

European Space Agency

FINAL REPORT
Stage 15 March 99 –10 September 99

Microelectronics Section
Control, Data & Power Division

ESTEC

MASTER / TARGET PCI

VHDL CORE

Riccardo Locatelli and Mr.Sandi Habinc

E.W.P 2047

Master/Target PCI VHDL Core

 2

Master/Target PCI VHDL Core

 3

Acknowledgment

I would like to thank Mr. Richard Creasey, Head of TOS-ES Division, for giving

me the opportunity to work in the Division and for providing a peaceful working

environment.

I would also like to thank Mr. Martin Hollreiser, Head of the Microelectronics

Section, and people working in TOS-ESM Section for their advice and help offered to me

during this period.

It has been a great pleasure to work under Mr. Sandi Habinc’s supervision during

six months of training at ESTEC. Microelectronics engineer of the TOS-ESM at ESTEC,

Mr. Habinc is a very professional person, competent and helpful in any situation; his

enthusiasm and knowledgeable suggestions have made my Stage at ESTEC a pleasant and

profitable one.

I would like to thank Mr. Pierangelo Terreni, Engineer and Professor at Electronic

Engineering University of Pisa, supervisor of my degree thesis in Italy, for giving me the

possibility to carry out my thesis work outside the University.

I would like to express my gratitude to Mr. Luca Fanucci, Engineer and Researcher

at CNR-CSMDR, University of Pisa, for his constant availability and kindness, for his

attentions and precious advice for the whole period of my Stage at ESTEC.

I would like to thank all friends who stood by me during this period for contributing

to make my stay in Holland a pleasant one.

Thanks to my parents for their enthusiasm, support and joy in every moment.

Special thanks to a special person.

Master/Target PCI VHDL Core

 4

Table of Content

1. INTRODUCTION.. 6

1.1 ORGANISATION... 6
1.2 PCI LOCAL BUS.. 7
1.3 CONVENTIONS... 8

2. OVERVIEW.. 9

2.1 GENERAL DESCRIPTION.. 9
2.2 SUPPORTED PCI FEATURES.. 10
2.3 BUS SEQUENCER ARCHITECTURE................................ 12

3. PCI INTERFACE... 14

3.1 MASTER INTERFACE.. 18
3.2 TARGET INTERFACE... 19

4. BACK-END INTERFACE.. 20

4.1 LOCAL CONFIGURATION INTERFACE......................... 20
4.2 INTERNAL MASTER INTERFACE................................... 23

4.2.1 Single read.. 25
4.2.2 Burst read not-prefetchable.. 26
4.2.3 Burst read prefetchable... 27
4.2.4 Single write .. 28
4.2.5 Burst write.. 29
4.2.6 FIFO IN.. 30
4.2.7 FIFO OUT.. 32

4.3 INTERNAL TARGET INTERFACE.................................... 35
4.3.1 Memory write... 37
4.3.2 Memory Read prefetchable.. 39
4.3.3 Read not-prefetchable... 40
4.3.4 I/O write.. 41
4.3.5 Configuration cycles... 42

Master/Target PCI VHDL Core

 5

4.3.6 FIFO IN.. 42
4.3.7 FIFO OUT.. 44

4.4 EXTERNAL SIGNALS.. 47

5. FUNCTIONAL BLOCK.. 48
5.1 MASTER FUNCTIONAL DESCRIPTION.......................... 48

5.1.1 Master State Machine... 49
5.1.2 Master AD / CBE Buffers.. 53
5.1.3 FIFO IN Block Master.. 54
5.1.4 FIFO OUT Block Master.. 56
5.1.5 Master Parity & Error Block.. 58

5.2 TARGET FUNCTIONAL DESCRIPTION.......................... 60
5.2.1 Target State Machine.. 60
5.2.2 Target AD / CBE Buffers... 64
5.2.3 FIFO Block Target.. 65
5.2.4 Target Parity & Error Block... 66

5.3 CONFIGURATION BLOCK.. 68

6. VHDL CORE OVERVIEW... 72

6.1 FILE NAMES.. 72

REFERENCES

APPENDIX A: VHDL CODE

Master/Target PCI VHDL Core

 6

1. INTRODUCTION

This report presents the activity performed by Riccardo Locatelli during a stage

period at the European Space Research and Technology Center (ESTEC) of the European

Space Agency (ESA), in the Netherlands.

The training period, from March to September 1999, was developed under the

supervision of Mr. Sandi Habinc, within the Microelectronics Section of the Control, Data

& Power Division (TOS-ESM).

The subject of the activity was the design of a Master / Target PCI Interface

following a top-down approach based on VHDL and logic synthesis.

1.1 ORGANISATION

The report is divided in the following sections:

• Chapter 2, “Overview”: it gives a general description of the PCI Core, its features and

the functional architecture.

• Chapter 3, “PCI Interface”: it describes the front-end interface, i.e. the PCI signals.

There are three different lists of signals, for the Master and the Target side and one for

the complete PCI Core.

• Chapter 4, “Back-end Interface”: this is the definition of the interface with the back-

end application, that consists of a FIFO Interface, a Local Configuration Interface and

three external signals. Timing, functional description, encoding and pictures are

provided in order to describe the interconnection with the local user.

• Chapter 5, “Functional Blocks”: it provides the complete functional and structural

architecture of each block implemented.

• Chapter 6, “VHDL Core Overview”: it presents the organization of the VHDL code.

Master/Target PCI VHDL Core

 7

1.2 PCI LOCAL BUS

The PCI Local Bus is a high performance, 32-bit or 64-bit bus with multiplexed

address and data lines. This is a fully synchronous bus with operation up to 33Mhz or

66Mhz and a high bus bandwidth (132 Mbytes/second burst transfer for 32-bit data path at

33 Mhz). There is a hidden central arbitration to support the multi-master capability. Both

5-volt and 3.3-volt (mobile applications) environments are specified.

Ease of installation, dynamic configuration changes and backward compatibility

(Plug & Play) are achieved thanks to the configuration support of PCI devices.

The PCI Local Bus is an interconnect mechanism between highly integrated

peripheral controller components, add-in boards and processor/memory systems.

Typical PCI applications are add-on cards that require high-speed memory access

(LAN or graphics adapters, SCSI cards); a standard definition for the compatibility with

low bandwidth I/O buses such as ISA, EISA or MC reduces inventory cost and end user

confusion. Figure 1.1 shows an overview of a possible PCI system.

Figure 1.1 PCI System overview

Host
processor

Cache
memory

System
memory

PCI Bus
Primary
Bridge

PCI Local Bus – Level 0

SCSI LAN

PCI to PCI
Bridge

Motion
Video

Graphics PCI to Bus X
Secondary
Bridge

ESA / EISA, MicroChannel

PCI Local Bus – Level 1
Base I / O Functions Low

bandwidth

Master/Target PCI VHDL Core

 8

1.3 CONVENTIONS

- Master: an agent that initiates transactions on the PCI Bus; it drives commands on the

address phase requesting write or read accesses to one of the three address spaces of

the PCI Bus (Configuration, I/O, Memory).

