
European Space Agency
Microelectronics Section

Single Event Upset Hardening
by 'hijacking' the multi-VT

flow during synthesis

Single Event Upset Hardening
by 'hijacking' the multi-VT

flow during synthesis

Roland Weigand

February 04, 2013

Design Automation Conference User Track

Author and AffiliationAuthor and Affiliation

Author:
Roland Weigand

Affiliation:
European Space Agency, Microelectronics Section

Address:
Keplerlaan 1, PO box 299

2201AG Noordwjik, The Netherlands

Phone: +31 71 565 32 98

E-mail: Roland.Weigand a.t esa.int

AbstractAbstract

The objective of this paper is to present a new optimisation strategy when it comes to selecting Single-Event-Upset
(SEU) hard flip-flops (FF) in a design. SEU are random bit flips in storage cells (RAMs and FF), induced by particles
(ions, protons, neutrons) contained in cosmic rays and solar winds. These are of major concern for space applications,
but increasingly, with technology downscaling, also for ground applications. SEU protection can be achieved by adding
redundancy to the circuit, for example by using dedicated SEU 'hard' FF. These FF however have a price in terms of
area, timing and power, and using only these hard FF, the simplest approach, may be a show-stopper. Moreover, this
'all-hard' approach often provides a level of protection, in terms of error rate, which is beyond the actual mission
requirements, hence we are overdoing things. A workaround is to use the hard FF cells only for part of the design. The
question is how to select the hard and the soft FF. Ideally, this should be according to functional criticality, using soft
cells for those FF which are less likely to disturb the overall application of the chip. Such a criticality analysis however is
often difficult to implement.

As an alternative, or even in addition to the functional criticality analysis, we propose to use an automatic selection of
hardening targets based on timing considerations: hard cells are slower, so we should select the soft FF to relax the
critical paths. At the same time we would like to hard-limit the overall percentage of soft FF to have clear bounds to the
statistical error rate of the chip, which is a design constraint for space applications. The analogy with the multi-VT flow
becomes apparent: we have pairs of cells (SVT/LVT), the LVT are faster, but have higher cost (leakage power). In our
analogy (SVT = hard-FF, LVT = soft FF), the soft FF are faster, but have a higher error rate. We demonstrate that with
small modifications in the .lib files, it is possible to use the multi-VT synthesis to optimise and trade-off timing
performance against SEU hardening. Some limitations were detected, namely how to transfer this strategy into the
backend flow, and how to optimise the 'real' leakage power, if the library parameter is 'hi-jacked' for the SEU error rates.
As a possible solution, a script-based approach will be explored in the future. We may also raise the question whether
EDA vendors could offer additional optimisation features, allowing to assign custom parameters to the library and
custom functions to the overall cost function used during optimisation.

OutlineOutline

 Single Event Effects (SEE) in Space Applications [1]
• Cosmic Rays, Heavy Ions, Single Event Upsets (SEU)
• SEU hard flip-flops
• Calculating Error Rates

 Classical Approach for SEU Hardening
• Hardening of FF selected by criticality analysis or fault injection
• Hardening of all FF (brute force): high cost (area, power, timing)

 Proposed Approach: Automatic Partial Hardening
• Optimisation of hardening vs. timing, area and power
• Such feature does not exist → 'hijacking' multi-VT flow
• Implementation: patching .lib file, synthesis scripts
• Examples, results – and limitations

 Conclusion
• Need for a dedicated custom optimisation feature in EDA tools

Single Event Effects (SEE) in SpaceSingle Event Effects (SEE) in Space

Cosmic rays or solar winds
cause ions, protons, neutrons

On earth, most particles are
filtered by the atmosphere, yet
some effects are observed on
planes, and, with technology
downscaling, even on ground

 Particle impacts cause charge
generation in the semiconductor

Glitches entering internal nodes
of a latch/FF may cause bit-flips

→
the Single Event Upset (SEU)

SEU Hardened Latches and Flip-FlopsSEU Hardened Latches and Flip-Flops

 Protection by dedicated SEU-hard storage cells

TMR design flow, previously presented in DAC User Track 2009 [2]

Example: the DICE latch [3]:
duplicated internal nodes with
bidirectional feedback

Needs glitch on two nodes to
cause a bit-flip

- A space ASIC cell library
usually contains both, soft
(=normal) and hard cells

- Increased area, power and
delay (c/w soft FF)

 Protection by (Triple-Modular) Redundancy (TMR)

Calculating Single Event Error RatesCalculating Single Event Error Rates

 100% hard impossible, a residual error rate (ER) remains
➔ Goal: ER ≤ probability of the system to fail for other reasons
➔ Goal: ER should be low compared to the mission duration

