ESA-ESTEC GSTP - Analog Silicon Compiler for Mixed Signal ASICs

Irradiation of CSA-PSA & Design of a CMOS High-Speed 8-bit 100MS/S ADC core

Outline

- Irradiation of CSA-PSA chip [designed and fabricated in ASTP4 project]
 - Objectives
 - Measurement setup
 - Measurements
 - Conclusions
- Design High-Speed 100MS/s 8-bit ADC
 - Objectives
 - Design methodology
 - Architectural level design
 - Device level design
 - Layout
 - Measurements
 - Conclusions

Irradiation CSA-PSA: objectives

- Perform an initial evaluation of the total dose hardness of the commercial 0.7µm CMOS process from MIETEC
 radiation tolerance evaluation of standard CMOS technology
- Total dose testing on CSA-PSA chip :
 - designed and fabricated in ASTP4 project "VLSI Design Tools-Module generation for analog silicon compilation" with the ESTEC division of the ESA (Contract 9890/92/NL/GS).

Workpackage

o WP1200

CSA-PSA: block-diagram

CSA-PSA: micro photograph

Jan Vandenbussche

CSA-PSA: measurement setup

- Compliant with AD3
- Five samples were exposed to 50 krad
- Two of them were afterwards exposed to 100 krad

Measurements:

- for good comparison additional noise and linearity measurements were done before irradiating the samples
- for each sample 11 inputs were applied: varying from 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100fC
- for each input signal a histogram, comprising 30.000 samples, was measured
- linearity and noise were calculated from histograms

CSA-PSA: measurement results

Jan Vandenbussche 🏸

Final presentation – ESA-ESTEC 7/3/2001

10

- After exposure to 50 krad
 - a slight decrease in conversion gain: from 18mV/fC to 16mV/fC
 - \bigcirc the peaking time decreases slightly from 1.14 to 1.17 μs
 - the noise level shows little change
- Conclusion 50 krad irradiation
 - o all chips survived the irradiation testing of 50 krad quite good
 - only a slight decrease in performance is noticed
 - good recovery after 24 hours
 - So full recovery after 168 hours.

- After exposure to 100 krad
 - a further decrease in performance
 - the conversion gain dropped by a factor of two
 - the peaking time increased from $1.14\mu s$ to $1.20\mu s$
 - the noise level increased slightly After 24 hours annealing little recovery was seen, after 168 hours of annealing both samples had fully recovered from the irradiation
- Conclusion 100 krad irradiation
 - both samples survived irradiation
 - little recovery after 24 hours annealing
 - full recovery after 168 hours of annealing

CSA-PSA: conclusions

- the Alcatel Microelectronics CMOS 0.7µm technology shows good radiation tolerance
- deep submicron CMOS technologies can be a viable alternative to expensive radiation hard technology:
 gate all around
- the sample set was too small to draw finalizing conclusions, but same message was heard on RadTol meeting

CSA-PSA: conclusions cont'd

RadTol 49 meeting

gate allround techniques for analog as well as digital libraries
 promising results were presented at the RadTol meeting
 plain CMOS is a true candidate for future space applications.

Publications originating from this work

- J. Vandenbussche, F. Leyn, G. Van der Plas, G. Gielen, "Total Dose Testing of a Standad CMOS Particle Detector Front-End for Space Applications", RadTol meeting R49, Geneve, October 28 1998.
- J. Vandenbussche, F. Leyn, G. Van der Plas, G. Gielen, and W. Sansen, "A Fully Integrated Low-Power CMOS Paritcle Detector Front-End for Space Applications", IEEE Transactions on Nuclear Science, Vol. 45, pp. 2262-2272, August 1998.

Outline

Irradiation of CSA-PSA chip

- Objectives
- Measurement setup
- Measurements
- Conclusions
- Design High-Speed 100MS/s 8-bit ADC
 - Objectives
 - Design methodology
 - Architectural level design
 - Device level design
 - Layout
 - Measurements
 - Conclusions

Objectives

- Address how state-of-the-art design can be enhanced using AMGIE functionality
 - topologies change as technological boundaries move on
 - what about design re-use?
 - how to speed up the design, what tasks can be automated?
- Demonstrator design:
 - 8-bit ADC at 60-100MS/s is a typical component in receiver front-ends
 - design of high-speed ADC core for high-speed base station application (GPS, video decoding, TV decoding, satellite decoding, WLAN, ...)
- Workpackages:
 - WP 2120, WP 2200, WP 2300, WP 2400, WP 2500

Design Methodology

Architectural Level: overview topologies

Architectural Level: overview cont'd

- Possible candidates for 8-bit 100MS/s ADC:
 - pipelined architecture
 - Iow power
 - sampling speed shifts to higher frequencies as technology scales down
 - no publications on such high-speed 'working' designs

o flash:

- consumes a lot of power
- Intrinsically the fastest architecture with its full parallel implementation
- 8-bit 80MS/s CMOS flash ADC has been published