- Target: it is the slave, which claims and responds to the transaction initiated on the

PCI bus by a master agent.

Figure 1.2 PCI Master/Target devices

- Bus sequencer: it is the first part of the bus interface, which performs the bus

operation as requested and guarantees the PCI protocol is not violated.

- Back-end application: this is the second part of the bus interface, which represents the

local side user application.

Figure 1.3 PCI Bus Interface

MASTER

TARGET

WRITE

READ

PCI
BUS

BUS
SEQUENCER

BACK-END
APPLICATION

Master/Target PCI VHDL Core

 9

- Signals ending with “#” are active low signals

- Single transaction: PCI Bus cycle with the address phase and one data phase with one

32-bit data transfer.

- Burst transaction: PCI Bus cycle that consists of an address phase and two or more

data phase, i.e. two or more 32-bit data transfers.

2. OVERVIEW

This chapter wants to give to the reader a general description about the features and

the functional organization of the PCI Core, without describing details but providing an

overall overview.

2.1 GENERAL DESCRIPTION

The PCI Core is an ASIC VHDL implementation of 32-bit, 33 Mhz PCI Master /

Target Bus sequencer, fully compliant with the PCI Local Bus Standard, Revision 2.1.

The synthesizable VHDL code was verified by using ad-hoc developed test-

benches and optimized for MIETEC 0.35 µm CMOS technology.

The PCI Core handles single and burst Configuration, I/O and Memory cycles.

Zero-wait state burst transactions are supported for Memory and Configuration accesses,

thus achieving 132 Mbytes/second throughput, which is the maximum bandwidth for 32-

bit, 33 Mhz PCI bus.

The Master and Target devices can operate independently; the separate data paths

and an easy FIFO Interface with back-end application allow an efficient usage of the bus

by implementing independent data prefetching and posting.

Master/Target PCI VHDL Core

 10

2.2 SUPPORTED PCI FEATURES

This is a list of the main features supported by the PCI Core; the full compliance
with PCI Local Bus Standard (Revision 2.1) was achieved.

• 32-bit data bus
• 33 Mhz (Bandwidth 132 Mbytes/sec peak)
• Read and write transactions to the three different PCI address spaces:

Memory, I/O and Configuration.
• Master initiated termination:

- Completion: this is the normal termination, which occurs when the master has
concluded its intended transaction.

- Time-out: it refers to the expiration of the Latency Timer when the master is
keeping the bus for many PCI clock periods without the grant
from the arbiter. This timer wants avoid the extension of the access latency of other
possible master of the Bus system.

- Master-Abort: this is the protocol for the termination when no target claims the
access initiated by the master.

• Target initiated termination:
- Retry: this is a particular Disconnect without any data transferred; target is not

ready for the transaction and stops it before the first data transfer. The master has to
repeat this transaction later.

- Disconnect: target has claimed the access, started the data handshake; it wants to
terminate the transaction before the Master Completion.

- Target-Abort: it refers to an abnormal end because the target detected a fatal error
or it will never be able to complete the request; it can occur at any moment during
the first or the subsequent data phases.

• Bus parking. The arbiter can select the default owner of the bus when no agent is
currently using or requesting it. This master has to drive the bus lines so that it will not
float.

• Exclusive access support: the Target implements the partial lock of one BAR (Base
Address Register).

• Fast back-to-back cycles as Master and Target: two different accesses by the same
master can occur without the turn-around clock period which is usually requested for
all signals that may be driven by more than one agent.

• Parity is generated and possible errors are checked and reported to back-end
application.

• Medium speed decoder as Target.

Master/Target PCI VHDL Core

 11

• Latency requirements: there is a fixed number of PCI clocks within the agent has to
provide the next data valid. The PCI Core has internal timers to achieve this function.

• Type zero Configuration Space; all required registers are supported.
- Burst zero-wait configuration read and write cycles
- Dual-access support: the Configuration Space is accessible from the PCI and the

back-end side.
• Easy FIFO Interface with back-end application.

- Zero-wait prefetchable read as Master thanks to the FIFO interface where read
data are stored independently of the master back-end user clock.

- Posting data as Target. The transaction completes at the source (PCI bus master)
before it actually completes at the intended destination (target back-end user)
because data are stored into FIFO memories.

• Special Cycle supported with internal decoding for single cycle message HALT and
SHUTDOWN.

• Configuration, I/O and Memory commands implemented inclusive the Memory Read
Line and Memory Read Multiple, which are treated as normal memory read. Memory
Write & Invalidate has a special support (cacheline counter) for the time-out ending
protocol. Table 2.1 presents a list of all possible commands, indicating which are
supported by the PCI Core.

C/BE#[3::0] COMMAND TYPE SUPPORTED
0000 Interrupt Acknowledge No
0001 Special Cycle Yes
0010 I/O Read Yes
0011 I/O Write Yes
0100 Reserved ---
0101 Reserved ---
0110 Memory Read Yes
0111 Memory Write Yes
1000 Reserved ---
1001 Reserved ---
1010 Configuration Read Yes
1011 Configuration Write Yes
1100 Memory Read Multiple Yes
1101 Dual Address Cycle No
1110 Memory Read Line Yes
1111 Memory Write & Invalidate Yes

Table 2.1 PCI Commands

Master/Target PCI VHDL Core

 12

2.3 BUS SEQUENCER ARCHITECTURE

The functional structure of the PCI Master/Target Bus sequencer was carried out in

a hierarchical and symmetric way in order to design a modular VHDL model very flexible

and with an ease sub-blocks re-use.

The PCI Core is both a Master and a Target; according to the suggestion of the PCI

Local Bus Standard each must have its own control machine that can operate

independently of the other to avoid conflicts.

The block diagram shown in figure 2.1 illustrates this organization. This below is a

list of the functional blocks of the PCI Core:

• Master State Machine: this block reports the sequencing of operations on the PCI bus

driving the arbitration and the interface control signals according to the PCI protocol.

• FIFO Block Master: it manages the handshake between the Master State Machine and

the back-end application handling in the right way the information to/from FIFO

Interface.

• AD/CBE Buffers Master: it connects the 32-bit multiplexed PCI address/data bus

with the two unidirectional 32-bit local address/data buses. It is also used to drive

correctly the command/byte enables lines.

• Parity&Error Master: it computes parity and reports parity errors when the PCI Core

is working as Master.

• Target State Machine: this block manages the right PCI protocol for all supported

commands driving the interface control signals when the agent becomes slave of a bus

transaction.

