
1

ESA UNCLASSIFIED – For Official Use

Fast Forward for RISC-V in Space

The Coyote IP core

RISC-V in Space – Workshop on 14 December 2022

Roland Weigand, Felix Siegle, ESA

22

ESA UNCLASSIFIED – For Official Use

Why...

Why RISC-V?

Why not SPARC forever?

Why not ...?

33

ESA UNCLASSIFIED – For Official Use

SPARC in space – 25 years – 5 generations
• ERC32 – Based on a commercial SPARC-V7 IP-core, TSC69x series

• LEON2 SPARC V-8 IP-core owned by ESA → AT697F

• LEON3 IP-core owned by CAES (aka Cobham Gaisler) → GR712RC

• LEON4 IP-core, introducing L2 cache → GR740, QML-V in 2022

• LEON5, introducing dual-issue → GR765, under development

moreover, LEON IP is on many other ASIC and FPGA

•

•

What’s next?

SPARC is in all our missions
1000s of flight parts
A SUCCESS STORY

mature SW ecosystem
demand in space continues

WHY SHOULD WE CHANGE?
obsolete in the commercial world

lack of community backing
no more compiler fixes

lack of developers

44

ESA UNCLASSIFIED – For Official Use

What about a main-stream proprietary ISA?
Advantages:
● High quality / maturity of the IP
● Mature SW ecosystem
● IP and support from one hand
● Large developer community

Drawbacks:
● Single source IP provider
● No modifications allowed (hardening)
● ¨one hand¨ scattered over many sites
● SW ecosystem not suitable for space
● Cost? – but quality is never for free

55

ESA UNCLASSIFIED – For Official Use

Why RISC-V?
Advantages:
● Open ISA – just like SPARC – but RISC-V has active standardization
● Rapidly growing, multiple IP sources: commercial, open-source, free
● Highly extensible: ISA covers low-end to high-performance applications
● Overcomes annoying ¨features¨ of SPARC (delay slots, register windows)
● Rapidly growing developer community at all levels (industry, academia)

Drawbacks:
● Limited maturity of some IP
● Long process for extension ratification
● Not clear if all extensions will ¨survive¨
● Custom extensions are risky: SW support!

66

ESA UNCLASSIFIED – For Official Use

Prior RISC-V R&D – First Steps at ESA
• Limited RISC-V efforts at ESA until 2021 (few 100 k€):

● small studies, benchmarking, internal technical work, trainees and PhD
• Open Instruction Set Architectures (ISA) in Space – ADCSS 2019

http://microelectronics.esa.int/papers/OpenSourceISA-RolandWeigandPub-2019-11-13.pdf

• RISC-V First Steps Into Space – ADCSS 2021
http://microelectronics.esa.int/papers/RISCV-ADCSS-2021-11-18.pdf
(video on ADCSS site)

• Several EC H2020 grants running from 2019 – 2022
● SELENE, De-RISC (not only targeting space)

• Lobbying mostly unsuccessful
● People did not know how to spell RISC-V

http://microelectronics.esa.int/papers/OpenSourceISA-RolandWeigandPub-2019-11-13.pdf
http://microelectronics.esa.int/papers/RISCV-ADCSS-2021-11-18.pdf
https://indico.esa.int/event/393/contributions/6555/attachments/4458/6734/1610%20-%20ESA%20-%20RISC-V.mp4

77

ESA UNCLASSIFIED – For Official Use

2021/22: RISC-V@ESA in Fast Forward Mode
• Concept study for GR7xV HPC started in ARTES in 2021

● Target 7 nm – technology not available for space
• 2022 started with a ¨shoestring¨ ITT in TDE: 450k€

● Can we do RISC-V prototypes in 22-28 nm technology?
• Synergy with GR765 (originally planned as 8-core LEON5 only)

● → RISC-V is hitch-hiking on SPARC, saving cost...
● Only CPU cores are duplicated, but cache RAM and SoC shared
● Facilitates transition for users: one chip, one board, two modes

