ESA 13345 : Building Blocks for System on a chip contract
ESA 13345/#1 : Design of a VME Interface (EVI32)
Final Presentation

Marc SOUYRI - Salvatore CATALANO – ASTRIUM SAS Velizy
marc.souyri@astrium-space.com
salvatore.catalano@astrium-space.com
Summary

- Study objectives
 - Contract History
 - Management objective of the study
 - Technical objective of the study
- Brief description of EVI32
 - Technical solutions used
 - EVI32 ERC Block Diagram and Interfaces
 - EVI32 timing performances
- EVI32 Development specificities
 - EVI32 Verification Strategy
 - EVI32 simulation with ERC32 SC microprocessor
- EVI32 project deliverables
THE OBJECTIVES OF EVI32 CONTRACT
EVI32 was developed in the frame of ESA 13345 contract called “Building Blocks for System on a Chip”.

ESA 13345 contract is managed by Sandi Habinc at ESTEC. It includes:

- #1: development and Industrialization of an ERC32 VMEbus Interface Device
- #2: Initial Analysis of the Development of a System-On-a-Chip device
- #3: Development of a System-On-a-Chip device

It was initially foreseen to use a VME interface within System-On-a-Chip but this interface has been replaced by a PCI interface. Thus only the design of a packaged component remains from the initial project.
Management objective of the study

- Design and manufacture a first-time-right radiation tolerant ERC32 VMEbus Interface for on-board application
- Ensure that the device is unrestrictedly available from the design house to European industry at fair and reasonable pricing
- Ensure that the manufacturing foundry makes available and supports the developed EVI32 device as an ASSP with a comprehensive data sheet
- Preferably use a European technology for foundry, with a process having been approved or being considered for ESA/SCC Capability Approval
- EVI32 shall be based on the VHDL code provided by ESA
- ESA shall have full ownership of the updated VHDL code
- No validation of EVI32 at board level is performed in this study.
Technical objective of the study

- EVI32 shall fully adhere to IEEE 1014-1987 VMEbus standard
 - A32/A24/D32/D16/D8 master interface;
 - A24/D32/D16/D8 slave interface;
 - Interrupt handler;
 - Interrupter;
 - Single level arbiter (SGL);
 - VME bus timer;
 - Optimised D16 interface;
 - Four mailboxes for multi-processor communication;
 - On-chip error-detection.

- EVI32 shall be made compatible with:
 - ATMEL ERC32 3 chip microprocessor (TSC691E, TSC692E, TSC693E)
 - ATMEL ERC32 single chip microprocessor (TSC695E)
 - ATMEL 21020 DSP (TSC21020E)

- Radiation Tolerance shall be greater that 50 krads TD with a good immunity to SEU
BRIEF DESCRIPTION OF EVI32
Technical solutions for process/matrix

- MG2RTP process of ATMEL was selected
- MG2RTP-142 matrix used - MQFPF 256 package
 - 23138 gates used for 122128 available gates = 16.28 %
 - 256 pin used for 256 available pins
 - 224 signals, 4 power pins for core, 28 power pins for buffers

- All the functional D flip-flop are HDFF “SEU hardened D flip-flop”
- Total Dose tolerance of EVI32 is over 100 krads and SEU immunity very high

- No scan used, functional vectors + random vectors allows a fault coverage over 100 %.
- JTAG Boundary Scan is implemented for board level testing
DSP Interface

- EVI32 can interface TSC21020 DSP
- DSP concept does not fit very well with VME:
 - Byte or 16 bit accesses are not implemented in DSP
 - Data bus are 40 bit or 48 bit wide
 - Address bus are only 25 bit wide for data and 20 bit wide for address
 - Instructions and data paths are separated
- Limitations to VME interface have been performed in DSP mode:
 - In A32 and A24 addressing modes MSB bits are generated by EVI registers
 - D8 and D16 accesses are controlled by decoding DMA[21:19] and IOSEL_N
 - Master accesses are mapped in DSP Data Space
 - Slave accesses are mapped in Program Data Space
EVI32 timing performances

- in ERC32 3C mode, EVI32 speed is limited only by the speed of the uP (about 15 MHz)

- in ERC32 3C mode:
 - in master mode EVI32 runs at 25 MHz
 - in slave mode EVI32 runs at about 20 MHz. Critical paths come from the DMAAS signal that has the following characteristics:
 - Setup time min 12 ns – setup time max $\frac{1}{2}$ SYSCLK Period

- in DSP mode EVI32 runs at 15 MHz.
EVI32 DEVELOPMENT SPECIFICITIES
EVI32 development specificities

- EVI32 development was based on ESA provided VHDL core
- EVI32 development method based on ESA requirement, but modified to take into account that the core of the development was not performed by Astrium.