• FIFO Block Target: It handles the handshake between the Target State Machine and

the back-end application; this block is connected to the back-end FIFOs and

implements the posting data for memory write.

• AD/CBE Buffers Target: it connects the 32-bit address/data lines of the PCI bus with

the two internal unidirectional 32-bit local address/data buses. There are two different

data paths for the Master and the Target part of the PCI Core.

• Parity&Error Target: it computes parity and reports errors when the PCI Bus

Sequencer is working as Target.

• Configuration Space: it implements the configuration registers and handles read/write

accesses to them. It also manages the address decoding for Memory and I/O cycles.

Master/Target PCI VHDL Core

 13

Figure 2.1 PCI Core Overview

MASTER STATE
MACHINE

AD/CBE
BUFFERS
MASTER

FIFO
BLOCK

MASTER

PARITY & ERROR
MASTER

CONFIGURATION
BLOCK

PARITY & ERROR
TARGET

AD / CBE
BUFFERS
TARGET

FIFO
BLOCK

TARGET

TARGET STATE
MACHINE

Master/Target PCI VHDL Core

 14

3. PCI INTERFACE

The PCI Bus sequencer has a front-end interface, which is the direct connection to

the PCI bus and a back-end interface, which is the no-standard interface with the local

user.

The PCI Interface of a compliant device requires a minimum of 47 pins for a target-

only device and 49 pins for a master. The PCI Core implements all the required signals; the

PCI Local Bus Standard defines 51 optional pins and only one of these is a PCI Interface

signal of the PCI Core. Figure 3.1 shows the complete list of the required and optional pins

in functional groups.

Figure 3.1 PCI Pin List

PCI
COMPLIANT

DEVICE

AD [31::0]

CBE [3::0]

PAR

Address & Data

 FRAME
 IRDY
 DEVSEL
 TRDY
 STOP
 IDSEL

Interface
Control

 PERR
 SERR

Error
Reporting

 REQ
 GNT

Arbitration
(Master only)

 CLK
 RSTSystem

AD [63::32]

CBE [7::4]

PAR64

REQ64
ACK64

64-bit
Extension

LOCK Interface
Control

INTA
INTB
INTC
INTD

Interrupts

SBO
SDONE

Cache
Support

TDI
 TDO
TCK

 TMS
 TRST

JTAG
(IEEE 1149.1)

Required Pins Optional Pins

Master/Target PCI VHDL Core

 15

It is possible divide the PCI bus signals into five different types:

• Input, In: a standard input-only signal.

• Output, Out: a standard active output-only driver.

• Tri-State, t/s: a bi-directional, tri-state input output pin.

• Sustained Tri-State, s/t/s: an active low tri-state signal owned and driven by one

and only one agent at a time. The agent that drives a s/t/s pin low must drive it high for

at least one clock before letting it float. A new agent cannot start driving a s/t/s signal

any sooner than one clock after the previous owner tri-states it. A pull-up is required to

sustain the inactive state until another agent drives it.

• Open Drain, o/d: a wire-ORed with other agents. The signaling agent asserts the

open-drain signal, and a weak pull-up resistor de-asserts it. The pull-up resistor may

require two or three PCI clock cycles to restore the open-drain signal to its inactive

state.

• System pins

CLK is the system clock that provides, as input to every PCI device, the reference

signal for all other PCI interface signals except RST# and the interrupt pins.

RST# is the system reset. It can be asserted asynchronously to the PCI bus clock edge.

The synchronized version of this signal is used as general reset of the complete PCI Core.

• Address and Data pins

AD[31::0] is a time-multiplexed address/data bus. Each bus transaction consists of an

address phase followed by one or more data phases. The data transfer occurs when IRDY#

and TRDY# are both asserted. The first rising edge when FRAME# is asserted is the

beginning of the transaction, i.e. the address phase (address on the AD bus and command

on the C/BE lines).

C/BE#[3::0] is a multiplexed command/byte enables bus. During the address phase

these lines are carrying command and during the data phases they indicate the byte

enables.

PAR is the parity signal. It is an even parity across AD and C/BE lines. PAR must be

valid one clock following its corresponding data or address on the bus. It is calculated by

the agent that is driving the AD bus.

Master/Target PCI VHDL Core

 16

• Interface Control Pins

FRAME# is the cycle frame; it is driven by the current master to indicate the

beginning and duration of an access. While it is asserted, data transfers continue; it has to

be de-asserted before the last data transfer to indicate that the next data phase is the last

one.

IRDY# indicates the master’s ability to complete the current data phase of the

transaction. It can be de-asserted by the master during the data phase to insert wait cycles;

when IRDY# and TRDY# are both asserted the data transfer occurs.

TRDY# is used by the target to indicate the ability to complete the current data phase

of the transaction. It is de-asserted to insert wait cycles.

STOP# is the signal used by the current target for requesting the master to stop the

transaction implementing the protocol of a target initiated termination.

DEVSEL# is driven by the agent which has decoded its address as the target of the

current access. It is asserted to claim the access, i.e. to accept the master request.

LOCK# is the signal used to implement the exclusive access on the PCI bus. It

indicates an atomic operation that may require multiple transactions to complete. When

LOCK# is asserted, non-exclusive transactions may proceed to an address that is not

currently locked. It is possible for different agents to use the bus while a single master

retains ownership of LOCK#. A target of an access that supports LOCK# must provide

exclusion to a minimum of 16 bytes aligned. The PCI Core as target is able to guarantee

that a BAR is locked instead of the complete resource.

IDSEL is a sort of chip select for configuration transactions. When it is asserted,

during the address phase, it means that transaction is an access to the Configuration Space.

• Arbitration Pins

REQ# is driven by the master for requesting to the arbiter the use of the bus.

GNT# indicates to the agent that access to the bus has been granted.

• Error Reporting Pins

PERR# reports possible parity errors during all PCI transaction except a Special Cycle.

It is driven by the device, that receives data, two clocks following the data itself.

SERR# is a synchronous signal but it has not timing requirements. It is for reporting

address parity errors, data parity errors on the Special Cycle and for any other system

errors where the result will be catastrophic.

Master/Target PCI VHDL Core

 17

Table 3.1 summarizes the PCI bus signals that provide the interface between the

PCI Core and the PCI Bus (see also Fig. 3.2).