• GR765 phase 2 released with ARTES funding also in 2022
• Today ~ 4 M€ public funding committed into GR765 / GR7xV

● complemented by significant co-funding
● Prototypes funded, flight parts (ROM cost 4.5 M€) TBC

88

ESA UNCLASSIFIED – For Official Use

GR765 – transition from SPARC …
• GR765 Phase 1 : Multi-Core LEON5FT (SPARC only) Microprocessor Development, started 03/2021

• GR765 Phase 2 : Layout, package design, manufacturing (ST 28nm FDSOI), started 07/2022
● GR765 was first planned as a pure SPARC chip
● No ESA ITT – initiated by CG responding to market demand for higher performance and enhanced interfaces

99

ESA UNCLASSIFIED – For Official Use

GR765 – transition from SPARC … to RISC-V
• GR765 Phase 1 : Multi-Core LEON5FT (SPARC only) Microprocessor Development, started 03/2021

• GR765 Phase 2 : Prototypes in ST 28nm FDSOI, started 07/2022

• ITT “RISC-V Microprocessor Prototypes”, started 07/2022

→ RISC-V is “hitch-hiking” on the GR765 design and product concept which was already in progress

GR765 in SPARC/LEON5 mode GR765 in RISC-V/NOEL-V mode

1010

ESA UNCLASSIFIED – For Official Use

GR7xV
• 4x4 core RISC-V Processor mode

• Target 7 nm (UDSM)

• Level 3 cache

• Accelerator, eFPGA

• Chiplet partitioning TBD

• Phase 1 (Architectural Design)
started Q3/2021 (ARTES, 1135 k€)

• Manufacturing date TBC, pending
UDSM space ASIC platform

● ~70 M€ subscribed for
”EEE sovereignty”

● Split of cake is unclear
● Foundry NDA difficult

1111

ESA UNCLASSIFIED – For Official Use

RISC-V ancillary needs (ecosystem)
• Associated IP developments

● Vector / SIMD extensions → Development, validation, compiler DSP libraries

• Hypervisor (XtratuM porting done in H2020-DeRISC) → qualification

• Operating systems with drivers and boot SW (RTEMS, Linux, PikeOS...) → porting and qualification

• Compilers : can we rely on community?

• AI inference tools

• Benchmarks (OBPMark, AI evaluation)

• Debug and trace tools

• Predictability / timing analysis

• Parallel programming tools (OpenMP...)

• Simulators / Emulators → timing accuracy vs performance trade-off?
● Transactional (e.g. SystemC) for SoC design space exploration
● Instruction Set Simulator (ISS) and FPGA emulator for Software Validation (QEMU)

• Security addenda: Secure Boot (root of trust), Secure Islands (enhanced MMU, IOMMU), STM/STC

planning and fundraising for these activities is in progress

1212

ESA UNCLASSIFIED – For Official Use

NASA High Performance Space Computing (HPSC)
• 2018 plans: 32 nm SOI, ARM Cortex A53

[W. Powell, RadHard Electr Techn 2018]

• 2021 refurbishment: 22 nm (or below), ISA open
[J. Butler, Space Comp Conf 2021]

• 2021: 3 parallel architecture studies: trade-off ARM and RISC-V?

• 2022/08: awarded contract to Microchip, using SiFive RISC-V cores
https://www.techspot.com/news/95911-sifive-risc-v-cores-microchip-processors-power-nasa.html

2018 - ARM

2022: RISC-V

https://www.techspot.com/news/95911-sifive-risc-v-cores-microchip-processors-power-nasa.html

1313

ESA UNCLASSIFIED – For Official Use

Space Micropocessor Roadmaps in Europe
● Almost 30 years of SPARC
● LEON chips by Microchip and

