ESA 12899 : DSP Processor Peripheral Controller (DSP/T7904E)

Microelectronics Final Presentation Days,
Room Fresnel, ESTEC, Noordwijk, The Netherlands, March 6th

Pierre-Eric BERTHET
Salvatore CATALANO
Jean-Luc POUPAT
37, avenue Louis Bréguet
78146 Vélizy-Villacoublay, France
Summary

- Contract history / background
- Objectives of the study
- DPC ASIC Environment, Functionality and Main technical features
- DPC ASIC development specificity and validation approach
- Technical solutions for process/matrix
- Encountered difficulties / lessons learned
- DPC ASIC test board features and validation results
- Application: MCM DSP Implementation
- MCM DSP Functionality and Main technical features
- MCM DSP test board features and validation results
- DPC ASIC and MCM DSP assessment and availability
- User base and applications
- Conclusion
The Processing Units trends for Space Applications are:
- Computing Performances: 5 MIPS to 100 MIPS
- Very strong Real Time constraints
- Centralised or distributed architecture

ADSP-21020 from Analog Devices has been transferred to the European foundry ATMEL Wireless & µC under the reference TSC21020F in the frame of an ESA contract in 1998.
Signal Processing Applications require additional efficient support for:
- Initialisation of Program Memory
- Memory type Compatibility (SRAM/DRAM) and Protection management
- Interfacing with data handling systems, instruments and other processors in case of parallel processing extensions

Possible implementation using discrete logic or FPGA results in larger board designs, lower performance and reliability and is not suitable for large number board manufacturing.

ESA 12899 contract is managed by Sandi Habinc at ESTEC to develop a generic support device suitable for on-board applications based on the ADSP-21020 and the TSC21020E processors

ASTRIUM was selected as prime contractor for this activity

Atmel Wireless & µC was selected for the ASIC foundry activities
Contract history / background (3/3)

- Space Application requires also:
 - Very high integration level (weight and volume reduction)
 - Adaptation to critical environments (thermal, mechanical, EMC, pressure, radiation)
 - Compatibility with the Space qualification needs
 - Procurement cost reduction

- New packaging solution requirement to fit these needs and to be compatible with the increasing number of devices I/Os

- In 1998, ASTRIUM started in parallel the development of the MCM DSP implementing one DSP System based on the DP21020F and the DSP Peripheral Controller in a single package.
Objectives of the study

- Design and manufacture a first-time-right generic support device suitable for on-board applications based on the ADSP-21020 and the TSC21020E processors
- Validate the functionality of the developed device with a board featuring the device and the target processors
- Ensure that the developed device is unrestrictedly available from and supported by the manufacturing foundry as an ASSP with a comprehensive data sheet
- Ensure the availability of the device in both die and packaged form
- Develop and manufacture an integrated MCM DSP system using the DPC ASIC
- Ensure the availability of the MCM DSP for the space industry
DPC ASIC Environment

DSP 21020

JTAG Interface
Bus Request
Bus Grant

DPC Asic

PM Interface
Data + Check Bits
Flexible IO Port
FIFO Interface
External Interrupts

User Extension Interface

Data Memory

(SRAM or DRAM)

Data + Check Bits

Program Memory

(SRAM or DRAM)
DPC ASIC Functionality

- DSP Program Memory Interface
- DSP Data Memory Interface
- Interrupt Request to DSP
- User Extension IF Control signals
- Program Memory Interface
- Data Memory Interface
- External Interrupt Interface
- Boot & Configuration Control signals
- Clock & Reset
- JTAG
DPC ASIC Main technical features (1/2)

- The DPC ASIC provides the following functions:
 - DSP21020F Access management
 - Up to 4 MWords SRAM and DRAM Memory management support on both Program and Data Buses
 - Program and Data Memory EDAC (die only) and Parity Protection
 - Various System Boot options
 - External interrupt management
 - User Interface with various facilities management (full duplex UARTS, PWG, cascadable timers, watch dog timer, ...)
DPC ASIC Main technical features (2/2)

- **Performances:**
 - Intrinsic Performance: 20 MHz
 - Voltage range: 4.5 to 5.5 V
 - Temperature range: -55 to +125 °C
 - Power consumption: < 2 W

- **Technology:**
 - Total dose radiation tolerance: 100 Krads
 - Latch-Up immunity better than 100 Mev
 - SEU LET threshold better than 25 Mev/cm²/mg

- **Packaging:**
 - Ceramic 256 FQFP F and Bare Die
DPC ASIC development specificity