NAME TYPE DIRECTION ACTIVE SYNC/ASYNC
CLK In Input High Sync
RST# In Input Low Async
AD[31::0] T/s Bi-directional High Sync
C/BE#[3::0] T/s Bi-directional Low Sync
PAR T/s Bi-directional High Sync
FRAME# S/t/s Bi-directional Low Sync
IRDY# S/t/s Bi-directional Low Sync
TRDY# S/t/s Bi-directional Low Sync
STOP# S/t/s Bi-directional Low Sync
DEVSEL# S/t/s Bi-directional Low Sync
REQ# T/s Output Low Sync
GNT# T/s Input Low Sync
LOCK# S/t/s Bi-directional Low Sync
IDSEL In Input High Sync
PERR# S/t/s Bi-directional Low Sync
SERR# o/d Output Low Sync

Table 3.1 PCI Interface signals

Figure 3.2 PCI Interface of the Master/Target PCI Core

MASTER / TARGET
PCI CORE

AD[31..0]

CBE[3..0]

PAR

FRAME]

IRDY

DEVSEL

TRDY

STOP

CLK

RST

REQ

GNT

PERR

SERR

IDSEL

Master/Target PCI VHDL Core

 18

3.1 MASTER INTERFACE

Table 3.2 shows the list of PCI signals which are in the port description of the

Master block of the PCI Core.

NAME TYPE DIRECTION ACTIVE SYNC/ASYNC
CLK In Input High Sync
RST# In Input Low Async
AD[31::0] t/s Bi-directional High Sync
C/BE#[3::0] t/s Output Low Sync
PAR t/s Bi-directional High Sync
FRAME# s/t/s Bi-directional Low Sync
IRDY# s/t/s Bi-directional Low Sync
TRDY# s/t/s Input Low Sync
STOP# s/t/s Input Low Sync
DEVSEL# s/t/s Input Low Sync
REQ# t/s Output Low Sync
GNT# t/s Input Low Sync
LOCK# s/t/s Bi-directional Low Sync
PERR# s/t/s Bi-directional Low Sync

Table 3.2 Master PCI Interface signals of the PCI Core

Figure 3.3 PCI Interface of the Master Block of the PCI Core

MASTER BLOCK
PCI CORE

AD[31..0]

CBE[3..0]

PAR

FRAME]

IRDY

DEVSEL

TRDY

STOP

CLK

RST

REQ

GNT

PERR

Master/Target PCI VHDL Core

 19

3.2 TARGET INTERFACE

Table 3.3 shows the PCI signals that represent the front-end interface of the Target

block of the PCI Core (see also Fig. 3.4).

NAME TYPE DIRECTION ACTIVE SYNC/ASYNC
CLK In Input High Sync
RST# In Input Low Async
AD[31::0] t/s Bi-directional High Sync
C/BE#[3::0] t/s Input Low Sync
PAR t/s Bi-directional High Sync
FRAME# s/t/s Input Low Sync
IRDY# s/t/s Input Low Sync
TRDY# s/t/s Output Low Sync
STOP# s/t/s Output Low Sync
DEVSEL# s/t/s Output Low Sync
LOCK# s/t/s Input Low Sync
IDSEL In Input High Sync
PERR# s/t/s Output Low Sync
SERR# o/d Output Low Sync

Table 3.3 Target PCI Interface signals of the PCI Core

Figure 3.4 PCI Interface of the Target Block of the PCI Core

TARGET BLOCK
PCI CORE

AD[31..0]

CBE[3..0]

PAR

FRAME]

IRDY

DEVSEL

TRDY

STOP

CLK

RST

REQ

GNT

PERR

SERR

Master/Target PCI VHDL Core

 20

4. BACK-END INTERFACE

The interface of the PCI Core with the back-end application consists of an easy

FIFO Interface, a simple interface for the direct access to the Configuration Space from the

local side and three external signals.

There are four 40-bit word FIFOs; they are asynchronous, unidirectional and are

called IN (info direction Back-end => Core) and OUT (info direction Core => Back-end).

FIFO are used not only to carry data and addresses but also to provide all useful

information between the PCI Core and the back-end user to implement the bus transaction.

This is a very easy and friendly interface, which isolates the application from the

complexity of the PCI protocol and manages the data buffering and synchronizing between

the PCI side and the local user. A great flexibility is achieved thanks to this FIFO interface,

thus increasing the possibility of supporting many different kind of back-end applications.

Local application independence is not only from the point of view of back-end frequency

(slow or fast are supported) but also of its implementation architecture.

4.1 LOCAL CONFIGURATION INTERFACE

The Configuration Space has a support for handling dual-side read and write

accesses from the PCI bus and the back-end application. This interface allows the direct

access of the local user to the Configuration Space without using the PCI bus or dedicated

internal signals. Figure 4.1 describes the signals of this interface.

Figure 4.1 Local Configuration Interface

CONFIGURATION
BLOCK

Req_back

Ack_back

Address_back

Data_in_back

Data_out_back

Notvalid_back

Back-end

Application

Master/Target PCI VHDL Core

 21

Req_back is the request signal, which is asserted by the back-end for implementing

a write operation into the Configuration Space. The request is accepted if the PCI Core

drives active the acknowledgment signal.

Ack_back is the acknowledgment for write request coming from the back-end; the

PCI Core doesn’t assert it to avoid the possibility to write when a PCI Configuration access

is occurring to that Configuration Space.

Address_back is a 6-bit address bus; the Configuration Space consists of

256Kbytes divided into 32-bit lines.

Data_in_back is the 32-bit data bus for write operations; back-end is allowed to

write with 32-bit single accesses.

Data_out_back is the 32-bit data bus where the local user can read data. The data

path consists of two unidirectional buses and this is the easier solution for an asynchronous

interface. For reading, back-end has not to deal with a particular handshake: according to

the address in the address_back bus the right value of the corresponding 32-bit line is

presented on this bus.

Notvalid_back is asserted by the Configuration support when a PCI cycle is

occurring, thus indicating not valid data on the data out bus.

Table 4.1 summarizes signals of this interface which have just been described.

NAME TYPE DIRECTION ACTIVE SYNC/ASYNC
Req_back In Input High Async
Ack_back Out Output High Sync
Address_back In Input High Async
Data_in_back In Input High Async
Data_out_back Out Output High Sync
Notvalid_back Out Output High Sync

Table 4.1 Local Configuration Interface signals

Master/Target PCI VHDL Core

 22

WRITE Cycle: it is a single 32-bit access with a request-acknowledgment

handshake between the PCI Core and the back-end application.

Address_back is sampled by the Configuration support each rising-edge of the PCI

clock; data write has to keep stable on the Data_in_back bus according to this timing.

Writing of the registers occurs on the second PCI clock when both Req_back and

Ack_back are asserted.

Figure 4.2 Back-end Direct Configuration Write access

READ Cycle: back-end has only to drive the Address_back bus with the right

address value and the corresponding data can be read on the Data_out_back, except when

Notvalid_back is asserted; this means that a PCI access is occurring and data read are not-

valid.

