same processor
- \Rightarrow same compiler
- \Rightarrow same software

Secure line encryption

- Hardware VPN solution (NATO/EU Restricted)
 - Control flow in software / V RISC-V*
 - Data encryption in hardware logic

Secure line encryption

- Hardware VPN solution (NATO/EU Restricted)

 - Data encryption in hardware logic
 - ⇒ Full understanding of our custom implementation
 - ⇒ Transparency for customer/evaluator
 - ⇒ Lifecycle management (transparency & portability)

$\mathbb{R} = \mathbb{R} = \mathbb{R} = \mathbb{R}$ processor IP

FreNox RISC-V IP

RISC-V processor family, 100% developed by Technolution

E XILINX.

No dependencies on open-source implementations

intel

- Implemented in
- **FreNox** RISC-V processor IP allows for portability without vendor lock-in
 - Re-using hardware sources \Rightarrow same processor
 - Re-using software tools
 - Re-using software sources
- ⇒ same compiler

- ease of qualification & certification
- \Rightarrow same software
- **FreNox** RISC-V IP implemented in NLD/NATO/EU classified security

Embedded processor

- hardware
 - RV32I(M)
 - 32bits, mul/div
 - 5 stages Harvard arch
 - cache or internal RAM
 - IO space

- software
 - Bare metal
 - FreeRTOS
 - ThreadX

Application processor

- hardware
 - RV32IMAS
 - 32bits, mul/div, atomic, supervisor
 - 5 stages Harvard arch
 - iMMU, dMMU (1 128 entries)
 - 8 way associative cache (4 32k)
 - cache coherency (DMA)
 - IO space
- software
 - Linux
 - Buildroot

Radiation hardened FPGA

- Europe needs non-dependent access to critical space technologies
 - European radiation-hard FPGA

 FreNox-E SoC implemented and demonstrated in NG-Medium RH-FPGA

FreNox-E full System-on-Chip

FreNox-E verification & validation

Verification by simulation

- Coroutine-based cosimulation testbench environment using Python
- Continuous Integration
 - Reliability, Repeatability, Predictability
 - Automated regression testing

NG-MEDIUM BRAVE FPGA

- Upload software using SpW-RMAP
- Control using GPIO
- Output to monitor using VGA character generator

Demo: Space Invaders

GDB remote interface

- Processor-agnostic GDB remote interface
- SW-implemented
- Entry via interrupts:
 - GDB UART RX IRQ
 - ebreak (for breakpoints)
- Control program execution via stackframe manipulation

CDPU: Control & Data Processing

for SmallSat instruments

Netherlands Space Cesa Office

Technolution

Flexible & reliable integration of sensor and platform

KDT-JU TRISTAN project

- European R&D project on RISC-V for high availability and space
 - High security/reliability for low-end processors

Continuation of fault-tolerance & security research:

- → Integration, validation and epxloitation of hardware-enforced fine-grained data labeling in RISC-V architecture
- \rightarrow Integration and validation of Hardware Trojan detection techniques

$\mathbb{R} = \mathbb{R} = \mathbb{C} + \mathbb{C}^{\circ}$ in summary ...

FreNox RISC-V IP

- RISC-V processor family, 100% developed by Technolution
- **FreNox** RISC-V processor IP allows for portability without vendor lock-in
 - Re-using hardware sources \Rightarrow same processor

 - Re-using software sources
- \Rightarrow same software

Re-using software tools \Rightarrow same compiler \vdash ease of qualification & certification

- **FreNox** RISC-V IP implemented in NLD/NATO/EU classified security
- FreNox-E SoC demonstrated in NG-Medium RH-FPGA
- **FreNox-E** SoC designed in PolarFire FPGA for CDPU
- RISC-V fault-tolerance & security R&D activities in Horizon Europe and **ESA-supported** activities

Technolution

Thanks for your attention!

Dr. ir. Gerard Rauwerda

Business Developer

Technolution Advance

Burgemeester Jamessingel 1 2803 WV Gouda The Netherlands

Gerard.Rauwerda@technolution.nl

+31 182 59 4000

technolution-advance