- **DSP21020 interface**
 - Difficult to meet => use of internal quicker clock
 - Phase between DPC clock and DSP clock

- **PLL or external oscillator**

- **Atmel MG2RT development flow and library validation**

- **Two different versions with some different functionnalities : 256 QFP package and die (for MCM DSP integration)**
DPC ASIC Validation Approach (1/2)

- Simulations are done at DPC level and at Board level with test benches

- DPC Level :
 - Use of emulators (generation and check) for all the interfaces (Serial Link, UART, Memory,...), and also for the DSP (Read/Write model only)
 - Exhaustive simulations of the whole functions
DPC ASIC Validation Approach (2/2)

● Simulations are also done **at Board level** with test benches

● **Board level**:
 - Use of the DSP netlist (Gate Level VHDL delivered by ATMEL) for performing simulations with the best possible accuracy
 - Use of emulators (generation and check) for the others interfaces
 - Intensive simulations of nominal and special cases such as
 - Boot procedure, Reset phase, and DSP start
 - Memory Access: nominal, aborted (with particular branch execution), extended (with different Wait States configurations), and interrupted (validation of the interrupt process influence)
 - Memory Protection: EDAC, Parity and No protection executed on all the previous DSP memory accesses
Technical solutions for process/matrix

- MG2RT process of ATMEL was selected
- Internal parity protection against SEU
- Total Dose tolerance of DPC is over 50 krad/s
- JTAG Boundary Scan is implemented for board level testing
- Functional vectors and Scan used. 97 % fault coverage
- MG2265E matrix used (MG2RT) - MQFP256 (package or die)
 - 185791 gates used for 264375 available gates = 70.28 %
 - **Die version**: 362 pads used for 362 available pads.
 - 324 signals, 6 power pins for core, 32 power pins for buffers
 - **Package version**: 243 pins used for 256 available pins
 - 200 signals, 6 power pins for core, 32 power pins for buffers, 5 pins for PLL
Encountered difficulties / lessons learned

- **Place**: high cell density, new FIFO cells designed
- **Routing**: latches setup and hold and fine adjustment between internal clock and DSP clock made by hand.
- **Static tests**: Static consumption => FIFOs cells problem (pull-up)
- **Debug**:
 - system Resets due to FIFOs errors during read accesses => no sufficient test coverage with galloping 0 and 1
 - PLL => jitter not OK with design environment => not usable
DPC Test board features

● A DPC Test board has been developed for:
 - Rapid prototyping
 - DPC evaluation
 - Software development

● The DPC board implements:
 - The DPC Asic
 - The DSP 21020
 - SRAM and DRAM Memory (Program, Data and User)
 - The EZ-ICE interface for software development
 - Test points for complete observation
 - IO connectors (RS422, FIFO, etc…)
DPC Test board

- Memory Banks
 - Program Memory
 - Data Memory
 - User Extension

- Test Connectors (PM)
- Test Connectors (DM)
- PM Interface Connector
- DM Interface Connector

- On-Board Oscillator
- Configuration Switches
- External Clock
- EZ-ICE
- RS-422
- VIOP & FIFO Connector

© Astrium
Validation results (1/2)

Functional Limitations

- Serial Input Link 0 frequency must be comprised between f and f/2 (f is the ClkOut Clock frequency). No work around. DPC specification modification.
- For Serial Output Link frequency definition, either Scaler or Prescaler may be used (with the other programmed to 1) but not both. So frequency may be comprised between f and f/256. No work around. DPC specification modification.
- EDAC and parity protection can not be mixed on Data Memory Interface. A hardware work around exists.
- DR flag can not be reset in UARTStatusReg as specified. A work around exists. DPC specification modification.
- The PLL is not usable. It is necessary to use external oscillators with high frequency (x4). This decreases a bit the system performance and imposes a load capacitors comprised between 50 (recommended) and 100 pF on ClkOut output pin.
Validation results (2/2)

- **Characterisation results**
 - 20 MHz with DRAM (room temperature and nominal voltage)
 - 20 MHz with SRAM (room temperature and nominal voltage)
 - 14 MHz with DRAM (extreme temperature and voltage)
 - 14 MHz with SRAM (extreme temperature and voltage)

- **Power consumption**
 - 1.6 W
Application: MCM DSP (Multi Chip Module)

- **Space Application requires:**
 - Very high integration level (weight and volume reduction)
 - Adaptation to critical environments (thermal, mechanical, EMC, pressure, radiation)
 - Compatibility with the Space qualification needs
 - Procurement cost reduction