Figure 4.3 Back-end Direct Configuration Read access

ADDRESS

WRITE DATA VALID

OLD NEW

Req_back

Ack_back

Address_back

Data_in_back

Data_out_back

ADDRESS

DATA VALID

Address_back

Data_out_back

Notvalid_back

Master/Target PCI VHDL Core

 23

4.2 INTERNAL MASTER INTERFACE

This internal interface connects the Master bus sequencer with the back-end

application, i.e. the master side of the local user. It is a complete FIFO interface and

consists of two unidirectional and asynchronous FIFOs called FIFO IN and FIFO OUT;

these are used for the handshaking, data and address buffering and synchronizing between

the PCI and the back-end clock.

The local user generates the transaction and provides the address, command, data

for write operations, byte enables and the length of the transfer. It requests the ownership

of the LOCK# for implementing the exclusive access during atomic operations.

When the master’s current transaction is to the same target as the previous write

transaction a Fast back-to-back access may occur: this is a way for utilizing bus bandwidth

more effectively because it allows to start the next transaction without an Idle bus state.

Back-end has to understand the address boundaries of the potential target in order to avoid

contention and it has to provide the fast back-to-back request with the address.

The PCI Core reports to the local user the data of read operations and the

information about the transaction progress.

Back-end has not the direct control on the REQ# signal. Master finds an address in

FIFO IN and it means the local application has requested a new transaction. REQ# must be

driven active for getting the control of the bus in order to satisfy this request. Master

decides to de-assert or keep asserted REQ# at the end of the transaction by looking at a

new possible request stored into FIFO IN. A new address after a Last Data or a Stop

command means new request, i.e. keep on asserting REQ# except when a particular

abnormal termination occurs. Master will release REQ# according to the PCI Standard.

Master Data Latency is the number of bus clocks the master takes to assert IRDY#

indicating it is ready to transfer data. It is required to assert it within 8 clocks for any given

data phase (initial or subsequent). PCI Core assumes that back-end application is able to

guarantee this condition, otherwise there is the expiration of a counter and the Master State

Machine disconnects the master itself and finishes the transaction.

The Master block of the PCI Core is able to support all PCI commands except the

Interrupt Acknowledge and the Dual Address Cycle: a good approach is to divide

commands into read and write ones. Read burst commands can also be divided into

Master/Target PCI VHDL Core

 24

prefetchable and not-prefetchable, i.e. read burst operations into prefetchable or not

prefetchable memory spaces.

MRL and MRM can be used to generate single read transactions but their correct

use is for burst transactions. It is back-end application’s task the correct use of MRL,

MRM and MWI commands; Master treats these commands as normal Memory Read

(MRL, MRM) and Memory Write (MWI). Master State Machine implements the

compliant protocol for time-out termination during MWI so that back-end can be sure

about the transfer of the entire cacheline.

Master is able to implement the right protocol about a Special Cycle but it is

considered a normal single write from the point of view of internal interface.

Back-end has to provide to Master commands encoding for the address phase: these

encoding are the same as the ones listed in the PCI Specification 2.1 and back-end must

also guarantee their correct use.

• Read Commands
Memory reads
I/O read
Configuration read
Memory Read Multiple
Memory Read Line

• Write commands
Memory write
I/O write
Configuration write
Memory Write and Invalidate
Special Cycle

The Master bus sequencer implements the following commands:

- Single read: Memory Read, I/O Read, Configuration Read

- Burst read not-prefetchable: Memory Read, I/O Read, Configuration Read

- Burst read prefetchable: Memory Read, I/O Read, Configuration Read, Memory

Read Multiple, Memory Read Line

- Single write: Memory Write, I/O Write, Configuration Write, Special Cycle

- Burst write: Memory Write, I/O Write, Configuration Write, Special Cycle, Memory

Write & Invalidate

Master/Target PCI VHDL Core

4.2.1 Single read

Back-end provides to the Master block of the PCI Core the address, the command

and the single-transaction info to implement the address phase; then byte enables for the,

first and last, data transfer.

The data read with status information about possible parity errors and the encoding

of the termination type of this bus operation are given back to the local user through FIFO

OUT.

Figure 4.4 indicates all the information stored into FIFO IN and FIFO OUT when a

single read request and the corresponding PCI transaction occur.

Fig

Last
Data

BE
Addr
Sing

 A
 D
 D
 R
 E
 S
 S

Com
Read

Addr
Sing

 A
 D
 D
 R
 E
 S
 S

Com
Read
25

ure 4.4 Single read: description of FIFO IN and FIFO OUT

First
Data

D
A
T
A

1

End

Master/Target PCI VHDL Core

4.2.2 Burst read not-prefetchable

Back-end has to provide address, command and burst not-prefetchable info to

Master side of the bus sequencer. Byte enables for each data phase and a Last Data info as

end request of the transaction are necessary to the PCI Core because this is a read operation

from a not-prefetchable memory. It is relevant providing byte enables to the target because

there are possible side effects on reads.

Data read are given back to the local user, marking the first data and the subsequent

ones. Figure 4.5 shows an example where back-end requests four data transfer; the PCI

transaction completes and data reported to back-end through FIFO OUT.

Figure 4.5

Addr
Burst

A
D
D
R
E
S
S

Com
Read

Data

BE1

Data

BE3

Last
Data

BE4

Data

BE2
26

Burst read not-prefetchable: FIFO IN and FIFO OUT

First
Data

D
A
T
A

1

Data

D
A
T
A

2

Data

D
A
T
A

3

Data

D
A
T
A

4

End

Master/Target PCI VHDL Core

4.2.3 Burst read prefetchable

Back-end has to provide address, command and burst prefetchable information.

Master block can start a prefetchable read operation: it reads data and pushes them into

FIFO OUT. Byte enables are not specified by back-end application because Master

assumes they are all asserted by default. In fact a target supporting prefetch reads must

return all data regardless of which byte enables are asserted.

This is a zero-wait burst read because IRDY# is always asserted and back-end can

only stop the read operation. After a stop command there is the possibility of don’t care

data stored in FIFO OUT; it is a PCI Core responsibility to flush that FIFO before to fill it

with new data of a new transaction. Figure 4.6 does not show the stop command into FIFO

IN.

Fig

Addr
Pref

A
D
D
R
E
S
S

Com
Read

ure 4.6 Burst prefetchable read: FIFO

First
Data

D
A
T
A

1

Data

D
A
T
A

2

Data

D
A
T
A

3

Data

D
A
T
A

5

Data

D
A
T
A

6

End
Data

D
A
T
A

4

27

In and FIFO OUT

Master/Target PCI VHDL Core

4.2.4 Single write

Back-end must provide to the Master bus sequencer all the information to

implement the address phase (address, command, single write info) and data write with

byte enables.

Master informs back-end at the end of the transaction about the correct or incorrect

result of the PCI operation: a possible parity error is reported with the description of the

bus termination (Fig. 4.7).

