

Radiation Hardened Pixel Development

J. Bogaerts

Imec, Kapeldreef 75, 3001 Leuven, Belgium

Outline

- Introduction: radiation effects
- Total ionising dose effects (⁶⁰Co source)
 - standard active pixels
 - solutions for total ionising dose hardening
 - pMOS based pixel
 - radiation-tolerant nMOS pixel
- Proton-induced displacement damage (10 MeV protons)
- Latch-up experiments
- OISL pixel
- Conclusions

Introduction

- CMOS APS with CCD performance
- Operation in the space radiation environment:
 - APS inherently more radiation tolerant than CCDs ?
 - other advantages: low power, on-chip integration,

windowing, lower system cost, ...

⇒ study and improvement of radiation tolerance of APS

© imec 2001

[©] imec 2001

Total dose: standard active pixels

Radiation induced surface damage

Mean dark current increase

Co-60 measurements on IRIS-2 chips

Dark current non-uniformity

Co-60 measurements on IRIS-2 chips

dark current non-uniformity increases with total ionising dose

@ imec 2001

Radiation-tolerant active pixels

- The pMOS based pixel
 - + no parasitic field transistors
 - + area
 - low sensitivity, fill factor
- Radiation-tolerant nMOS pixel
 - TID tolerance: > 200 kGy(Si) (dose rate: 350 Gy(Si)/h)
 - area:

technology	minimal pixel pitch
0.7 μm	20 μm
0.5 μm	15 μm
0.35 μm	8 μm

Radiation-tolerant nMOS pixel

Input characteristics of nMOS transistors

Standard nMOS layout:

- large leakage current increase due to parasitic field transistor
- typical TID threshold:
 200 400 Gy(Si)

Radiation-tolerant nMOS layout:

- no leakage current increase
- small threshold voltage shift t_{oxide} dependence !

Radiation-tolerant nMOS pixel

Dark current of radiation-tolerant nMOS pixel (0.7 µm technology)

- very low dark current increase compared to standard active pixels
- dark current radiation-tolerant nMOS pixel < dark current pMOS based pixel
- 'DC bias' is the worst case scenario

Radiation-tolerant nMOS pixel

Dark current of radiation-tolerant nMOS pixel

room temperature annealing:

- why?

- log(time) annealing

↓

dark current increase is probably small in low dose rate space environment

Displacement damage (1)

- **Devices:** 5 Ibis4 CMOS APS from FillFactory
- Irradiation: 10 MeV protons 3x10⁹, 1x10¹⁰, 3x10¹⁰, 1x10¹¹, 3x10¹¹ protons/cm²
- Displacement damage effects:
 - mean value and variance of the dark current density increase
 - distributions become more skewed
 - anomalously high dark current spikes:
 field-enhanced emission

Displacement damage (2)

Histogram of dark current density

10 MeV proton recoil spectrum

parameters (Marshall et al.)

 \Rightarrow

- 256x256 window
 3x10¹⁰ protons/cm² (10 MeV)
- pixel sensitive volume: 45 μm³ (typically 1000 μm³ for CCDs, CIDs)
- elastic interactions: 416 per pixel inelastic interactions: 0.138 per pixel

Cross section	Mean damage	Variance of damage	
(10^{-24} cm^2)	energy (MeV)	energy (MeV ²)	
ELASTIC EVENTS			
1847.5	1.784 x 10 ⁻⁴	*4.77 x 10 ⁻⁶	
	INELASTIC EV	ENTS	
0.6127	0.06021	1.30976 x 10 ⁻³	

Displacement damage (3)

Histogram of dark current density at different fluences

- mean value has a component due to ionisation damage
- mean value and variance of the dark current density increase with increasing proton fluence

Tail on distributions:

- infrequent, highly damaging inelastic collisions
- spikes: field-enhancement

Displacement damage (4)

- 256 x 256 window subdivided: 256 bins of 256 pixels each
- extreme value statistics: largest dark current values do not follow the normal distribution

FIELD-ENHANCED EMISSION

- Poole-Frenkel effect
- phonon-assisted tunneling

Displacement damage (5)

emission enhancement factor (Coulombic potential):

$\pm 10 @ 10^5 V/cm$

very small area in sensitive volumeinduced by other defect

Latch-up experiments

- ASCoSS sensor (Sira, heavy ions)
 - latch-up threshold~ 19.9 MeV/mg/cm2(ADC)> 28 MeV/mg/cm2(analog core)
- IRIS-2 (Cf-252)

latch-up (43 MeV/mg/cm2) (only in digital core)

OISL pixel

- OISL = CMOS Active Pixel Sensor for Optical Inter-Satellite Link (details in presentation D. Uwaerts, FillFactory)
- radiation-tolerant design:
 - 0.5 μm technology
 - ⁶⁰Co irradiation (50 Gy(Si)/h):
 - 10 devices
 - total ionising dose: 100, 200, 400, 1200, 2300 Gy(Si)
 - ongoing irradiation >50 kGy(Si)

Dark current density increase

Co-60 measurements on OISL

Fixed pattern noise

Co-60 measurements on OISL

FPN not affected by Co-60 irradiation: no degradation in column amplifiers

Photo-response

Co-60 measurements on OISL

decrease of responsivity (wavelength dependent)

- increased absorption in overlaying layers?
- decrease of QE?

After 20 kGy(Si) (2 Mrad(Si))!

Conclusions (1)

• Ionising radiation:

- large impact at the surface in standard active pixels
 - nMOS leakage current
 - increase in dark current
- radiation tolerant pixels can be obtained (> 200 kGy(Si))
- Displacement damage:
 - mean and variance
 - tail on histograms: inelastic nuclear collisions
 - field-enhanced emission

Conclusions (2)

- Comparison with CCDs
 - radiation tolerance in standard CMOS technology
 - large operating window
 - no problems with CTE
 - mean dark current and amplitude of dark current spikes is lower: \Rightarrow smaller sensitive volume
- Design of OISL:

Probably the best radiation-tolerant CMOS imager in the world...