ESA-ESTEC GSTP4 - Analog Silicon Compiler for Mixed Signal ASICs

PDFE: A Particle Detector Front-End ASIC

PDFE: collaborators

- PDFE is the result of a collaboration between
 - ESA-Estec
 - S. Habinc, B. Johlander, T. Sanderson
 - KULeuven, ESAT-MICAS
 - G. Gielen, J. Vandenbussche, G. Van der Plas
 - o IMEC, Invomec
 - C. Das, K. Marent, S. Redant, J. Wouters
- PDFE is designed by IMEC, Invomec

Presentation overview

- Basic functionality
- Concept
- PDFE characteristics:
 - functionalities
 - block diagram
 - o specs
 - o programmability
- Some analog cells
- Digital part
- Simulations
- Radiation hardness
- Evaluation PCB's & some measurement results
- Status & Conclusions

Basic functionality

- CSA
- PSA
- Peak detection
- DAC and discriminator

Basic functionality: 1 conversion cycle

• One full cycle takes 4µs

.

Final presentation – ESA-ESTEC 7/3/2001

5

imec

Concept

- Miniaturized Microcontroller based Read-out Electronics for Space Application (Energetic Particle Instrumentation)
- PDFE together with a 8052-based Microcontroller
- Architectural design drivers:
 - Low noise, low power
 - O Low mass ⇐⇒ Low chip count
 - Single supply voltage \implies simple power supply
 - Integrated ADC
 - Integrated standard space craft interface
 - Re-usability and scalability
 - because high NRE cost & long development time
 - Tolerance against single event effects and total ionizing dose
 - Mixed analog and digital signals
 - Testability and reliability (monolithic)

Main PDFE functionalities

- Main channel: charge amp, pulse shaping, baseline restorer, peak detector S/H
- (Anti-)coincidence channel
- Internal or external (anti-)coincidence gating
- Build-in 8-bit discriminators
- Gain adjustment (+/-5%)
- Linear 8-bit ADC, two-step flash
- Completely event driven
- Cascadable 32 bits serial control/status interface (scalability)
- 8-bit parallel output interface
- All internal registers SEU protected
- Low speed low amplitude digital I/O (to limit noise)
- Non-active blocks powered down

PDFE block diagram

Main specifications

- Detector capa 100 pF
- Detector leakage 1 nA
- Full Scale input 0.1 pC
- Conversion gain 30 mV/fC
- Noise (ENC)
 800 e⁻ rms (@ 100 pF)
- Peaking time 1 µs
- Counting rate 250 Ks/s @ 2.5 fC 25 Ks/s @ 0.1 pC
- Baseline drift 15 mV
- Nonlinearity 1 LSB

•	Number of channels	2	
•	ADC resolution	8 bit	
•	ADC INL and DNL	1/2 LSB	
•	Power supply	5 V	
•	Power consumption	One channel: ADC: Total:	15 mW 30 mW 70 mW
•	Ambient temperature	-40 to 65 °C	
•	Technology	0.7-µm CMOS mixed-signal, Alcatel Micros	S, electronics
•	Package	64-pins quad flat pack 56 pins used	

Programmability

- Using the serial control/status interface
 - Coincidence channel enable/disable
 - Coincidence or anti-coincidence gating
 - Internal or external coincidence input
 - Discriminator levels (two 8-bit DACs)
 - Conversion gain adjustment (+/-5%)
 - ADC stand-alone
 - Power down
- Using digital pins (VSS VDD strapped)
 - Charge sign
 - Analog or digital (ADC) output
 - Parallel output interface (ADC): internal or external control of the update (non-latching or latching mode; PROM or µP bus)

PDFE: An Instrument on a Chip

Final presentation – ESA-ESTEC 7/3/2001

J. Wouters

• CSA

12

imec

- Shaper (PSA, Pulse Shaping Amplifier)
 - Gm-C bandpass filter Optimises noise performance and counting rate
 - first-order high pass (differentiation)
 - second-order low pass
 - Rpz: pole-zero cancellation
 - vOutDC: sets output DC level; used by the BaselineRestorer

Channel

- Input: charge pulse
- Output: semi-gaussian pulse 0
- Csa, shaper, baseline restorer Ο