Figure 4

Addr
Singl

A
D
D
R
E
S
S

Com
Writ
Last
Data

D
A
T
A

1

 BE1

28

.7 Single write: description of FIFO IN and FIFO OUT

Status

End

Master/Target PCI VHDL Core

4.2.5 Burst write

PCI Core needs of the address and command to implement the address phase; data

to write with byte enables are provided by back-end application, which marks the Last

Data as stopping request.

The Master block reports only a general information at the end of the PCI

operation. A possible parity error refers to one or more data: it is not necessary to

distinguish which is the bad data transfer because the local application usually recovers it

repeating the entire transaction.

Figure 4.8

Addr
Burst

A
D
D
R
E
S
S

Com
Read

Data

D
A
T
A

1

BE1

Data

D
A
T
A

3

BE3

Last
Data

D
A
T
A

4

BE4

Data

D
A
T
A

2

BE2
29

Burst write: description of FIFO IN and FIFO OUT

Status

End

Master/Target PCI VHDL Core

 30

4.2.6 FIFO IN

It is a 40-bit unidirectional FIFO and it stores back-end’s requests. It is used to

carry data for write operations, address and requests to implement each bus transaction.

This is a list of the main information that must be carried by FIFO IN.

• Address phase

- Address

- Single/Burst

- Prefetchable/Not-prefetchable

- Fast back-to-back request

- Lock request

- Command

• Data phase

- Data write

- Byte enables

- Last data

- Stop

Figure 4.9 shows the organization of the 40-bit word.

39 36 35 4 3 0
Command &
Byte Enables

Address & Data write
Back-end type
Transaction req

Figure 4.9 FIFO IN 40-bit word’s organization

Address & Data write (32-bit): the back-end application uses these 32 bits to

provide the address for the address phase of any bus transaction and data of write

commands. It is responsibility for the back-end application to ensure the right value of

address for each bus command.

Command & Byte Enables (4-bit): these bits are used to carry the commands for

the address phase and byte enables for the data phases. The command encoding are the

same as the ones listed in the PCI Local Bus Standard, 2.1; the local user has to guarantee

Master/Target PCI VHDL Core

 31

their correct use. The Master block does not support Interrupt Acknowledge and Dual

Address Cycle; their encoding are ignored as the one the Standard calls reserved.

Back-end must provide byte enables for each data phase in all write and read

commands except for burst read prefetchable: in this case Master assumes all byte enables

asserted by default.

Back-end type-transaction request (4-bit): these is a list of the main information

which back-end has to provide to the Master block to implement the transaction it is

requesting.

• Address single: 32-bit Address & Data write are giving to Master the address of a

single transaction; 4-bit Command & Byte enables are carrying the command.

• Address burst: 32-bit Address & Data write are giving to Master the address of a burst

transaction; 4-bit Command & Byte enables are carrying the command.

• Prefetchable: it is a request for implementing a prefetchable burst read transaction.

Byte enables are all asserted by default.

• Not-prefetchable: it is a request for implementing a not-prefetchable burst read

transaction. Back-end has to specify byte enables for each data transfer.

• Data: 32-bit Address & Data write are carrying data for write operations. During a read

(single or burst not-prefetchable) it means that back-end is requesting a data transfer.

• Last data: back-end application is informing the master that this data phase is the last

one.

• Stop: the local user has just read the last data it needs in a burst prefetchable read.

Master has to finish the transaction and to flush FIFO OUT before pushing data of a

new transaction.

• Lock request: back-end is requesting an exclusive access. It is used with address. Once

lock is established back-end must provide address without Lock request at the

beginning of the last lock transaction; in fact the Master can release LOCK# at the end

of the operation. Back-end has to be able to know the transaction is requesting will be

the last locked one.

• Fast back-to-back: this transaction wants address the same agent as the previous write

one. Master can implement a fast back-to-back, i.e. it starts the new bus operation

without Idle State.

Master/Target PCI VHDL Core

 32

Table 4.2 indicates the encoding of these information:

Bit [3..0] Description

1 1 1 1 Address single

1 1 1 0 Address burst

1 1 0 1 Address burst prefetchable

1 0 1 1 Address single + fast back-to-back

1 0 1 0 Address burst + fast back-to-back

1 0 0 1 Address burst pref. + fast back-to-back

0 1 1 1 Address single + Lock request

0 1 1 0 Address burst + lock request

0 1 0 1 Address burst pref. + Lock request

0 0 1 1 Addr. Single + Fast b-to-b + Lock req

0 0 1 0 Addr. Burst + Fast b-to-b + Lock req

0 0 0 1 Addr. Burst pref. + Fast b-to-b + Lock req

0 1 0 0 Data

1 0 0 0 Last Data / Stop

Table 4.2 Back-end type-transaction request encoding

4.2.7 FIFO OUT

It is a 40-bit unidirectional FIFO and it stores data of read operations and

information about the transaction progress.

During writes Master block has only to inform back-end about the final result of the

transaction: it is not useful for the local application monitoring the progress of the bus

operation by using a copy of all PCI signals. It is important to know if the operation has

been successfully terminated. Parity errors are reported at the end: a wrong data transfer

means an entire wrong transaction.

Master/Target PCI VHDL Core

 33

During read operation Master waits for the PAR signal before pushing data into

FIFO OUT in order to give the data read with the corresponding error result. The first data

of each transaction is marked; all other data are considered subsequent data.

This is a list of information which are reported to back-end through this FIFO:

• Read data phase

- Data read

• Transaction progress

- Start

- End type

- Lock owner status

- Error status

Figure 4.10 shows the organization of the 40-bit word.

39 36 35 4 3 0

End type info Data read Status info

Figure 4.10 FIFO OUT 40-bit word’s organization

Data read (32-bit): back-end application finds in these 32 bits data during reads

when Data_bit is 1.

End-type info (4-bit): All different types of PCI termination are reported to the

local user:

• End: it is used for reporting the normal end situation, which is called Master

Completion.

• End time-out: this information is reported at the end of a transaction, which is finished

because the Latency Timer has expired.

• End Master-Abort: it signals the end of a transaction for Master-Abort. No device has

responded to the master requested transaction. This is a normal termination for a

Special Cycle so this info is not used on that case.

Master/Target PCI VHDL Core

 34

• End Retry: it signals the abnormal end of the transaction because of Retry. Master has

to retry the transaction later; it is a back-end application’s task to be compliant with

this specification.

• End Disconnect: this is used at the end of a transaction terminated with Disconnect.

• End Target-Abort: a Target-Abort termination has occurred.

