

Design-dependent reliability tools and IDS tools improvement study

Decuzzi Filomena YGT final presentation TEC-EDM

- European Space Agency
- Application-oriented SEU sensitiveness analysis
- Atmel technology library optimization
- Placement impact on the design performance

Susanna&Jonathan

European Space Agency

Study and development of an application-oriented analysis tool

Motivation

- Devices to be used in radioactive environments are qualified using accelerated radiation ground testing obtaining the device cross section
 - Cross section = probability for a ionizing radiation to produce an upset

• In case of FPGA different cross sections are measured:

- Configuration memory cross section
- Flip-Flop cross section

Motivation

- Cross section are associated to the device, but ...
- An application (e.g. a design) seldom uses the whole device

5

 Cross section should be de-rated to take into account for the real device usage to obtain application cross section

- To develop a tool for performing application-oriented sensitivity analysis of design implemented using radiationhardened FPGA (AT40K, ATF280E and ATFS450 from Atmel)
- To correlate sensitive configuration bits to design instance
 - to detect most sensitive module of the design
 - to support debug

Analysis flow

European Space Agency

Susanna

European Space Agency

Jonathan

European Space Agency

Faulty case

esa Faulty Intra-resource

esa Faulty Inter-resource

Report

European Space Agency

Analysis results

European Space Ageno

Several benchmark circuit of the ITC'99 set:

- Not all the programming bits for a used resource are potential critical
- A not programmed bits can induce an error in the circuit

Validation

European Space Agency

- Design implemented in on Aerospace Development Kit
- Injection of Single Bit Upset in bits identified as sensitive:
 - around 63% detected
- Express bits analysis not accurate
- Injection in not-sensitive bits:
 - -No mismatch found

	Sensitive bits			
Resource type	Susanna	fault injection		
Logic – CC	284	154		
Routing – Local/CC	36	22		
Routing – Express/CC	114	2		
Routing – H repeater	110	75		
Routing – V repeater	124	86		

Macro Study

European Space Agency

Study of the use of optimized macros

17

- Functional macros are components with fixed functionality (Gate, IO, RAM...)
- Dynamic macros are designed to given better control over the implementation of specific function in a single logic cell

- Functional macros are components with fixed functionality (Gate, IO, RAM...)
- Dynamic macros are designed to given better control over the implementation of specific function in a single logic cell

Motivation

European Space Agency

- Custom logic functions in single logic cell can be created like macros by means of Figaro's "macro generator"
- The macros are stored in the user library
- The user have to change the VHDL description to use user-macro as black box during the synthesis

European Space Ag

European Space Agency

Configurations optimization:

Function	us logic	ed cell	Sensitive bits	
	Original [#]	Gain [%]	Original [#]	Gain [%]
And-or	2	50%	52	44%
bits-counter	27	0%	977	2%
multiple bits-counter	77	1.31%	3721	7%

Automatic Analysis

European Space Agen

ATF280E

- Analysis of EDIF netlist using PAHT tool
- Realistic circuit under test
- More than 11% average area gain
- Peak about 15% on Leon2 AT40K

30% 30% Data sent to Mentor 23% 23% 15% 11.12 11.65 15% 8% 8% 18051 0% b12 b13 b14 b14_1 Leon2 (no cache) b11 b10 b09 b08 0% b07 b06 b05 b04 23 b03 b02 Area Gain (%) Average b01

PURPLE

Platform to Upgrade and Redo Placement Leading Efficiency

Platform to apply a new placement algorithm on the Atmel AT40K, ATF280E and ATFS450 series

Motivation

European Space Agency

- Router can only work as good as the place
- Figaro doesn't always achieve fulfilling solution
- Feedback from industries

Motivation

Atmel Figaro tool support manual placement:

- to improve timing on a path
- to squeeze a design that automatic placement can't make it fit in the device
- to resolving contention
- to make easier to route a net
- to reserve a particular area for an instance

"Only optimize placement manually if you are familiar with the device architecture and know how your design should us it." <u>Figaro Help</u>

European Space Agency

	Atmel's P&R		Manual Placement		Gain		Time
	Max frequency	Device utilization	Max frequency	Device utilization	Frequency	Device utilization	[h]
Memory elaboration	7.1 MHz	11.4%	10.4 MHz	12%	32%	5%	8h
			10.5 MHz	11.8%			+2h
Scruble string	10.9 MHz	6%	15 MHz	8.5%	27%	29%	6h
1-player game	11.5 MHz	15%	15.3 MHz	20.3%	25%	26%	5h
memory elaboration design							

European Space Agency

- Platform to apply a new placement algorithm on Atmel AT40K, AT280E
 Platform to Upgrade an
- Independent platform
 - use of others algorithms in order to improve particular features of the design
 - use a set of constrains to drive the placement
- No external constrains are supported to drive placement in Atmel Figaro tool

Platform to Upgrade and Redo Placement Leading Efficiency

• This platform could work in parallel with Figaro tool in order to

- use Figaro's solution as starting point
- lets Figaro to provide to the routing step and the bitstream generation.
- The platform would be able to:
 - read a project Figaro file and extract the netlist
 - give info about the Figaro placement
 - contain a re-place engine
 - create a project Figaro file implementing the new solution

PURPLE

Future Works

 Implement a timing-driven placement algorithm

- Add placement constrains
- Test the new algorithm vs Figaro's one

Conclusion

- Spread of circuit race the sensitiveness
 - Macro study : more logic in a single resource
 - shared of input pad -> less routing
 - less occupied area -> less surrounding influential resources (that can interfere)
 - Placement study
 - connected resource placed near could use direct connection -> less routing
 - short path between I/O and resource -> less routing

Thanks for the attention