⇒Only the flash architectures are capable of obtaining the targeted specifications in the 0.35 µm CMOS technology

Architectural Level: Flash ADC

- Problems classical flash ADC
 - large power consumption (2^N comparators)

solution: folding

- large input capacitance, resulting in bandwidth limitations for input signal frequencies
 - solution: interpolation
- input feedthrough
- kickback noise
- Additional improvements
 - averaging (Bult ISSCC) by preamplifiers
 - o new fully differential input stage
 - o new enhanced comparator to avoid kickback noise

Architectural Level: block diagram

22

Architectural Level Design

Final presentation – ESA-ESTEC 7/3/2001

Jan Vandenbussche 🗡

Architectural Level Design cont'd

$$\sigma_{total, offset}^{2} = \sigma_{preamp_st1, offset}^{2} + \left(\frac{\sigma_{preamp_st2, offset}}{A_{preamp_st1}}\right)^{2} + \left(\frac{\sigma_{comp, offset}}{A_{preamp_st1} \cdot A_{preamp_st2}}\right)^{2}$$

• For optimal dynamic performance:

Mismatch contribution of comparator should be negligible

Comparator can be optimized for speed

$$\Rightarrow A_{preamp} = A_{preamp_st1} \cdot A_{preamp_st2} = f(INL, technology) \ge 15$$

Architectural Level Design cont'd

- Static performance
- Dynamic performance
 - Admissible phase shift for Nyquist performance?
 - $V_{gs} V_t = 0.3 V$
 - Preamplifier
 Bandwith/Input
 Frequency = 5.
 - 50dB 3rd order distortion (8bit)

Jan Vandenbussche

```
\Rightarrow f_{p,preamp} > 250MHz
```

Design Methodology

Final presentation – ESA-ESTEC 7/3/2001

Jan Vandenbussche

Device Level Design: 1st preamp stage

Device Level Design: 1st preamp stage cont'd

Constraints from architectural design

•
$$A_{preamp_st1} = 10$$

•
$$f_{dominant, preamp_st1} > 500MHz$$

•
$$\sigma_{preamp_{st1}}^2 = \frac{3}{4}\sigma_{total,offset}^2 \le \frac{3}{4}(0.7LSB)^2$$

- Additional design equation derived using ISAAC tool
 Sizing script (Matlab) using ASA optimization algorithm
- Sizing script (Matlab) using ASA optimization algorithm

Device Level Design: 2nd preamp stage

Constraints from architectural level

•
$$A_{preamp_st2} = 2$$

•
$$f_{dominant, preamp_st2} > 500MHz$$

$$\varphi_{Nyquist} \leq \operatorname{Arctan}\left(\frac{1}{5}\right) \approx 12^{\circ}$$

 $\sigma_{preamp_st2}^{2} = \frac{1}{4}\sigma_{total,offset}^{2}$

• Additional design equation derived using ISAAC tool

Sizing script (Matlab) using ASA optimization algorithm

Ian Vandenbussche 🏏 🗄

Device Level Design: comparator

- very fast regenerative structure
- reset when clock is high

Device Level Design: digital back-end

- encodes the thermometer code in Gray code
- 3- input NAND gate in the ROM decoder,
 - additional error correction is done,
 - avoid bubbles in the output
 - avoid metastability
- standard cell synthesis doesn't meet high-speed specs
 - o 'manual' design
 - Maple scripts for sizing
 - eldo for transistor level simulations

Layout generation

- Layout-driven design: sized schematic alone does not constitute an operational converter
 - analog and digital power supplies have been separated
 - around the perimeter of the chip 1 nF of decoupling capacitance has been integrated to provide stable power supplies
- Layout preamplifier stages
 - layout of the preamplifiers was done manually
 - devices were generated using LAYLA
 - placement and routing was done manually
 - MONDRIAAN for regular arrays/connections
 - additional 500 pF of decoupling capacitance internally
 - guard rings to reduce substrate (digital) noise coupling

Jan Vandenbussche 🏏 33

Comparator

layout manually

placement & routing using Mondriaan for regular arrays/connections

- ROM decoder
 - ROM cell manually
 - ROM array generated using the MONDRIAAN tool
- A buffered binary clock tree
 - o clock tree generated using MONDRIAAN
 - the design and layout of the clock buffer was done manually

36

Layout: micro photograph

Jan Vandenbussche 🌮 😽

Characterization High-speed ADC

- Functional testing
 - static measurements (INL/DNL)
 - dynamic Measurements (SFDR/SNDR)
 - datasheet
- Irradiation testing
 - budget reallocated for redesign
- Dedicated test PCB was developed

