

Active Pixel Sensor CMOS Image Array for Optical Inter-Satellite Links (OISL)

Final Presentation

Dirk Uwaerts, FillFactory N.V. Schalienhoevedreef 20B B-2800 Mechelen

OISL Final Presentation

Presentation outline

Introduction

Project motivation, objective, scope, base line

- Activities
- Technical part
 - Image sensor outline
 - Specifications
 - Test & Measurement
 - Demo system features
- Conclusions

Project motivation:

The growing market of satellite telecom constellations (early 2000) asked for a cost-effective beam-tracking device that could withstand the radiation load encountered in low orbit.

APS can offer benefits in terms of system-level cost-effectiveness, weight and volume.

Start from the experience gained with ASCoSS design

OISL Final Presentation

Attitude Sensor Concepts for Small Satellites (ASCoSS)

OISL Final Presentation

Co-operation with SIRA electro-optics, Contraves and IMT (1997-1999)

Project objective:

Design a star tracker using novel technologies APS, MCM, Diffractive optics, ...

- » FOV 20° x 20°
- » Update rate 10Hz
- » NEA 1arc minute (2σ)
- » Dim star limit: 5 m_v

Image sensor properties:

- » 512 by 512 format , 25 μm pitch CMOS Active Pixel Sensor (APS)
- » ALCATEL Micro-Electronics 0.7 Analogue CMOS process
- » Patented N-well pixel structure results in high fill factor
- » On-chip 8-bit ADC

ASCoSS:

Corrigible items

- Design flaws in output amplifier
- Ghost image due to cross-talk
- Low MTF due to epi-layer thickness
- Pixel-to pixel non-uniformity
- Low radiation tolerance

Conclusion of SIRA:

"The overall conclusion is that a sensor has been designed and breadboarded which could meet the target specification."

- Positive: noise behavior
- Precludes: low MTF, non-uniformity requires on-flight calibration, poor radiation tolerance.

Objective:

Design a next-generation CMOS Active Pixel image Sensor (APS), capable of tracking a laser beam beacon in Low Earth Orbit.

Start from ASCoSS specifications:

» Format: 512 by 512, 25 μm pixel pitch

» Equal or better noise performance

Enhancements over ASCoSS:

- » Enhanced radiation tolerance
- » Enhanced ADC resolution
- » Improved MTF
- » Improved Infra-red response
- » Addressable shift registers

Envisage broader field of applications:

Low- to medium accuracy star tracking Sun sensing

Scope

- Design and fabrication of the image sensor
- Electro-optical and limited radiation tolerance evaluation
- Delivery of a limited number of samples
- Construction and delivery of evaluation system

Not included:

Complete qualification testing :

environmental, life time, extended radiation testing, ...

OISL Final Presentation

Design base line:

CMOS Active Pixel Sensor (APS) with 4 diodes per pixel
Format 512 by 512 pixels
On-chip Fixed Pattern Noise (FPN) correction
Programmable gain output amplifier
10-bit ADC
Programmable windowing
Radiation tolerant design technique (first time !)

OISL Final Presentation

Activities

Study logic, project timing

Activities

Design activities:

Preliminary design (WP1):

Architectural design: first-cut specification targets and floorplan Simulations of pixels, shift registers, output amplifier Design of pixel, shift register cell, ADC basic cell Selection of foundry

Detailed design (WP2):

Full custom IC layout with Cadence Virtuoso layout editor Drawing of about 100 basic unit cells Hierarchical design, based on parametric cells Start from scratch (first radiation tolerant design)

OISL Final Presentation

Activities

Production and testing (WP3):

Production at ALCATEL Micro-Electronics (WP 3.1)

Electro-optical evaluation (WP 3.2)

Confirmation of design target specifications Spectral response, photo response, MTF, noise, dark current, ...

Radiation testing (WP 3.3)

Only total dose test up to 230 Krad (device can probably sustain much higher levels)

Delivery of 40 samples to the agency (WP3.4)

Functional testing of all produced devices on wafer Packaging and re-testing selected devices for delivery

Construction of demo system (WP 3.5)

Technical part

Outline

Image sensor description

Specifications

Test & Measurement

Packaging

Demo system

OISL Final Presentation

Features

- Integrating APS in 0.5 µm CMOS technology
- 512 by 512 pixels on 25 μm pitch
- 4 diodes per pixel for improved MTF and PRNU
- Radiation tolerant design
- On-chip double sampling circuit to cancel Fixed Pattern Noise
- Electronic shutter capability
- Readout rate: up to 30 full frames per second
- Fast windowing through pre-settable start point of read-out
- On-chip 10-bit ADC
- Ceramic JLCC-84 package

Image sensor outline

Lay-out view

Image sensor description

<u>ତାରି ଅନି ଅନି ଅନି ଅନି</u> ଅନି ଅନି ଅନି ଅନି ଅନି ଅନି ଅନ NA NA NA NA NA NA Pín 1 H0000 15505.550

OISL Final Presentation

OISL Final Presentation

18

Column amplifiers

Optimization (compared to ASCOSS):

Less sensitivity to Vth variations (radiation!) Better fixed pattern noise Less power dissipation Simpler timing diagram

Output amplifier

ADC

12.5 Msamples/s

10 bit ADC

Radiation-soft version used on ibis 4 & ...

