Fast Forward for RISC-V in Space

The Coyote IP core

RISC-V in Space — Workshop on 14 December 2022
Roland Weigand, Felix Siegle, ESA

- 1 ™ 3+

EEEEEEEEEEEEEEEEEEEEEEE

- = - - Dk [] [~ |
im o E ==l = = = 2 I == 4 '+ 3 ESA UNCLASSIFIED - For Official Use

Why...

Why RISC-V?

Why not SPARC forever?

= N E Es —_wis

SPARC in space — 25 years — 5 generations {esa

ERC32 — Based on a commercial SPARC-V7 IP-core, TSC69x series
LEON2 SPARC V-8 IP-core owned by ESA — AT697F

LEONS IP-core owned by CAES (aka Cobham Gaisler) — GR712RC
LEON4 IP-core, introducing L2 cache — GR740, QML-V in 2022
LEONS, introducing dual-issue — GR765, under development
moreover, LEON.IP is on many other ASIC and FPGA

7;"emic - Atmél - Microchjip

Aeroflex —%Cobham + Gaisler (jCAES) >- ‘

1985 1990 1995 2000 2005 2010 2015 2020 2025 2030

ey
SPARC

Compliant
SCD VS

b ’

SPARC is in all our missions
1000s of flight parts
A SUCCESS STORY

mature SW ecosystem

demand in space continues
WHY SHOULD WE CHANGE?

obsolete in the commercial world

lack of community backing
no more compiler fixes

lack of developers

+ THE EUROPEAN SPACE AGENCY

Nz == P
e ESA UNCLASSIFIED - For Official Use

What about a main-stream proprietary ISA? Eesa

Advantages:
High quality / maturity of the IP

Mature SW ecosystem
IP and support from one hand
Large developer community

B

NOR / NAND / SRAM DDR3 / LPD / DDR4 EEPROM / MRAM High Speed Serial
Mer

HPSC “Chiplet” Reference Design

Single source IP provider

No modifications allowed (hardening)
“one hand” scattered over many sites
SW ecosystem not suitable for space
Cost? — but quality is never for free

+ THE EUROPEAN SPACE AGENCY

- - - e —] o | NP - |
I | H em l m E = W = = e I =m 4= & 3= ESA UNCLASSIFIED - For Official Use

Why RISC-V?

Advantages:
Open ISA —just like SPARC — but RISC-V has active standardization
Rapidly growing, multiple IP sources: commercial, open-source, free
Highly extensible: ISA covers low-end to high-performance applications
Overcomes annoying ‘features” of SPARC (delay slots, register windows)
Rapidly growing developer community at all levels (industry, academia)

Rapid RISC-V growth led by industrial

Limited maturity of some IP

Long process for extension ratification
Not clear if all extensions will “survive”
Custom extensions are risky: SW support!

+ THE EUROPEAN SPACE AGENCY

iy Nz o
ot = » H =l R ESA UNCLASSIFIED - For Official Use

Prior RISC-V R&D - First Steps at ESA esa

Limited RISC-V efforts at ESA until 2021 (few 100 k€):
small studies, benchmarking, internal technical work, trainees and PhD
Open Instruction Set Architectures (ISA) in Space — ADCSS 2019

RISC-V First Steps Into Space — ADCSS 2021

Several EC H2020 grants running from 2019 — 2022
SELENE, De-RISC (not only targeting space)

Lobbying mostly unsuccessful

People did not know how to spell RISC-V

+ THE EUROPEAN SPACE AGENCY

| - - = i Wy L P g
LT | H em l m E = W = = e I =m 4= & 3= ESA UNCLASSIFIED - For Official Use

http://microelectronics.esa.int/papers/OpenSourceISA-RolandWeigandPub-2019-11-13.pdf
http://microelectronics.esa.int/papers/RISCV-ADCSS-2021-11-18.pdf
https://indico.esa.int/event/393/contributions/6555/attachments/4458/6734/1610%20-%20ESA%20-%20RISC-V.mp4

2021/22: RISC-V@ESA in Fast Forward Mode {esa

Concept study for GR7xV HPC started in ARTES in 2021
Target 7 nm — technology not available for space

2022 started with a "shoestring” ITT in TDE: 450k€
Can we do RISC-V prototypes in 22-28 nm technology?