Cobham Gaisler (CG)
● CG transition to RISC-V
● RISC-V on Microchip

PolarFire-SoC FPGA
● NASA HPSC-new opted RISC-V

(SiFive/Microchip)

● NX roadmap: ARM
● ARM also on Xilinx FPGA

1414

ESA UNCLASSIFIED – For Official Use

Space Micropocessor joint European Roadmap
● Almost 30 years of SPARC
● LEON chips by Microchip and

Cobham Gaisler (CG)
● CG transition to RISC-V
● RISC-V on Microchip

PolarFire-SoC FPGA
● NASA HPSC-new opted RISC-V

(SiFive/Microchip)

● Harmonizing the ISA to RISC-V
between European processor and
FPGA vendors would be highly
desirable.

1515

ESA UNCLASSIFIED – For Official Use

Acknowledgements
We are at the beginning of our RISC-V adventure

… acknowledgements go to all colleagues (*) and people in industry which help
(*) in particular in TEC-EDD, TEC-SWF, TEC-SWT, TIA-TTS

● Reviewing specs
● Providing use cases
● Benchmarking
● Managing the contracts

● … promoting RISC-V, lobbying, fundraising

 1ESA UNCLASSIFIED - For ESA Official Use Only

Homebrew RISC-V on BRAVE-Large

Felix Siegle, TEC-EDD
RISC-V in Space Workshop, 14/12/2022

 2

”Coyote” System-on-Chip
• Hobby Covid-19 project
• Motivation:

• Learn more about RISC-V
• Learn SystemVerilog (in addition to VHDL)
• Learn more about low-level software aspects

(linker scripts, bootloader etc.)
• Fully functional but minimalistic System-on-Chip:

• Classic 5-stage pipeline RISC-V CPU
implementing I and M extensions (RV32IM)

• On-chip instruction and data memory
• Avalon interconnect
• Low-speed peripherals: GPIO, UART, SPI, I2C
• SpaceWire sub-system: Codec, Router, RMAP Target, DMA Engine
• USB2 <> SpaceWire bridge

 3

Coyote System-on-Chip
• Design is separated into two distinct parts:

• “Inner” SoC includes CPU, interconnect, low-speed peripherals,
DMA, RMAP, control logic blocks (SystemVerilog)

• “Outer” design includes SpaceWire codec, SpaceWire router,
USB interface (VHDL)

• CPU is implemented using 5 stages and reaches good
performance (1.8 CoreMark/MHz, up to 100 MHz on Spartan-6)

+ HW MUL/DIV instructions (M extension)
© https://hackmd.io/@WeiCheng14159/rkUifs2Hw

 4

Poor man’s SpaceWire brick

• Small, self-made FPGA board based on Spartan-6 FPGA
• Produced in China for ~ $50 incl. all parts
• Includes Raspberry Pi-compatible 40-pins header
• Implements the whole SoC but is only used as

USB-SpaceWire bridge in this project
• 100 MHz clock
• Can sustain full bi-directional SpaceWire 200 Mbps data rate
• Signal integrity of SpaceWire link checked with

SpaceWire sniffer / scope

 5

Verification / validation
• All IP cores are “kind of” verified in simulation
• SystemVerilog testbench allows execution of binaries on CPU in simulation
• Several programs written in assembler / C for hardware tests (SpaceWire, interrupts etc.)
• A few self-checking programs executed successfully:

• CoreMark
• AES-256 encryption/decryption

• Executes the RISC-V compliance suite successfully (I & M extensions)
• Runs FreeRTOS successfully, described in more detail later
• SpaceWire codec successfully validated with STAR-Dundee conformance tester
• RMAP target checked for correctness by using RMAP library from STAR-Dundee