Table 4.3 shows the encoding of these End-type info bits:

Bit 39 - 36 Description

0 0 0 1 End

0 0 1 0 End Time-out

0 0 1 1 End Master-Abort

0 1 0 0 End Retry

0 1 0 1 End Disconnect

0 1 1 0 End Target-Abort

Table 4.3 End-type information encoding

All the termination above, except Master Completion and Master Abort for Special

Cycle, are abnormal ones. Back-end has to recover them but it is a Master’s responsibility

making a partial flush of FIFO IN till the address of a new possible transaction stored into

it.

Status info (4-bit): the following figure 4.11 shows the division of these 4 bits.

 3 2 1 0
Data bit Lock info First data Parity error

Figure 4.11 Status info 4-bit organization

Data bit: the value of 1 means read data on the Data read bits.

Own lock: this bit is 1 when the Master currently owns LOCK#. It is not the image

of LOCK#; its ownership is established when the first data phase of the first read lock

attempt, completes without Retry.

Master/Target PCI VHDL Core

 35

First data: its value is 1 for the first data read and 0 for a subsequent one.

Error bit: this bit is asserted when a parity error has occurred. It means bad data

read or bad write transaction: in fact a parity error is reported for each data during reads

and only at the end of the entire transaction for writes.

4.3 INTERNAL TARGET INTERFACE

The Internal Target Interface links the Target block of the PCI Core with the back-

end application and this is a complete FIFO interface. It consists of two unidirectional and

asynchronous FIFOs called FIFO IN (information direction: back-end => Core) and FIFO

OUT (Core => back-end). These are 40-bit word FIFOs; an hit info about which Base

Address Register is targeted by the current access is reported through a very simple FIFO

called BAR_out, 3 extra bits which are an extension of FIFO OUT. FIFO handles the

handshaking, data and address buffering and synchronizing between the PCI Core and the

local user.

Target provides command and address to the local user and back-end is able to

generate addresses for burst transactions. It must be able to treat Linear Incrementing

Mode but supporting Wrap Mode is optional and depends on back-end’s capability. The

one-bit register, called WRAP_en and implemented in the Device Dependent Region of the

Configuration Space, is programmable by back-end user to enable the Wrap Incrementing

Mode. The Target State Machine checks the two LSB of the address: if they have bad

encoding it will issue a Disconnect without data after the first data transfer.

All targets are required to complete the initial data phase of a transaction (read or

write) within 16 clocks from the assertion of FRAME# (16-clock rule). The target is

required to complete a subsequent data phase within 8 clocks from the completion of the

previous one (8-clock rule). If back-end is unable to meet the latency requirements, it

should request to the Target block a stop termination: otherwise the Target has a timer for

making it compliant with the Latency rules.

All possible PCI commands listed on the PCI Local Bus Standard, Rev. 2.1, are

supported, except for the Interrupt Acknowledge and the Dual Address Cycle.

Master/Target PCI VHDL Core

 36

• Read Commands

Memory reads

I/O read

Configuration read

Memory Read Multiple

Memory Read Line

• Write commands

Memory write

I/O write

Configuration write

Memory Write and Invalidate

Special Cycle

It is possible divide transactions into single (address phase and one data phase) and

burst (address phase and two or more data phases). There are two different types of

Memory Read commands, prefetchable and not-prefetchable. Target can understand if the

burst read operation is to a prefetchable space looking at the bit three of the Base Address

Register.

The Target block treats Memory Read Multiple and Memory Read Line as Memory

Read; Memory Write & Invalidate as a Memory Write. The back-end application must

implement any special requirements required by these commands.

Target implements Posting Data, i.e. placing Memory Write data into a bridge

buffer (FIFO OUT) and completing the access cycle on the PCI bus before the access cycle

is completed on the back-end side. Back-end can disable it in order to avoid deadlock

situations when it is working as Master. Other commands cannot be posted and are

possible only when there are not posted data into FIFO OUT. In this case Target will issue

an automatic Retry. A counter is used to count the number of retry-transactions because of

posted data during IO/Configuration cycles; after its expiration the access will be accepted

and FIFO OUT flushed.

Configuration accesses are processed locally: the Target asserts all control signals,

provides data in the case of a read and receives data in write, without interaction from the

local side (there is the check about possible posted data into FIFO OUT). Burst Read and

Write Configuration accesses are supported thanks to an internal adder, which generates

Master/Target PCI VHDL Core

 37

the incremented address. These are zero-wait cycles; address, command and data are

reported to back-end through FIFO OUT.

The Special Cycle contains no explicit destination address, but it is broadcast to all

agents on the same bus segment. The message of this command is decoded by the Target

State Machine and the result is provided to back-end out of FIFO, by using two external

dedicated signals.

The Target block of the Bus sequencer implements the following commands:

- Memory Write: Memory Write, Memory Write & Invalidate

- Memory read prefetchable: Memory Read, Memory Read Multiple, Memory Read

Line

- Read not-prefetchable: Memory Read, I/O Read

- I/O Write

- Configuration Cycles: Configuration Read and Write

- Special Cycle

4.3.1 Memory Write

Target implements Posting Data: a write access cycle to this memory space can be

completed on the PCI bus before the same access is completed on the back-end side. The

order of data writes on the local user interface must maintain the same order written from

the PCI Master: this specification is achieved thanks to the FIFO buffer. Posting can only

occur for both Memory Write and Memory Write & Invalidate commands.

Back-end has the possibility to unable Posting Data, by de-asserting the external

signal (out of FIFO) Posting_en, in order to avoid possible deadlock situations. Target

accepts a write access to its memory space only if FIFO OUT is not full and Posting_en is

enable, otherwise it will issue a Retry.

Master/Target PCI VHDL Core

The address, the command and a write cycle information is written into FIFO OUT;

Target gets data write without inserting wait-cycles and provides them to back-end with

byte enables and other status information about the transaction progress (Fig. 4.12)..

Wait cycles because of de-assertion of TRDY#, can occur when FIFO OUT

becomes full.

Back-end cannot request a Target Abort termination during a Memory Write access

but it can stop it by de-asserting Posting_en signal: a Disconnect will occur.

Figure 4.12 Posting Data in Memory Write: FIFO IN and FIFO O

Data

D
A
T
A

1

BE1

 Data

D
A
T
A

3

BE3

Data

D
A
T
A

4

BE4

Data

D
A
T
A

5

BE5

Last
Data

D
A
T
A

6

BE6
Burst
Write

A
D
D
R
E
S
S

Com
Write
Data

D
A
T
A

2

BE2
38

UT

Master/Target PCI VHDL Core

4.3.2 Memory Read Prefetchable

A memory read access cycle is decoded as prefetchable by checking the bit three of

the Base Address Register: the address decoder in the Configuration Block generates this

information for the FIFO block.

The Target sequencer accepts this operation if there are not posted data on FIFO

OUT, otherwise it issues a Retry termination. The PCI Core writes to back-end the address

and the command and starts to wait for read data, which are provided through FIFO IN.

