

32 bit Embedded Real-time computing Core Single Chip Development (ERC32SC/TSC695)

Contract 12598/FM (SC)

T. Corbiere, J. Tellier, C. LeGargasson, B. Mouchel, S. Vandepeute, ATMEL WM, France A. Pouponnot, J. Gailser, ESTEC, Netherlands

Agenda

- Objectives of the contract
- Tentative specification
- Added / Removed functionality
- Electrical characterization
- Radiation test results
- Evaluation Board
- On Chip Debugger
- Part numbering
- Conclusions
- References

Program objectives

- 18 months overall program
- Monolithic version of the existing ERC32 chip set
- Identical set of net-lists with minimum changes
- Upward software functionality
- Improved functionality, speed, radiation hardness, "user friendly"
- 5V and 3V tolerant functionality
- Basic "foundry" functional validation

Block Diagram

New Features

- General Purpose Interface (µcontr. Functions)
 - ✓ 8-bit parallel I/O port bit per bit configurable
 - ✓ Edge detection on GPI inputs => External interrupt
- FLASH compatibility
- Selectable NMI or Watchdog
- High Drive Capability
 - ✓ Up to 400 pF for Address buffers
 - Address latches included
 - ✓ Up to 150 pF for Data, Controls & Clock buffers
- On-Chip Debugger for JTAG Emulator with Read/Write access for all Registers and I/Os

No longer supported

- Master/checker mode (Never used by customers)
- Program flow control (Not supported by compilers)
- 601/602 modes (Internal parities always checking)
- Coprocessor capability (Never used, embedded processor)

Contractual specification

	Power supply (V)	Speed (MHz)	MIPS	Power (W)
Committed	$5.00 \pm 10\%$	20	14	< 1.5
ATMEL objectives		35	25	<1.5
Committed	$3.00 \pm 10\%$	12	8	< 0.4
ATMEL		20	14	< 1.0
objectives				

ERC32 Single Chip development

Atmel Wireless & Microcontrollers

256 LEAD MQFP_F

	l mm		mil;	5
	И г	Max	Min	Max
A	2, 41	0,18	. 095	.125
С	0.10	0, 20	. 004	, 00€
D	50 23	55, 74	2, 005	2,105
D1	36 83	37, 34	1, 450	J. 470
E	59 23	55, 74	2, 095	2, 190
E1	36 83	37, 34	1. 450	1, 470
6	0, 508	8 B3C	. 020	BSC
f	0.15	0, 25	.(06	7010
A1	2, 3€	2, 56	.(8_	51
AC	0.00	0, 36	500.	. 014
L	8 20	5, 20	, 323	, 366
N.I	6-	4	€4	1
NZ	6-	4	t-	1

Functional Validation

- Validation plan rev 1.0 Feb 1999
- Current status:

Bloc	Status	Comment
System startup control	Done	OK
Integer Unit	Done	OK
Floating Point Unit	Done	OK
Access controller	Done	OK
Timers	Done	OK
UARTs	Done	OK
Wait-states and Time-out	Done	OK
Interrupt Ctrl	Done	OK
General Purpose Interface	Done	OK
EDAC / Parity	Done	OK
Direct Memory Access	Done	OK
Test Access Port	Done	OK

Electrical Characterization

- Covers from 2.7V up to 6.0V, from -55 $^{\circ}$ C to +125 $^{\circ}$ C
- Functional verification (all patterns at V and Temp)
- Dynamic/static measurements (example given for initial rev.)

Timing	Worst case	Comment for 30MHz speed
	(5.0V range)	
t5	10.8 nS	Critical / to improve
t8	35.6 nS	Critical / to improve
t9_D	16.5 nS	Critical / to improve
t13	18.3 nS	Critical / few nS to get
t15	35.6 nS	Critical / to improve
t7	33.0 nS	OK. No change requested
t9_CB	7.6 nS	OK. No change requested
t12	20.2 nS	OK. No change requested
t14	12.0 nS	Spec. to be changed
t57	13.7 nS	Change to t15 will make t57 better

Power

Dissipation

ERC32 Single Chip development

Atmel Wireless & Microcontrollers

Speed

Frequency

Memory Access time (nS)