Synergy with GR765 (originally planned as 8-core LEONS only)
— RISC-V-is hitch-hiking on SPARC, saving cost...
Only CPU cores are duplicated, but cache RAM and SoC shared
Facilitates transition for'users: one chip, one board, two modes
GR765 phase 2 released with ARTES funding also in 2022
Today ~ 4 M€ public funding committed into GR765 / GR7xV
complemented by significant co-funding
Prototypes funded, flight parts (ROM cost 4.5 M€) TBC

7
+ THE EUROPEAN SPACE AGENCY
ESA UNCLASSIFIED - For Official Use

= I EE Pl E E B B s I = 5= = B = 0

GR765 - transition from SPARC ... esa

GRY765 Phase 1 : Multi-Core LEONSFT (SPARC only) Microprocessor Development, started 03/2021
GR765 Phase 2 : Layout, package design, manufacturing (ST 28nm FDSOI), started 07/2022
GR765 was first planned as a pure SPARC chip

No ESA ITT — initiated by CG responding to market demand for higher performance and enhanced interfaces

Secure Console Spvg)grAP
element - 0 UART
— Interrupt
Controller
AHB/APB AHB
Bridge Status
L] DBGMOD5

8

= THE EUROPEAN SPACE AGENCY

~- - - += L m | ® Dz _— =
LT | F nti:m = E =l = = B = 3= = =< ESA UNCLASSIFIED - For Official Use

GR765 - transition from SPARC ... to RISC-V esa

GR765 Phase 1 : Multi-Core LEONS5SFT (SPARC only) Microprocessor Development, started 03/2021
GR765 Phase 2 : Prototypes in ST 28nm FDSOI, started 07/2022
ITT “RISC-V Microprocessor Prototypes”, started 07/2022

— RISC-V is “hitch-hiking” on the GR765 design and product concept which was already in progress

Secure
element

Secure Console Spvg)grmp
element - 0 UART
Interrupt
Controller
AHB/APB AHB
Bridge Status
L] DBGMOD5

AHB/APB
Bridge

AHB/APB TOP AHB/AHB
Bridges Controller Bridge

GR765 in SPARC/LEONS5 mode GR765 in RISC-V/NOEL-V mode

= THE EUROPEAN SPACE AGENCY

~- - - += L m | ® Dz _— =
LT | F nti:m = E =l = = B = 3= = =< ESA UNCLASSIFIED - For Official Use

GR7xV

Eesa

4x4 core RISC-V Processor mode
Target 7 nm (UDSM)

Level 3 cache

Accelerator, eFPGA

Chiplet partitioning TBD

Phase 1 (Architectural Design)
started Q3/2021 (ARTES, 1135 k€)

Manufacturing date TBC, pending
UDSM space ASIC platform

~70 M€ subscribed for
"EEE sovereignty”

Split of cake is unclear
Foundry NDA difficult

d
GPP bus infrastructure
P Level-2 Cache

Accelerator
Cluster

External Boot

DRAM memory

Controllers

q
GPP bus infrastructure

; Level-2 Cache
Level-2 Cache I

Level-3 Cache

Parallel and SPI
Flash/EEPROM || NAND Flash
controller

ONFI FPGA
NAND fabric 1O

Dabuig Trace JTAG
subsystem

Multi-channel
DMA

controller

MIL-STD-1553B

IC controller

QsPI
controller

CAN-FD
controller

FPGA
supervisor

10/100/1000
Ethernet
TT /TSN

HSSL 8 lanes
(SpFi/WizLink)

SpaceWire
router

10

= R EFE ol =E= NN

= THE EUROPEAN SPACE AGENCY
ESA UNCLASSIFIED - For Official Use

RISC-V ancillary needs (ecosystem) Lesa

Associated IP developments

Vector / SIMD extensions — Development, validation, compiler DSP libraries
Hypervisor (XtratuM porting done in H2020-DeRISC) — qualification
Operating systems with drivers and boot SW (RTEMS, Linux, PikeOS...) — porting and qualification
Compilers : can we rely on community?
Al inference tools
Benchmarks (OBPMark, Al evaluation)
Debug and trace tools
Predictability / timing analysis
Parallel programming tools (OpenMP...)
Simulators / Emulators = timing accuracy vs performance trade-off?
Transactional-(e.g. SystemC) for SoC design space exploration
Instruction Set Simulator (ISS) and FPGA emulator for Software Validation (QEMU)
Security addenda: Secure Boot (root of trust), Secure Islands (enhanced MMU, IOMMU), STM/STC

planning and fundraising for these activities is in progress

=+ THE EUROPEAN SPACE AGENCY
| = - = s = Nz ==
= B ol e E = N S A= 1 += I+ 3R ESA UNCLASSIFIED - For Official Use