 Chip error rates usually calculated in 'errors / device / day':

ER = Σ p
i
 * a

i
 (sum over all bits in the chip)

p
i
 = bit error rate (= probability for one bit to flip)

a
i
= probability of bit flip to cause a functional error

 Assuming only two classes of bits: soft and hard flip-flops,
and assuming a

i
= 1 (to get worst case error rate):

ER = p
s
 * N

s
 + p

h
 * N

h

p
s
 , p

h
 = soft/hard FF error rate; N

s
, N

h
 = number of soft/hard FF

 Use SEU hard FF only for a subset, selected by a criticality
analysis, identifying those cells which are most likely to cause
application failures (those cells with highest a

i
), e.g.

➔ Use hard FFs for state machines (e.g. the PC and condition
flags of a microprocessor)

➔ Use soft FFs in data paths (e.g. in a spread-spectrum data path,
bit-flips only cause negligible noise)

 FPGA Fault injection can be used to determine critical FF [4]

Selective hardening, based on criticality analysis, is
the best approach to find the trade off between

“reliability ↔ resource use ↔ performance”

 Criticality analysis is often tedious and not always convincing
for PA people who like to see 'simple' probability calculations

Defining all FF as critical is often the easiest solution...

Selective Hardening of FFSelective Hardening of FF

SEU Hardening – Brute Force MethodSEU Hardening – Brute Force Method

 “Brute force” SEU hardening: Use only hard FF

ER = p
s
 * N

s
 + p

h
 * N

h
 becomes

ER = p

h
 * N

ff

with N
s
 = 0 and N

h
 = N

ff
(total # of FF in design)

 Best radiation tolerance, easy assessment / implementation

→ set_dont_use {my_space_asic_lib/dff*}

 Huge overhead: Hard FF are 2-3x as large as soft FF
➔ Increased area, power and delay (= lower QoR)
➔ Designs may hit the complexity ceiling and/or

miss the performance and power goals
➔ Often leads to over-protection

 Goal: find a trade-off between Error Rate and QoR

What about partial hardening without criticality analysis?

Proposed: Automatic SEU HardeningProposed: Automatic SEU Hardening

 Timing driven automatic selection of hardening targets
→ by default, use the larger and slower hard cells,
→ on critical paths, use smaller and faster soft cells

 Formula remains applicable: ER = p
s
 * N

s
 + p

h
 * N

h

 Which algorithm to use for the automatic selection?

 Dedicated SEU protection features are scarce in EDA tools,
but a similar algorithm is multi-VT leakage optimization

➔ LVT (fast, high leakage) <=> soft-FF (fast, higher error rate)
➔ SVT (slow, low leakage) <=> hard-FF (slow, low error rate)

 Implementation principle
➔ Annotate p

s
and p

h
 as leakage power to the single-VT libraries

➔ Define pairs of soft-/hard-FF as LVT-/SVT pairs
➔ Multi-VT synthesis with lvth_percentage (= N

s
 / N

ff
) as a

hard constraint to achieve the desired error rate (ER)

Implementation(1): Patching .lib filesImplementation(1): Patching .lib files

cell (dff) {
 cell_footprint : "dff";
 area : 62.72;
 cell_leakage_power : 0;

cell (dff) {
 cell_footprint : "dff";
 area : 62.72;
 cell_leakage_power : 0.7;
 threshold_voltage_group : LVT;

cell (hdff) {
 cell_footprint : "hdff";
 area : 235.2;
 cell_leakage_power : 0;

cell (hdff) {
 cell_footprint : "dff";
 area : 235.2;
 cell_leakage_power : 0.0009;

annotate error rate
of soft-FF as

cell_leakage_power

soft flip-flop functionally equivalent hard FF

assign the soft-FF (faster but higher error rate) to the LVT group

annotate
error
rate of
soft-FF

define (fake)
foot-print
equivalence
dff <–> hdff

Implementation(2): Synthesis scriptImplementation(2): Synthesis script

 # 1st synthesis using brute-force method:
 # use only hard flip-flops = disallow soft flip-flops
 set_dont_use [find lib_cell xyz_lib/d*]
 set_dont_use [find lib_cell xyz_lib/s*]
 set_dont_use [find lib_cell xyz_lib/l*]
 compile_ultra -timing_high_effort_script -scan

 # group sequential and combinatorial cells in separate blocks
 group [find reference h*] -design_name allff -cell_name iallff
 characterize iallff