2u hipo*100

outGm

14

imeč

chSw

and2

pinGm

am

out

chanSw

Peak Detector Sample&Hold

Final presentation – ESA-ESTEC 7/3/2001

J. Wouters

imeč

• Comparator

 Very fast: 50ns @ 10mV differential input Because node b cannot move far

- ClassAB opamp
 - Only capacitive loads. Drives ADC and/or analog output.
 - Output stage quiescent current is well controlled, for low power 0
 - Standard cells: not OK: Power down : http://www.intensional.com/organization/orga
 - (internal) slew rate too low
 - power too high

ADC / 1

• Architecture:

- Two-step flash
 4 MSB's first; then 4 LSB's
- Two resistive ladders, 16 units each
 - coarse ladder low resistive
 - fine ladder high resistive
- Comparators
 - CMOS : Vos = 10 mV (3-sigma)
 - 1LSB = 11 mV
 - auto zeroing necessary
- 250 K conversions/s
- o 30 mW

ADC / 2

• Clocked comparator

Auto-zeroing (or correlated double sampling) → Offset < 100µV
 Only possible because no continuous operation

Residual offset = VosMain/AAux + DiffClockFeedThrough*AAux/AM

20

imec

ADC / 3

• Measurement results

- LabVIEW / GPIB setup
- O ADC stand-alone ■
- DNL = 0.32 LSB INL = 0.34 LSB

Digital part

- Serial interface, 32 bits
 - Control (input)
 - operating modes
 - various controls (e.g. gain)
 - discriminator levels
 - Status (output)
 - voting & parity errors
 - some pin settings
 - Cascadability (scalability)
- Parallel output (ADC). Latching or none-latching.
- 4 MHz clock, 1500 equivalent gates, VHDL, decoding&control
- To minimize disturbances of the analog
 - event driven (PDFE quite, except some 30 FF's, until peak latched)
 - I/O: TLL, very long rise & fall times

• Table with main functional modes

		PDFE : modes	Rev. 04.11.99				
Z:\pdfe\pdfeTablexx.xx.99 Excel							
RESET_N (pin)	Bit10 Bit9 Bit8 AOutSel (pin) Test (pin)	drittComp Reload quiet BypassAAF Extinp (=- PSACSAOnB) ADC / ADCOn Buffer / BUFOn PDSH / PDSHOn Coinc chan, DAC, ED / CDOn Main DAC, ED / EDOn Main chan / PSACSAOn	Anti-coincidence External coincidence XCoInIsReload ADCMode CoEDDirect EDDirect	Description			
	Input signals	power up / signals to ana	digital set				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 1 1 1 1 0 X 0 EN EN 1 1 1 1 1 1 0 X 0 EN EN 1 1 1 1 1 1 0 X 0 EN EN 1 1 0 1 1 0 X 0 EN EN 1 1 0 1 1 1 0 X 0 EN EN 1 1 1 1 1 0 X 0 EN EN 1 1 1 1 1 0 X 0 EN EN 1 1 1 1 1 0 X 0 EN EN 0 0 0 0 1 1 0 X X EN EN 0 0 0 0 0 X X X X X X X X	0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 0 NA NA 0 0 1 0 NA NA 0 0 0 0 NA NA 0 0 0 0 NA NA 0 0 0 0 NA NA	Coincidence detection mode; anti-coincidence mode; digital out Default mode 0 Coincidence detection mode; coincidence mode; digital out Default mode 0 Charge amplification mode; anti-coincidence mode; digital out Charge amplification mode; coincidence mode; digital out Charge amplification mode; anti-coincidence mode; digital out Charge amplification mode; coincidence mode; digital out; coinc chan on, isolated Charge amplification mode; coincidence mode; digital out; coinc chan on, isolated Charge amplification mode; coincidence mode; digital out; coinc chan on, isolated ADC-only mode Quiet mode (everything in power down, except crystal oscillator and part of ADC) Coincidence detection mode; analog out Default mode 1 Charge amplification mode; analog out Buffer-only mode (AAF bypassed); quasi-quite mode (as quite mode, but buffer on)			
1 1 1 1 1 1 1 1 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 1 1 1 1 0 X 0 EN EN 0 1 0 1 1 0 EN 1 1 0 EN 1 1 1 0 0 1 0 X 0 X X X 0 0 1 0 0 X X X X 0 0 1 1 0 0 X X X X 1 1 0 1 1 0 X X X X 0 1 1 0 0 X X X X X 0 1 0 0 0 1 1 0 X X 0 1 0 1 1 1 1 0 X X 0 1 0 1 1 1 1 0 X X	0 0 0 0 1 1 0 0 1 NA NA 1 0 0 0 NA NA 1 0 0 NA NA 1 0 0 NA NA 1 0 0 1 NA 1 1 0 0 0 NA NA 0 0 1 0 NA 1	Testmode : as 00000, but buffer to pin bufOut (to observe PDSH) Testmode PDSH and MDED (via PDSH). MDED output direct to EDOut Testmode : as 0101X, but MDED output direct to pin EDOut Testmode coincidence channel (main channel etc. off), CDED output direct to ICoOut Testmode : as 00010, but ADC off, buffer to pin bufOut and MDED output direct to EDOut Testmode : direct test of MDED and MDDAC Testmode : as 00110 (= ADC-only mode), but AAF bypassed Testmode : as 00010, but main channel off, external input to PDSH			
1 1 1 1	1 0 X 1 X 1 0 1 X X 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 X X X X X	0 0 0 0 0 X X 1 X X 0 0 0 0 0 0 X X 1 X X 0 0 0 0 0 0 X X 1 X X 0 0 0 0 0 0 X X 1 X X 0 0 0 0 0 X X 1 X X 0 0 0 0 0 X X 1 X X 0 0 0 0 0 X X 1 X X	0 0 0 0 0 NA NA 0 0 0 0 NA NA 0 0 1 0 NA NA 0 0 0 1 0 NA NA 0 0 0 0 0 NA NA	Testmode 1 digital part Testmode 1 digital part Testmode 2 digital part Testmode 3 digital part Powerdown mode (everything in power down, except crystal oscillator and part of ADC)			