NASA High Performance Space Computing (HPSC) esa

NOR / NAND / SRAM

DDR3 / LPDDR3 / DDR4

EEPROM / MRAM

High Speed Serial Busses

2018 plans: 32 nm SOI, ARM Cortex A53
[W. Powell, RadHard Electr Techn 2018]

2021 refurbishment: 22 nm (or below), ISA open
[J. Butler, Space Comp Conf 2021]

2021: 3 parallel architecture studies: trade-off ARM and RISC-V?
2022/08: awarded contract to Microchip, using SiFive RISC-V cores

@ X280 Multi Cluster Core Complex

X280 Core X280 Core

RV64GCV RVB4GCV
64-bit RISC-V CPU 64-bit RISC-V CPU

8MB Shared System Cache (ECC)

8x Banks Coherent System Fabric

Memory Port (1 or 2 ports) System Port (1 or 2 ports)
256-bit width per port 64-bit width

+ THE EUROPEAN SPACE AGENCY
ESA UNCLASSIFIED - For Official Use

https://www.techspot.com/news/95911-sifive-risc-v-cores-microchip-processors-power-nasa.html

* Almost 30 years of SPARC

* LEON chips by Microchip and
Cobham Gaisler (CG)

* CG transition to RISC-V

* RISC-V on Microchip
PolarFire-SoC FPGA

* NASA HPSC-new opted RISC-V
(SiFive/Microchip)

* NX roadmap: ARM
* ARM also on Xilinx FPGA

Tem/c Atmel Mlcrochlp

Nanoxplére

arm (ogo is
protected

1990 1995 2000 2005 2010

2015

= B PE E Vol =

+ THE EUROPEAN SPACE AGENCY
ESA UNCLASSIFIED - For Official Use

Space Micropocessor joint European Roadmap {esa

* Almost 30 years of SPARC

* LEON chips by Microchip and
Cobham Gaisler (CG)

* CG transition to RISC-V

* RISC-V on Microchip
PolarFire-SoC FPGA

* NASA HPSC-new opted RISC-V
(SiFive/Microchip)

* Harmonizing the ISA to RISC-V
between European processor and
FPGA vendors would be highly

desirable. I

om oo _
protected - _

1990 1995 2000 2005 2010 2015 2020 2025 2030

+ THE EUROPEAN SPACE AGENCY

- - - e —] 210 o | | P - |
LT | H em l m E = W = = il N I S = . ESA UNCLASSIFIED - For Official Use

Acknowledgements esa

We are at the beginning of our RISC-V adventure

... acknowledgements go to all colleagues (*) and people in industry which help
(*) in particular in TEC-EDD, TEC-SWF, TEC-SWT, TIA-TTS

Reviewing specs
Providing use cases
Benchmarking
Managing the contracts

... promoting RISC-V, lobbying, fundraising

=+ THE EUROPEAN SPACE AGENCY
S . [E BE B —
= i 1 + 7 ESA UNCLASSIFIED - For Official Use

Homebrew RISC-V on BRAVE-Large

Felix Siegle, TEC-EDD
RISC-V in Space Workshop, 14/12/2022

— =] = _ o]l E= == ®pp ™] 3R+ + =

% THE EUROPEAN SPACE AGENCY

’Coyote” System-on-Chip

esa

Hobby Covid-19 project
Motivation:

 Learn more about RISC-V

Coyote
RISC-VIM
CPU

* Learn SystemVerilog (in addition to VHDL)

* Learn more about low-level software aspects
(linker scripts, bootloader etc.)