- **The Multi Chip Module (MCM) Concept**
 - A **substrate** allowing heterogeneous dice assembly and high speed interconnection
 - A **package** protecting the micro electronic function and giving the interconnection with the external environment (PCB,...)
 - A **lid** which hermetically seals the package to avoid the on-earth pollution
 - Enhanced function reliability and optimized electrical performances
The MCM DSP provides the following features:

- 128K Words On-module SRAM for both Program and Data Memory
- SEC/DED EDAC Memory Protection (*)
- Open architecture (User Extension Interface, Versatile I/O port) (*)
- 3 IEEE 1355 High Speed serial links
- JTAG Interface for Boundary Scan Test
- JTAG Interface for EZ-ICE In-Circuit emulator connection
- User Interface providing powerful facilities management (full duplex UARTS, PWG, cascadable timers, watch dog, serial communication links, FIFO, ...) (*)
- Single and multi-processor application programming supported by the VIRTUOSO Real Time Operating System with a standard C environment

(*) DPC features
MCM DSP Main technical features (2/2)

- **Performances**:
 - Performance: 15 MHz / 30 MFLOPS (0 WS) with EDAC protected memories
 - Voltage range: 4.5 to 5.5 V
 - Temperature range: -55 to +125 °C
 - Power consumption: 6 W typical
 - Reliability better than 100 FITs

- **Technology**:
 - Radiation tolerance better than 50 Krads (SI)
 - Latch-Up immunity better than 100 Mev
 - SEU LET threshold better than 25 Mev/cm²/mg
 - Implementation through the MCM-C/D technology
MCM DSP Product Implementation
MCM DSP Test board features

- An MCM DSP board has been developed for:
 - Rapid prototyping
 - Software evaluation
 - Software development

- The DSP board implements:
 - The MCM DSP
 - 40k words SRAM for User Applications
 - The EZ-ICE interface for software development
 - Test points for Program Memory and Data Memory observation
 - IO connectors (RS422, 1355 links, FIFO, etc...)
MCM DSP Test board
MCM DSP Validation results

- MCM DSP electrical characterization completed since 05/99:
 - 23 MHz / -55°C / 5V with EDAC protected memories
 - 16 MHz / +135°C / 5V with EDAC protected memories

- Guaranteed product performances:
 - 15 MHz / -55°C to +85°C with VDD > 5V and EDAC protected memories
 - 14 MHz / -55°C to +85°C with VDD < 5V and EDAC protected memories

- Power consumption:
 - 7 W
DPC ASIC Assessment and availability

- The DPC ASIC is available from ATMEL Wireless & µC under the product reference T7904E

- DPC Data Sheet can be downloaded from Atmel Web Site

 http://www.atmel-wm.com/products/gab_prod_card.php3
MCM DSP Assessment and availability

- MCM DSP21020F is available of-the-shelf from Astrium
- MCM DSP Validation Board is available of-the-shelf
- MCM DSP VIRTUOSO Board support package is available of-the-shelf
- The MCM DSP Documentation can be requested at the following addresses

 pierre-eric.berthet@astrium-space.com
 jean-luc.poupat@astrium-space.com
User Base and Applications

- **SAAB : ROSETTA Solid State Mass Memory Controller**
 - EM characterization and EQM qualification successfully completed

- **CRISA : ROSETTA Camera and Star Tracker Instrument Command & Control Terminal**
 - EM characterization successfully completed, EQM qualification in progress

- **ASTRIUM : INMARSAT 4 Digital Payload Processor Unit Controller**
 - OCTM Board with 8 MCM DSP
 - EM characterization in progress

- **ALCATEL : Video Chain Signal Processor (image processing & compression)**
 - EM characterization successfully completed, EQM qualification in progress

- **NASA (Jet Propulsion Laboratory) : Scattometer Instrument Data Processor**
 - 3 MCM DSP in parallel
 - EM characterization in progress
Conclusion

- The DPC ASIC and the MCM DSP are available on the market place since 1Q2000.

- Many Thanks for their fruitful cooperation and support on this product development:
 - M. Sandi HABINC, ESTEC
 - Mrs. Françoise BEGHIN, ATMEL Wireless & µC
 - M. Michel PORCHER, ATMEL Wireless & µC
 - M. Dominique DE SAINT ROMAN, ATMEL Wireless & µC
 - The MCM DSP First Users