Mixed mode simulations / 2

• Chip + external components: simulation schematic

• Chip: toplevel design schematic

Final presentation – ESA-ESTEC 7/3/2001

Mixed mode simulations / 4

- Co-simulation: spice - verilog
- Essential for PDFE:
 - Many operating modes
 - Complex interaction analog \iff digital
 - event driven
 - asynchronous
 - loops

J. Wouters

imec

Nonlinearity

Radiation Hardness

- Total Dose: analog and digital part: good up to 12 krad.
 - Parasitic MOS transistor field-oxide leakage: gate-all-round layout for critical NMOS devices (determined by simulation)
 - Gate oxide threshold voltage drift: corner analysis, and assume that no Worst Case wafer (limited volume)
- Single Event Upsets: digital part
 - Cell level: foundry library screened for least sensitive cells
 - Rt (register transfer) level:
 - feedback avoided as much as possible (no FSM's)
 - parity bits
 - majority voting for critical registers (EDAC)
- Single Event Latch-up
 - Thin epi layer on top of a heavily doped and hence low impedance substrate > intrinsically robust for latch-up. Latches up under Cf256.

Edgeless transistor layout

- Significantly increases the total dose immunity
- Applied in the peak detector's anti-drift current source

29

imec

Layout

• Die size : 31 square mm

J. Wouters

Package

- 64 pins Quad Flat Package
- 56 pins used

Debug PCB / 1

• VME board

Debug PCB / 2

• The two inputs close to the asic

Analog pulses

Analog output mode

- Semi-gaussian output pulse
- Event detector out

Digital output mode

- Charge input (V-step on Cseries)
- Peak detector output
- Event detector out
- End of A-to-D conversion

imeō

Low noise PCB / 1

- Only passive external components
- Battery-powered; faraday cage

Low noise PCB / 2

• Crystal (digital) not running

- Noise(detector capacitance)
- With and without crystal running
- Measured with zero input signal
- 1mVrms corresponds to an ENC of 207electrons

36

imec

Status & conclusions

- A low power low noise PDFE is realized
- Implements all analog processing up to (& including) the ADC
- Mixed analog digital design
- High re-usability and scalability
- Samples available since 1 year
- Device is fully functional
- Evaluation board allows all kind of settings and measurements
- Low noise board for noise characterization
- Estec is building an instrument for STEREO, using PDFE
- Technical paper available, from the ESCCON 2000 conference
- Datasheet available

Application: NASA's STEREO mission

- Study of solar eruptions
- PDFE to be part of the SEPT experiment (IMPACT instrument)
- Launch: 2004
- http://stprobes.gsfc. nasa.gov/stereo.htm