Fully functional but minimalistic System-on-Chip:

* Classic 5-stage pipeline RISC-V CPU
implementing | and M extensions (RV32IM)

* On-chip instruction and data memory
* Avalon interconnect
* Low-speed peripherals: GPIO, UART, SPI, 12C

Instruction Data
Memory Memory

0x80000000) ((0xC0000000

{ {

Cavsit GPIO UART
Control
lOXOOOO l |0X1000 l |0X2000'

{

Interconnect

Peripheral Bridge

{ {

RMAP] [SpaceWIre

DMA
@) @)
SpaceWire
Router
(3) (2)
SpaceWire USB
Codec Bridge

* SpaceWire sub-system: Codec, Router, RMAP Target, DMA Engine

* USB2 <> SpaceWire bridge

{

b b
P 1

0x3000
12C

|

(0x4000)

SpaceWire

Control =i

l (0x5000)

2

— Il 2= = 4 |1

i

= OH ba I

- .+

R‘IM
L1 N

mm am (v

2 THE EUROPEAN SPACE AGENCY

Coyote System-on-Chip

esa

* Design is separated into two distinct parts:

RV321 Base Instruction Set

imm(31:12] rd 0110111 LUI
“ I . . . imm(31:12] rd 0010111 AUIPC
* “Inner” SoC includes CPU, interconnect, low-speed peripherals, B —— — 11
mnim N Irs Ic .
. " imm|12|10:5 rs2 rsl 000 imm|4:1]11 1100011 BEQ
DMA, RMAP, COﬂtI"Ol |Og|C blOCkS (Systemverllog) imm[1210:5 =2 151 001 | imm[4:1[11] | 1100011 giuﬂ
imum|12|10:5 52 rsl 100 imm|4:1|11 1100011 1
« ’ . .) B imum[12[10:5 rs2 sl 101 i |4:1]11 1100011 BGE
) imm|12|10:5 rs2 sl 110 imm|4:111 1100011 BLTU
Outer” design includes SpaceWire codec, SpaceWire router, (OS] T w2 [sl T TI0 T immfEITIT TO00I | BLTY
. imm|11: sl 000 rd 0000011 LB
imm|11:0 rsl 001 rd 0000011 LH
USB Interface (VHDL) imm|11:0 sl 010 rd 0000011 Lw
imm|11:0 sl 100 rd 0000011 LBU
H : H imm|11:0 sl 101 rd 0000011 LHU
* CPU is implemented using 5 stages and reaches good TT0E: = T I T O L
i 11:5 52 51 0oL i 4:0 0100011 SH
rf 1 8 C M klMH t 100 MH S rt 6 ﬁﬁiﬁll’) 11::2 :1 010 iiﬁiﬁ 4:0 0100011 SW
performance (1.8 CoreMar z, up to z on Spartan-6) T R e e T P
imm|11:0 sl 010 rd 0010011 SLTT
imm|11:0 rsl 011 rd 0010011 SLTIU
imm | 11:0 sl 100 rd 0010011 XORI
imm|11:0 rsl 110 rd 0010011 ORI
imm|11:0 sl 111 rd 0010011 ANDI
0000000 shamt sl 001 rd 0010011 SLLI
0000000 shamt sl 101 rd 0010011 SRLI
N — S N 0100000 shamt sl 101 rd 0010011 SRAI
0000000 rs2 rsl 000 rd 0110011 ADD
0100000 rs2 rsl 000 rd 0110011 SUB
4 J 00a00on rs2 rsl 0ot rd 0110011 SLL
* 0000000 rs2 sl 010 rd 0110011 SLT
0000000 182 sl 011 rd 0110011 SLTU
0000000 rs2 rsl 100 rd 0110011 XOR
ml:::: Ll Registers 0000000 rs2 rsl 101 rd 0110011 SRL
i o b heas —] oet 0100000 =2 sl 101 rd 0110011 | SRA
N s e [T] Pesode i | bEx EX/] pew 0000000 12 w1 110 rd 0110011 | OR
v pegz}| AU Res MEM A ca[—| WE 0000000 52 51 111 rd 0110011 | AND
opeode = .. Data fin pred suee sl 000 rd 0001111 FENCE
_—| — op2 o' memory nnrlnnnnnnnnn' 00000 000 00000 110011 | ECALL
Imm. b 000000000001 00000 000 00000 1110011 EBREAK
Branch . . .
- - = + HW MUL/DIV instructions (M extension)
P cear P ciear
© https://hackmd.io/@WeiCheng14159/rkUifs2Hw 3
m = 4=l D = == = 01 — W Wl » THE EUROPEAN SPACE AGENCY