 6

Software environment
• Software can be written in

Assembler or C/C++ (and others)
• Open source RISC-V GCC/Clang

available
• Projects are managed with CMake
• Integrated everything into Visual

Studio Code nice for C, assembler,
python, SV, VHDL…

 7

Software drivers
• UART

Put char, get char, print string, set baudrate

• SPI
Init, setup transfer, run transfer, chip select, send data

• I2C
Init, start, stop, write

• GPIO
Get values, set values, set direction, set interrupts, write single value

• System Timer
Get/clear MTIME, set time compare value, set/get pre-scaler, wait for amount of ticks

• SpaceWire
See screenshot

• Flash Memory
Read, Page Program, Sector Erase, Write enable/disable

SpaceWire driver
API

 8

Poor man’s GRMON
• Need some way to communicate with SoC
• Implemented a USB SpaceWire C library based on libusb / libftdi and a RMAP library to

read/write registers
• Works on Linux, Mac, Windows
• To simplify writing test scripts etc., I also created a Python module, that includes

functions such as: rmap_write_word, rmap_read_data, raw_send_and_receive
• On top of that, some Python functions add convenicene/debugging functionality, e.g.,

print a range in memory, upload a program, print configuration registers

Python library for
convenience/

debugging functions

 9

NG-Large port
• Same SoC as the one on development board,

including the following IPs:
• UART, I2C, SPI
• SpaceWire (Codec, Router, RMAP, DMA)

• 128 kB on-chip instruction memory
• 64 kB on-chip data memory
• Targeted speed:

• CPU: 25 MHz
• SpaceWire: 50 Mbps

• Reference: Cyclone V / Spartan 6
• CPU: 80 – 100 MHz
• SpaceWire: > 200 Mbps

SpW brick

NG-LargeSPI Flash

 10

NG-Large results

• SystemVerilog part had to be translated to Verilog
• Tiny core, uses only ~5-10% of the resources
• Large amount of BRAMs because of missing byte-enables and ECC

scheme
• Needed to rewrite / pipeline the interconnect to achieve better timing
• Couldn’t figure out some of the macros, e.g. register files
• NG-Large Dev board has AC caps in SpaceWire lines…

SpW IP

 11

NG-Large Coyote “validation”
• Executed a couple of tests:

• Full memory check through RMAP
• Simple UART test
• All RISC-V compliance tests
• SpaceWire DMA tests
• AES-256 self-test
• CoreMark bechmark

• Result reduced to 1.44 CoreMark/MHz
due to pipelined interconnect

• All tests executed correctly except of timecode test
(probably small bug in IP and/or clock domain crossing)

 12

FreeRTOS port

Had not much experience of how FreeRTOS works internally

• Fortunately, SiFive did a FreeRTOS port for their RISC-V CPUs already
• SiFive FreeRTOS easily portable to Coyote
• Good example for the advantages of an open ISA!
• CPU, CSRs (configuration & status registers), timer, and interrupt handling is standardized
• Therefore, easy to port SW written for another CPU with same ISA (even if much more powerful etc.)

Worked out of the box!

 Discovered a HW bug in the interrupt handling of the CPU, which has not been much tested before.
• FreeRTOS creates a lot of timer interrupts
• In addition, the application software makes use of SpW DMA interrupts
• Good “stress test” for the interrupt handling

 13

FreeRTOS demo software

• Small example with several tasks
• Time-triggered real time scheduling
• Telecommand and telemetry packets are

AES-256 encrypted
• 3 services:

• Test: Simply relay data
• Get housekeeping data: Returns HW

status and some SW counters
• SPI flash management:

Read, program page, erase sector
• Python script for testing

UART
Task

SpW RX Task

SpW TX Task

TC Task

TM Task

UART
Queue

TC
Queue

TM
Queue

SpW TX
Queue

SpW RX
DMA

Flash API

SpW TX
DMA

UART API

1414

ESA UNCLASSIFIED – For Official Use

Welcome

Welcome to RISC-V in Space
and

Stage open for our speakers

●

●

● Practical announcements

● Please bring coffee cups to the bin after use

● Participants on the webex: questions in chat

● 25 min time slot = 20 min speech to allow for Q&A