 # 1st re-compile: only flip-flops, allow all seq. cells, apply hard lvth %
 current_design allff
 remove_attribute [find lib_cell ATC18RHA_CELL_slow_1p65v_145c/*] dont_use
 set_multi_vth_constraint -type hard -lvth_groups "LVT" -lvth_perc ${PERC}
 set_max_leakage_power 1000000000
 compile_ultra -incremental > reports/compile-${PERC}.log

 # 2nd re-compile: FF's are now dont_touch
 current_design leon
 set_multi_vth_constraint -reset
 set_dont_touch allff
 compile_ultra -incremental -timing_high_effort_script

}

ResultsResults

0.00% 0.50% 1.00% 1.50% 2.00% 2.50% 3.00% 3.50% 4.00%
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

0.15

0.3

0.45

0.6

0.75

 DUT: LEON2 processor [5], simple config (no caches), ~ 7000 FFs, clock
target 7 ns, DC G-2012.06-SP4, Atmel 180nm single-VT space libraries [6]

 Significant critical path improvement with ~ 1% of soft-FF. Gain limited by
combinatorial path length. Some oscillations observed.

yellow: critical path negative slack (ns, right axis)

red: # of violating paths (left axis)

blue: total negative slack (ns, left axis)

percentage of soft-FF

Problems and limitationsProblems and limitations
 lvth_percentage constraint is calculated over the whole

design, including those cells which do not have a LVT
equivalent → we would like to consider flip-flops only

 DC commands cause warning messages 'will be obsolete in a
future version' → will multi-VT still be supported in the future?

 DC optimization strategy: lvth_percentage is not really a hard
constraint. During compile, the percentage may go far beyond
the specified value, leading to a different implementation of
combinatorial logic. During final phase, the % is fixed, but the
final timing result may be worse than with all hard-FF.
Workaround: perform multi-VT optimization only on the FFs.

 Pairs of soft-/hard-FF are not truly footprint equivalent.
This is likely to pose problems in a physical flow.
In our example, a fixed wire-load-model was used.

 With lvth_percentage of typically 1% or less, there is little
improvement of area / power (most FFs remain hard cells)

Future WorkFuture Work

 Use automatic hardening in physical synthesis and backend,
possibly in a MMMC ECO flow. Soft/hard FF's, are NOT
footprint equivalent, this may cause trouble in physical tools.

 Use the knowledge we already have of the design:
Can we combine multi-VTH synthesis with hard constraints?
E. g. some critical flops MUST be hard, and others SHALL be
soft because we already protect them by other means: e.g.
Error Detection And Correction (EDAC).

 We have hijacked the multi-VT flow with a single-VT library.
What to do with 'real' multi-VT libraries? How to combine 'real'
leakage optimisation and automatic selection of soft-/hard
flip-flops?

ConclusionConclusion

 Single Event Effects cause bit upsets to our designs
• in space, but increasingly also on ground applications

 Designs can be hardened by using special flip-flop cells
• hard cells are slower, larger and consume more power
• using only hard cells is sometimes not possible / desirable

 Proposed automatic timing driven selection of hardening
targets by 'hijacking' the multi-VT synthesis flow

 Some limitations of the proposed method can be overcome by
additional constraints

 As next step, a script-based approach will be developed to be
used also in back-end

 Message to EDA vendors:
A custom optimization feature could be useful.

References / LinksReferences / Links

[1] ESA Handbook on Techniques for Radiation Effects Mitigation in ASICs and FPGAs,
http://microelectronics.esa.int/handbook/

[2] Design of a Single Event Effect fault tolerant microprocessor for space using
mainstream commercial EDA tools
http://microelectronics.esa.int/papers/DAC2009-SEU-TolerantMicroprocessor-RolandWeigand-Slides-v2.pdf
http://microelectronics.esa.int/papers/DAC2009-SEU-TolerantMicroprocessor-RolandWeigand-Paper-v2.pdf

[3] T. Masson and R. Ferrant, Memory insensitive to disturbances, US Patent 5,570,313
http://www.freepatentsonline.com/5570313.pdf

[4] Workshop on Fault Injection & Fault Tolerance in space FPGAs, Sep. 11, 2009
http://www.esa.int/TEC/Microelectronics/SEMV57KIWZF_0.html

[5] The LEON2(-FT) Microprocessor
http://en.wikipedia.org/wiki/LEON
http://www.esa.int/TEC/Microelectronics/SEMUD70CYTE_0.html
http://www.iaik.tugraz.at/content/research/vlsi/archive/isec/downloads/packages/leon2-1.0.32-xst.tar.gz

[6] Atmel ATC18RHA 180 nm ASIC library for space applications
http://www.atmel.com/devices/ATC18RHA.aspx

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