Characterization: static measurements

Jan Vandenbussche 🗡

Characterization: static measurements cont'd

Characterization: dynamic measurements

Jan Vandenbussche 🏸

Characterization: dynamic measurements cont'd

Characterization: datasheet

Specification	Target value	First Design	
input capacitance	< 100 pF	3 pF	
input range	> 0.5 V ptp	1.3 V ptp	
latency	not specified	1 clock cycle	
INL/DNL	< ½ LSB	2.7/1.6 LSB	
SFDR	> 45 dB	46 dB @ f _{in} =6 kHz 42 dB @ f _{in} =5 MHz	
SNDR	> 40 dB	38 dB @ f _{in} =6 kHz 29 dB @ f _{in} =5 MHz	
ENOB	6.5 bits @ 30 MHz	NM	
parallel output	ok	ok	
digital output: • logic family • data format	CMOS levels Gray Code	CMOS levels Gray Code	
Conversion rate	1 code/clock cycle	1 code/clock cycle	
Update rate	60 MS/s	100 MS/s	
Drive Capability	-	10 <u>pF@100MS/s</u> 5 pF @200MS/s	
radiation tolerance	50 krad	NM	

Measurement analysis

- High-speed ADC is working at 100 MS/s
- Slightly out of spec
- INL measurements show missing codes 1.5 1 0.5 **DNL [LSB]** n Codes are never excited -0.5 -1 -1.5 105 110 115 120 125 130 135 140 145 code []

Final presentation – ESA-ESTEC 7/3/2001

Measurement analysis cont'd

- Malfunctioning second stage preamplifier
 - common mode output 2nd stage preamp too low
 - ⇒ input transistor of the comparator out of the saturation region
 - ⇒no gain in comparator
 - mismatch amplified instead of attenuated
- Hypothesis consolidated by:
 - additional (symbolic) analysis comparator [Van der Plas ECCTD '98]
 - transistor level simulation with tuned biasing
 - measurements with tuned biasing: V_{bias_preamp_st2} no more missing codes

Measurement analysis: solutions

- Possible solutions …
 - increasing the DC current through the 2nd stage preamp
 - current source diff pair no longer in saturation!
 - isolating power supply 1st and 2nd stage preamp with FIB
 - Iarge setup times (days), not routine job!
 - 3 samples FIBed, none were functional afterwards
 - ➡ Redesign?

Measurement analysis: solutions cont'd

Redesign High-Speed ADC

- New topology for 2nd stage
- Comparator upscaled
 1st design runs up to 200 MS/s!
 lower mismatch
- Separate power supply for 1st and 2nd stage preamplifiers

Redesign High-speed ADC cont'd

Redesign High-Speed ADC: datasheet

Specification	Target value	First Design	Redesign
input capacitance	< 100 pF	3 pF	4.8 pF
input range	> 0.5 V ptp	1.3 V ptp	1.3 V ptp
latency	not specified	1 clock cycle	1 clock cycle
INL/DNL	< ½ LSB	2.7/1.6 LSB	0.3/0.6 LSB
SFDR	> 45 dB	46 dB @ f _{in} =6 kHz	-
		42 dB @ f _{in} =5 MHz	
SNDR	> 40 dB	38 dB @ f _{in} =6 kHz	-
		29 dB @ f _{in} =5 MHz	
ENOB	6.5 bits @ 30 MHz	NM	-
parallel output	ok	ok	ok
digital output:			
 logic family 	CMOS levels	CMOS levels	CMOS levels
 data format 	Gray Code	Gray Code	Gray Code
Conversion rate	1 code/clock cycle	1 code/clock cycle	1 code/clock cycle
Update rate	60 MS/s	100 MS/s	100 MS/s
Drive Capability	-	10 <u>pF@100MS/s</u>	10 pF@100MS/s
		5 pF @200MS/s	5 pF @200MS/s
radiation tolerance	50 krad	NM	-

Conclusions

Results

- high-speed 100MS/s 8-bit ADC core (packaged/naked die)
- o test PCB delivered
- ADC core was used as external part in WLAN prototype [IMEC]
- Publications

Publications

- G. Van der Plas, J. Vandenbussche, G. Gielen and W. Sansen, "Mondriaan: a Tool for Automated Layout Synthesis of Array-type Analog Blocks", Proc. on the IEEE 1998 Custom Integrated Circuits Conference, pp. 485-488, California, May 1998.
- J. Vandenbussche, G. Van der Plas, W. Verhaegen and G. Gielen, "Statistical Behavioral Modeling of A/D Converters", IEEE/VIUF International Workshop on Behavioral Modeling and Simulation, Florida, October 1998.
- G. Van der Plas, W. Daems, E. Lauwers, J. Vandenbussche, W. Verhaegen, G. Gielen, W. Sansen, "Symbolic Analysis of CMOS Regenerative Comparators", European Conference on Circuit Theory and Design, pp. 86-89, Italy, August 1999.
- G. Van der Plas, J. Vandenbussche, W. Verhaegen, G. Gielen and W. Sansen, "Statistical Behavioral Modeling for A/D Converters", Proc. IEEE 1999 International Conference on Electronics, Circuits and Systems, pp. 1713-1716, Cyprus, September 1999.