Poor man’s SpaceWire brick

* Small, self-made FPGA board based on Spartan-6 FPGA

* Produced in China for ~ $50 incl. all parts

* Includes Raspberry Pi-compatible 40-pins header

* Implements the whole SoC but is only used as o
USB-SpaceWire bridge in this project (e

+ 100 MHz clock Al

* Can sustain full bi-directional SpaceWire 200 Mbps data rate

* Signal integrity of SpaceWire link checked with
SpaceWire sniffer / scope

4

- =W 1 E o] O e O e Bl B 2= E — B WL » THE EUROPEAN SPACE AGENCY

Verification / validation

* All IP cores are “kind of” verified in simulation
* SystemVerilog testbench allows execution of binaries on CPU in simulation
* Several programs written in assembler / C for hardware tests (SpaceWire, interrupts etc.)
* Afew self-checking programs executed successfully:
* CoreMark
* AES-256 encryption/decryption
* Executes the RISC-V compliance suite successfully (I & M extensions)
* Runs FreeRTOS successfully, described in more detail later
* SpaceWire codec successfully validated with STAR-Dundee conformance tester
* RMAP target checked for correctness by using RMAP library from STAR-Dundee

5

- =W 1 E o] O e O e Bl B 2= E — B WL

2 THE EUROPEAN SPACE AGENCY

Software environment

° SOftwa re Can be Written in [BON] main.c — freertos [SSH: volzotan.tec.estec.esa.int]

@ EXPLORER C main.c M X

Assem bler Or C/C++ (and Others) v FREERTOS [ssH:...[} BT U & C main.c > @ SystemlrgHandler(uint32_t)

> .vscode 244 ¥
> build 245 // I2C interrupt
° Open source RISC_V GCC/Clang . 523 zf (coyoteCtriRegs[1] >> 2 & 1)
294 M CMakelLists.txt M 248)
avallable C FreeRTOSConfig.h 249 // SpaceWire TX interrupt
C main.c M 250 if (coyoteCtrlRegs[1l] >> 3 & 1)
1 1 € printetdarg e ;Z; X teCtriRegs[1] = (1 << 3)
° P t d th CM k) e coyoteCtrlRegs = (1 << 3);
rOJeC S are manage Wi dKe SR ElIHE R EELE 253 xHigherPrioTaskiWoken = pdFALSE;
254 vTaskNotifyGiveFromISR(xSpwTxTaskHandle, &xHigherPrioTaskWoken);
. . = 255 portYIELD_FROM_ISR(xHigherPrioTaskWoken);
* Integrated everything into Visual)
257 // SpaceWire RX interrupt
H a H 258 if (coyoteCtrlRegs[1l] >> 4 & 1
Studio Code ¢ nice for C, assembler, | g coverectritesstd ’
260 coyoteCtrlRegs[1] = (1 << 4);
p thon SV VHDL 261 xHigherPrioTaskWoken = pdFALSE;
y b}) e 262 vTaskNotifyGiveFromISR(xSpwRxTaskHandle, &xHigherPrioTaskWoken);
263 portYIELD_FROM_ISR(xHigherPrioTaskWoken) ;
264 ¥
265 // Time-code interrupt
266/ if (coyoteCtrlRegs[1] >> 5 & 1)
267 {
268 ¥
269 // SPI@ interrupt
270 if (coyoteCtrlRegs[1l] >> 6 & 1)
271 {
PROBLEMS ~ OUTPUT DEBUG CONSOLE TERMINAL PORTS JUPYTER CMake/Build
[main] Building folder: freertos
[build] Starting build
[proc] Executing command: /usr/local/bin/cmake —-build /home/felix/private/development/software/riscv/c/apps/freertos/
build --config Release —--target all -j 22 ——
[build] [5%] Building C object CMakeFiles/freertos.out.dir/main.c.obj
[build] [11%] Linking C executable freertos.out
[build] freertos.out
[build] section size addr
S OUTLINE [build] .text 46604 2147483648
[build] .bss 35832 3221225472
> TIMELINE build] .data 2180 3221261304 —

3 SSH: volzotan.tec.estec.esa.int £ master* & ®0AO0 ®WO0 (O CMake: [Release]: Ready ¥ [GCC 11.1.0 riscv64-unknown-elf] 4% Build [all] ¥ D (&
O

1
1|
o
[
|
.I.
i
1!
1|
il
1!