Obviously this is not a recommended design flow
=> Astrium put a large effort on model verification
EVI32 Verification of the model

- An analysis of the code provided was done
 - By reading the VHDL model
 - By running checkers (as DC compiler, Prime Time, Star) on the synthetized netlist to analyze paths between IO and registers, between IO and IO, and between registers, or design rule violations

- Comments were asked to ESA concerning specification and coding of EVI32

- A writing of the Architectural report from the VHDL code was made

- Improvement of the model was made concerning VHDL coding rules, and then modification of the model done.
A test plan was derived from EVI32 specification, VME standard, and previous FPGA developed by ASTRIUM.

A very large number of case has to be taken into account for the 3 configurations:
- EVI32 master / slave
- A32/A24/D32/D16/D8 type of exchange
- Block transfer activated/or not
- D16 interface activated / not
- EVI32 interrupter / interrupt handler
- EVI32 Arbiter / not
- EVI32 in charge of VME timer function/ or not
- EVI32 in slot1 , intermediate slot , end slot
- plus error cases : non-response...
EVI32 Verification by Simulation (II)

- For each of the 3 configurations (ERC 3C, ERC SC, DSP) EVI32 was simulated with accurate models of the processors:
 - ERC32 3 chip VHDL RTL model
 - ERC32 SC gate level model with its associated SDF file
 - TSC21020 gate level model and DPC companion ASIC VHDL model
- a VME checker written in VHDL and issued from our previous FPGA allows to check violations of the VME standard on the bus
- a VME spy written in VHDL allow to monitor traffic on the bus during simulations
- a VME remote slave written in VHDL is used to dialog with EVI32 in master mode
- a VME remote master written in VHDL is used to dialog with EVI32 in slave mode
EVI32 Verification by Simulation (III)

- 3 different configurations for ERC were coded in VHDL (in addition to ESA provided testbench):
 - **Conf M**:
 - Slot 1: ERC 3C or SC, RAM, ROM... + EVI32 acting mainly as master
 - Slot 2: VHDL remote slave
 - VME bus: VME checker, VME spy
 - **Conf S**:
 - Slot 1: ERC 3C or SC, RAM, ROM... + EVI32 acting mainly as slave
 - Slot 2: VHDL remote master
 - VME bus: VME checker, VME spy
 - **Conf 4EVI**: test of IACK and Arbitration daisy chains
 - Slot 1: ERC 3C, RAM, ROM, + EVI32
 - Slot 2: ERC 3C, RAM, ROM, + EVI32
 - Slot 3: ERC 3C, RAM, ROM, + EVI32
 - Slot 4: ERC 3C, RAM, ROM, + EVI32
EVI32 Verification by Simulation (IV)

- About 12 complex sequences have been coded to test each mode. Each sequence is composed of an Assembly program for ERC32 (or a C program for DSP) and in case of slave test of a command file for the remote master.

- Testbench includes auto-check functions that verifies automatically most of the functionality of EVI32

- Modelsim VHDL coverage tool was used to ensure that 100% of the model instructions are tested
EVI32 simulation with ERC32 SC model

- Thanks to ATMEL Nantes a model of ERC32 SC has been delivered to Astrium to allow simulation. This model is a gate level model associated with its SDF file. It is compiled with a -nodebug option for Modelsim.

- ERC32SC model is very accurate, but long to simulate. Internal registers of EVI32 cannot be viewed during simulation.

- ERC32SC model generate a continuous flow of messages related to internal violations in the model. These messages have to be filtered before checking Modelsim outputs.

- EVI32 functionality was first debugged with ERC32 3C model, and then tested with ERC32 SC model in order to save time
EVI32 DELIVERABLE STATUS
EVI32 board simulation model

- Timing have been added to EVI32 model following ESA recommendation

- EVI32 board level model has the same functionality as the component (except JTAG that is not included in the VHDL model), but has a limited accuracy in terms of timing

- A board level model of EVI32 is available upon request from ESA

- Warning: ERC32 SC model is delivered by ATMEL under specific conditions
EVI32 delivery schedule

- Delivery of prototypes planned for week 10
- Delivery of 5 EM planned in week 18
- Draft data sheet available from Astrium, will be put into ATMEL format
- Model available from ESA
Conclusion

- EVI32 is manufactured, and will be available from ATMEL-WM
- EVI32 validation at board level has still to be made

- EVI32 study put in evidence the difficulty to base a space ASIC design on a code that has not been designed by the company.
- The ASIC methodology has to be modified and focused on verification:
 - Specification review
 - VHDL code analysis: by reading, with CAD tools
 - Extraction of the Architecture from the VHDL code and analysis
 - Generation of a simulation plan
 - Simulation, code coverage
 - Etc…