Radiation tolerant layout

Size has increased slightly due to radiation tolerant design

OISL Final Presentation

Fabrication

Fabrication at ALCATEL Micro-Electronics as prototype run 2 wafers + 2 wafers for digital sun sensor project 54 devices per wafer

Process:

Alcatel Microelectronics 0.5 µm analogue-signal CMOS, 5 µm epi-layer

Analogue cores: full-custom, manual layout

I/O pads and power pads: manual layout

OISL Final Presentation

Filfactory Electro-optical specifications

Parameter	Specification
Spectral range	400 – 1000 nm
Quantum Efficiency x Fill Factor	Max. 35%
Full Well capacity	311K electrons
Linear range within $\pm 1\%$	128K electrons
Output signal swing	1.68 V
Conversion gain	5.7 μV/e-
kTC noise	76 e-
Dynamic Range	74 dB (5000:1)
Fixed Pattern Noise	$1\sigma < 0.1\%$ of full well
Photo Response Non-uniformity at Qsat/2	Local: $1\sigma < 0.39\%$ of signal
	Global: $1\sigma < 1.3\%$ of signal
Average dark current signal	4750 e- / s
MTF	Horizontal: 0.36
	Vertical: 0.39
Anti-blooming capacity	x 1000 to x 100 000
ADC	10 bit
ADC linearity	\pm 3.5 counts
Missing codes	none
ADC setup time	310 ns to error $<1\%$
	(large signal)
ADC delay time	125 ns
Power Dissipation	< 350 mW
22	

OISL Final Presentation

Outline

Packaging, operation and bias conditions

Electro-optical evaluation

Radiation testing

Functional testing of delivery samples

Packaging, Operation and Bias conditions

Package devices from one wafer in 84 pin J-lead with glass cover

Operate one device in test system

Establish bias conditions: voltage and timing, resulting in datasheet

Verify bias conditions on 5 devices

Electro-optical evaluation: overview

Measurement	Test sample
Spectral response	On test structure on 3 samples
Photo-voltaic response	On 3 pixel on 3 devices each at different gain settings
Pixel profile	On 3 pixel on 3 devices in both horizontal and vertical direction
Dark current	On 5 pixels on 5 devices
FPN	On 50% of the pixels of 5 devices
PRNU	On 50% of the pixels of 5 devices
Noise	On 5 pixels on 5 devices
Power	On 5 devices
Output amplifier DC response	On 3 devices
Output amplifier gain/phase diagram	On 3 devices
ADC minimum set-up time	On 3 devices
ADC missing codes	On 3 devices
ADC linearity	On 3 devices

Spectral response and quantum efficiency

OISL Final Presentation

26

Photo-voltaic response

Allows to calculate saturation charge, linear region and conversion factor.

OISL Final Presentation

27

ADC set up time

OISL Final Presentation

29

Radiation testing

Pre- and post- irradiation tests:

Functional test

Power consumption: functional and under DC bias

Dark current on 5 pixels

Fixed Pattern Noise (FPN) on 50% central area

Photo Response Non Uniformity (PRNU) on 50% central area

Total dose irradiation (CO 60) of 10 samples with varying dose

Total dose: 230 Krad Dose rate: 5 Krad/hr DC bias, no clocking

Approximate insertion time	Sample ID	Total dose
ТО	S1, S2	230 Krad
T0 + 24 hr.	S3, S4	110 Krad
T0 + 38 hr	S5, S6	40 Krad
T0 + 42 hr	S7, S8	20 Krad
T0 + 44 hr	S9, S10	10 Krad
T0 + 46 hr	End of irradiation	

Functional testing on wafer

High yield: 50% of the devices have less than 10 isolated defect pixels.

Functional test on wafer:

At 50% uniform illumination Power consumption Average gray value and standard deviation Number of bad pixels (bright/dark) Number of bad pixels with bad neighbor (bright/dark) Number of bad columns/rows based upon average column/row value and u standard deviation

Select 40 best devices

Packaging in 84 J-lead package with glass window

Visual inspection of images from packaged devices at 50% uniform illumination

Packaging

84-J-leaded package

Ceramic package (black alumina), gold leads Custom designed for Fillfactory to contain largearea image sensors

Position of die in package within known tolerances

OISL Final Presentation

Demo system

Main demo system features:

Apply power, logic signals and DC bias to OISL image sensor for proper read-out at nominal or at reduced speed

Control sensor properties:

Integration time (setting by line or by frame)

Windowing

Gain setting

Capture one frame in memory buffer at nominal read-out speed

Transfer image to PC via printer port and display on PC screen

Store image in different file formats:

nip (16 bit), PGM, BMP, tab-separated text

OISL Final Presentation

Continuation

Other projects, based upon OISL were started:

Application in ISLFE breadboard

Breadboard for optical link SIRA Electro-optics and Contraves

Low cost digital sun sensor

Funded By ESA

2 consortia:

» TNO-TPD, Sodern, Fillfactory: use OISL sensor as is

» Officine Galileo: 1024 x 1024 format, 1 diode pixel (15 µm)

Atmospheric Chemistry Experiment (ACE)

Canadian Space Agency, ABB Bomem (Quebec) Sensor development funded by the Belgian government through Prodex 256 x 256, 4-diode pixel (25 μm), with black reference pixels Flight qualification, launch: July 2002

Interest from industry

Large pixel format Large area High uniformity

OISL Final Presentation

34

Conclusions

OISL is the first complete image sensor that was designed with the novel radiation-tolerant design technique.

The design was successful: the device is operational and meets all predicted specifications except ADC speed.

Design target	Comment
512 by 512, 25 μ m pixel pitch	By design
Equal or better noise performance	Better noise performance through better amplifier design
Enhanced radiation tolerance	Novel design technique successfully applied
Enhanced ADC resolution	10 bit, radiation tolerant
Improved MTF	4-diode pixel has very high MTF
Improved Infra-red response	Not improved over ASCoSS, but uncommitted
Windowing	Successful implementation of addressable shift registers

Demo

OISL Final Presentation

36

Demo