— = 00 EE =2 E —a N L4 > THE EUROPEAN SPACE AGENCY

Software drivers esa

Q@ spw_init()

 UART @ spw_codec_set_div(uint8_t, uint8_t)
Put char, get char, print string, set baudrate : : & spw_codec_set_autostart(uint8_t)
SpaceWH'e drlver Q@ spw_codec_set_start(uint8_t)
- SPI AP @ spw_codec_set_disabled(uint8_t)

Init, setup transfer, run transfer, chip select, send data

* 12C

Init, start, stop, write

¥ spw_codec_en_timecode_int(uint8_t)
[\ spw_codec_set_tx_timecode_val(uint8_t)

@ spw_codec_tx_tick_in()
@ spw_codec_clr_errors()
° GP'O @ spw_router_set_timeout(uint16_t)
Get values, set values, set direction, set interrupts, write single value @ spw_router_set_timeout_en(uint8_t)
¥ spw_router_set_allow_self_addr(uint8_t)
¢ System Timer & spw_dma_write(void * uint32_t, uint8_t)
Get/clear MTIME, set time compare value, set/get pre-scaler, wait for amount of ticks @ spw_dma_read(void * uint32_t, uint8_t)
Q@ spw_dma_set_tx_addr(uint32_t, uint8_t)

¢ SpaCeWIre Q@ spw_dma_en_tx_int(uint8_t)
See screenshot Q@ spw_dma_en_rx_int(uint8_t)

* Flash Memory @ spw_get_codec_status()

. . Q@ spw_get_codec_ctrl()
Read, Page Program, Sector Erase, Write enable/disable

& spw_get_router_status()
@ spw_get_router_ctrl()
@ spw_get_dma_status()
@ spw_dma_clr_errors()
@ spw_dma_cancel_rx()
& spw_router_clr_errors()

@ spw_get_rmap_status()

1
|
i
[
|
.I.
i
|
Il
i

— - ha Bl 5% 2= E — B WL » THE EUROPEAN SPACE AGENCY

Poor man’s GRMON

esa

* Need some way to communicate with SoC

* Implemented a USB SpaceWire C library based on libusb / libftdi and a RMAP library to
read/write registers

* Works on Linux, Mac, Windows

* To simplify writing test scripts etc., | also created a Python module, that includes
functions such as: rmap_write_word, rmap _read_data, raw_send_and_receive

* On top of that, some Python functions add convenicene/debugging functionality, e.g.,
print a range in memory, upload a program, print configuration registers

Python library for

convenience/
debugging functions

> & set_target

> @ read_word

> @ write_word

> @ read_data

> @ write_data

> @ print_mem

> @ set_bit

> & upload_file

> & upload_program

> @ print_reg_field

> & coyote_print_status

> @ spw_set_disabled

> @ spw_set_link_start

> @ spw_set_autostart

> @ spw_set_ddr_output_en

> @ spw_set_tx_clock_div

> @ spw_send_timecode
Q@ spw_clear_status

> & spw_router_set_config

> @ spw_dma_rx_setup

> @ spw_print_status

> @ spw_print_config

> & uart_print_regs

- =W 1 E o] O e O e Bl B 2= E — B WL

2 THE EUROPEAN SPACE AGENCY

NG-Large port

Same SoC as the one on development board,
including the following IPs:

UART, 12C, SPI
SpaceWire (Codec, Router, RMAP, DMA)
* 128 kB on-chip instruction memory
* 64 kB on-chip data memory
* Targeted speed:
CPU: 25 MHz
SpaceWire: 50 Mbps
* Reference: Cyclone V / Spartan 6
CPU: 80 - 100 MHz
SpaceWire: > 200 Mbps

- =W 1 E o] O e O e Bl B 2= E — B WL » THE EUROPEAN SPACE AGENCY

NG-Large results

* SystemVerilog part had to be translated to Verilog
* Tiny core, uses only ~5-10% of the resources

* Large amount of BRAMs because of missing byte-enables and ECC
scheme

* Needed to rewrite / pipeline the interconnect to achieve better timing
* Couldn'’t figure out some of the macros, e.g. register files
* NG-Large Dev board has AC caps in SpaceWire lines...