Tolerance to Total Dose

Heavy ions test results

- 2 parts @ 4.5V & 2 parts @ 2.7V
- Test at Berkeley, CA
- eVAB-695, evaluation board used
- LATCH-UP detection
 - ✓ by external current threshold
 - ✓ In case of functional failure, no POWER-DOWN to not remove possible permanent LATCH-UP
- UPSET detection
 - **✓** By means of similar to what was used during the ERC chip set test
 - **✓** Internal registers then PARANOIA tests
 - **✓** Test status reporting via UART to monitor
 - **✓** In case of functional crash, RESET is sent to the eVAB-695.

Response to Heavy ions

Voltage	LET Threshold	Cross Section	Comments
(V)	(MeV/mg/cm ²)	(cm ²)	
4.5	> 109.7	< 2.0E-07	No Upset. No event in space
2.7	20	2.2E-07	Functional (*)
			3.3E-7 Error/device/day

(*) The board used for test is not equipped with 3V tolerant products. Results assume errors are generated by the TSC695

SEU sensitivity @ 2.70V

New revisions

- Improved memory interface / signals
- Corrected internal parity generation & checks
- Minor timing improvements
- Same die from 2.7V to 5.5V, Mil temp.
 - Speed: 25MHz @ 5V ±10%
 - 0.9W typ. @ 25MHz & 5.0V
- One single package: 256-pins MQFP (>70% space saved)
- Internal qualification pronounced as early as September 1999
- Changed to Rev.F to correct internal parity check deviations
- Space evaluation started (CNES contract)

JTAG On-Chip Debugger Features

- Reset / Run / Stop
- Breakpoints
 - **✓** 3 hardware breakpoints for program execution
 - **✓** 1 hardware breakpoint data memory access
 - √ 'n 'software breakpoints using trap patch mechanism
- Step-in, Step-out, Step-over
 - **✓** Assembly level
 - **✓** High language Level
- Examination and Modification of Registers, Memory or I/O's
- Code Download, Inline Assembly for Local Patches

Development tools

- Ada Cross compiler system
- Hard real-time tools, target simulator
- JTAG based TSC695 target emulator (*)
- VxWorks real-time operating system
- Rational/Verdix ADA cross-compiler Corp.
- RTEMS real-time kernel
- ADA95/C/C++ cross compiler system, simulator
- TLA 700 Logic analyser disassembler
- ADA95 compiler, based on GNAT

• ...

Aonix

Spacebel

Spacebel

Wind River Syst. Inc.

Rational Software

OAR

ESA/ESTEC

Tektronix

ADA Core Technologies

(*) Non intrusive breakpoint detection in executed instruction

References

- All major European space actors
- Selected for various Space applications:
 - Smart-1, Beagle 2, PHARAO, Ariane V, Radarsat, SAC-C ...
 - Generic Processor Units,
 - High reliability spacecraft buses,
 - Star trackers
 - Charge Particle Telescope (ESA experiment)
 - **>** ...
- First QML-Q and QML-V parts delivered
 - SMD number: 5962-00540

Literature

- TSC695 user's manual
- TSC695 data sheet
- eVAB695 user's manual
- TSC695E errata sheet
- at www.atmel-wm.com

Part Numbers

<u>Part Number</u>	<u>Lead-times</u>
--------------------	-------------------

TSC695F-25MA-EOn stock

TSC695F-25MA6 Weeks

TSC695F-25MA/883
 22 Weeks

• 5962-0054001QXC 20 Weeks

• TSC695F-25SASB 35 Weeks

• 5962-0054001VXC 30 Weeks

TSC695-SKIT
 On stock

ERC32 Single Chip development

Herakles

Atmel Wireless & Microcontrollers

eVAB-695

Conclusions

- Fast & Successful transfer of the 3 ERC32 Chip set net-lists
- Dramatically improved performances :
 - Speed
 - Radiation Hardness
 - Power Consumption
 - Space / Weight
- Additional features while overall compatibility
- Enhanced development tools :
 - Support from ESTEC and European industry
 - Starter kit / Development board / Compiled model for hardware simulation
 - ATMEL-wm Semiconductors hot line