| Domain Frequency |
Source	Target Required	Maximum
Input	clk_56MHz (Falling) - -	
Input	clk_56MHz (Rising) - -	
Input	sys_clk (Rising) - -	

|

|

| clk_50MHz (Falling) | clk_56MHz (Rising)

| clk_56MHz (Rising) | clk_56MHz (Rising) 50.000 MHz | 58.065 MHz |

|
|
|
|
|
|
| clk_56MHz (Rising) | Output | -
|
|
|
|
|
|

| o1k 50MHz (Rising) | sys_clk (Rising) 7 - | 1 - bit | Register | Cross | Clock | Clock | Digital Memory | |

I oS- o ; X XLUT | Carry | file | domain | Buffer | switch | signal block WFG | PLL |

| sys_clk (Rising) | Output - - | | block | clock | | | processor | |

| sys_clk (Rising) | clk_5eMHz (Rising) - | - | 759/129024 (9%) | 4784/129024 (M/S%A (0%) | 1537/32256 (5%) | 0/672 (6%) | 0/672 (0%) | @ | 0/1344 (@%) | 4/384 (2%) &8/1‘?2 (52%% 2/40 (5%) | 1/4 (25%) |

| sys_clk (Rising) | sys_clk (Rising) 25.000 MHz | 27.635 MHz | +"' t t + \ y t t
— HE — — - \‘ o L

- =W 4]l = | i = =m O e Bl 2R 2= E - = vl » THE EUROPEAN SPACE AGENCY

NG-Large Coyote “validation” esa

° Executed 3 COUp|e Of teStS [[felix@volzotan pythonl$./brave.py

Setting up Coyote brick...

: Fu” memory CheCk through RMAP Which test do you want to run?
N Slmple UART teSt (a) Memory read/write test

(b) UART test
(c) RISC-V compliance test suite

¢ A” RISC-V Compllance teStS (d) SpaceWire Timecode test

(e) SpaceWire DMA self-test
(f) SpaceWire DMA external test

- SpaceWire DMA tests (B) Soveark benchmark
(1) FreeRTOS test

« AES-256 self-test

* CoreMark bechmark

* Result reduced to 1.44 CoreMark/MHZz
due to pipelined interconnect

(x) All tests

> Your choice: [

* All tests executed correctly except of timecode test
(probably small bug in IP and/or clock domain crossing)

1

- =W 1= o1l O

— = 0l 2 E= = = am vl > THE EUROPEAN SPACE AGENCY

FreeRTOS port esa

Had not much experience of how FreeRTOS works internally

* Fortunately, SiFive did a FreeRTOS port for their RISC-V CPUs already
* SiFive FreeRTOS easily portable to Coyote
* Good example for the advantages of an open ISA!
* CPU, CSRs (configuration & status registers), timer, and interrupt handling is standardized
* Therefore, easy to port SW written for another CPU with same ISA (even if much more powerful etc.)

Worked out of the box!

— Discovered a HW bug in the interrupt handling of the CPU, which has not been much tested before.
* FreeRTOS creates a lot of timer interrupts
* |n addition, the application software makes use of SpW DMA interrupts
* Good “stress test” for the interrupt handling

12

— - ha Bl 5% 2= E — B WL » THE EUROPEAN SPACE AGENCY

i

- Il = 41

FreeRTOS demo software esa

SpW RX
* Small example with several tasks DMA
* Time-triggered real time scheduling
* Telecommand and telemetry packets are
AES-256 encrypted
* 3 services: Flash API
Test: Simply relay data
Get housekeeping data: Returns HW
status and some SW counters !
SPI flash management: AR A TM Task
Read, program page, erase sector
* Python script for testing
SpW TX
DMA

13

- =W 1 E o] O e O e Bl B 2= E — B WL » THE EUROPEAN SPACE AGENCY

Welcome @esa

Welcome to RISC-V in Space
and

Stage open for our speakers

* Practical announcements
Please bring coffee cups to the bin after use
Participants on the webex: questions in chat

25 min time slot = 20 min speech to allow for Q&A

s . it + THE EUROPEAN SPACE AGENCY
e @ I == 4 [+ 2 —_— b £SA UNCLASSIFIED - For Official Use