Byte enables are not useful for the local user; in fact it must return all data regardless of

which byte enables are asserted. At any time back-end can stop the transaction with a stop

or an abort request. When the final data transfer occurs, an end message is pushed to back-

end; it will stop to write data into FIFO IN, which will be flushed by the FIFO Block.

Figure 4.13 Memory Read Prefetchable: FIFO IN and FIFO OUT

Data

D
A
T
A

6

S
T
O
P
Burst
Read

A
D
D
R
E
S
S

Com
Read

Data

D
A
T
A

1

Data

D
A
T
A

2

Data

D
A
T
A

3

Data

D
A
T
A

4

Data

D
A
T
A

5

39

Master/Target PCI VHDL Core

4.3.3 Read not-prefetchable

Target has to provide to the back-end application not only the starting address and

the PCI command, but also the byte enables for each data phase. Figure 4.14 shows the

handshake byte enables – Data, between PCI Core and back-end for the data i. A Memory

Read access to a not-prefetchable space or an I/O Read cycle can occur by checking the

right value of byte enables in order to provide to the PCI bus only the requested data. Burst

transactions are supported but they are not zero-wait cycles.

Posting data cannot be implemented with these commands and a retry is issued

when FIFO OUT is not empty (posted data stored). For the I/O read access it is allowed a

fixed number of retry-answers: the expiration of a counter, which counts the number of

these retries, allows the I/O cycle after flushing the old posted data.

Figure 4.14

Figure 4.14 Not-prefetchable read: data transfer i description

BEi
Burst
Read

A
D
D
R
E
S
S

Com
Read

Data

D
A
T
A

i

40

Master/Target PCI VHDL Core

4.3.4 I/O write

The PCI command cannot occur when there some posted data stored into FIFO

OUT. The automatic Retry, the counter expiration and the FIFO OUT flushing are

described in the previous section about I/O Read.

Target provides to the back-end application the address and the command of the

operation; data transfer occurs after the back-end ready message that Target block waits in

FIFO IN; burst I/O writes are supported but they are not zero-wait cycles. Figure 4.15

illustrates the providing of Data after Ready message for the data phase i.

Figure 4.15 I/O Write: data i transfer on the back-end side

Data

D
A
T
A

i

BEi
Burst
write

A
D
D
R
E
S
S
S

I/O
Write

R
E
A
D
Y

41

Master/Target PCI VHDL Core

 42

4.3.4 Configuration cycles

The back-end is not affected by transaction targeting the Configuration Space. The

Target block informs the local user about a Configuration Read or Write access, providing

into FIFO OUT the address, the command and each data transferred with the

corresponding byte enables. Back-end can read these information and monitor possible

changes in its Configuration Space.

Configuration Read and Write can be burst zero-wait cycles, thanks to an internal

adder for the address incrementing.

4.3.5 FIFO IN

It is a 40-bit unidirectional FIFO and it is used to carry data for read operations.

Back-end can request target initiated termination or provide a ready message to enable the

Target block to get or give data.

This is a list of the main information which are pushed into FIFO IN by the local

user:

• Read Data phase

- Data read

- Data valid

• Ready message

- Back-end ready

- Stop requests (Retry, Disconnect, Target Abort)

39 32 31 0

Back-end ready Data read

Figure 4.16 FIFO IN 40-bit word’s organization

Data read (32-bit): back-end application uses these 32 bits to provide data for read
transactions. Target finds valid data when there is a Data Valid message on the Back-end

Master/Target PCI VHDL Core

 43

ready bits. There is not a particular encoding for Data Valid, i.e. when Stop and Target
Abort requests are de-asserted.

Back-end ready (8 bit): two bits out of eight are used to carry the termination
requests by back-end application. The local user can stop the transaction with a Retry,
Disconnect or Target Abort termination. When these bits are not carrying termination
requests, it means that back-end is ready for the transaction or it is providing valid data for
reads.

Stop: when it is provided before the first data during read transactions and before

the first back-end ready on I/O writes, it means the back-end is not able to start and

complete the transaction, which is stopped before the first data transfer (Retry).

Retry is a kind of Disconnect without any data transfer: if Stop is provided after the

first data, the Target block can request a Disconnect termination. Back-end application has

not to understand the difference between these two types of termination: it is a Target’s

task implementing the right PCI protocol after a Stop request.

Target Abort request: back-end application wants a Target Abort termination. It is

used as Stop at any time of read operation or I/O writes.

Table 4.4 shows the encoding of these termination requests:

Bit[39..34] Bit[33] Bit[32] Description

- - -
Back-end ready

Data Valid

- 0 1 Stop

- 1 1 Target Abort request

Table 4.4 Back-end ready encoding

Master/Target PCI VHDL Core

 44

4.3.6 FIFO OUT

These is a 40-bit unidirectional FIFO, it stores the address and the command of

each transaction; write data are pushed to back-end through this FIFO. There are some

status information that are provided to give a description of the current bus operation to the

local user.

The memory and I/O space can be divided into different address regions, by using

six Base Address Registers: the address decoder informs the back-end which is the BAR

selected by the Master of the current transaction, using three dedicated bits called

BAR_out.

This below is a list of the main information stored into FIFO OUT:

• Address phase

- Address

- Command

- Single/burst

- Lock request

• Data phase

- Data write

- Byte enables

- Last Data

- Stop a prefetchable read

- Lock status

39 36 35 4 3 0

Status info Address & Data write Command & BEs

Figure 4.17 FIFO IN 40-bit word’s organization

Address and Data write (32-bit): The local user uses these 32 bits to get data

during write transaction. Target provides the address of each bus operation: it is the

starting address; during burst cycles back-end is able to increment the address.

Master/Target PCI VHDL Core

 45

Command and Byte enables (4-bit): The command is provided with the address of

the transaction: it is the value sampled on the C/BE# during the address phase. Back-end

has to decode this command according to the encoding on the PCI Local Bus Standard list

of possible PCI commands.

Byte enables are given with each data write; they are necessary to back-end on not-

prefetchable memory and I/O reads.

Status info (4-bit): these bits are used to describe the transaction type and to

indicate the status of the PCI bus.

 39 38 36

Lock info Info progress

Figure 4.18 Status info 4-bit word’s organization

Lock info: The PCI Initiator has to start an exclusive access with a read operation;

the lock is established if that transaction completes the first data transfer, i.e. a Retry does

not occur. The Target block decodes a lock attempt and provides the exclusive access

request to back-end through this bit together the address and the command. This is a real

lock attempt because this information is given after the address phase (real lock access

means LOCK# de-asserted on the address phase and asserted the following clock). Back-

end can decide if accept the exclusive access or refuse it by requesting a Retry. If it

accepts, it knows to be locked.

The master may de-assert LOCK# at any time when the atomic operation has

completed. However it is recommended (but not required) that LOCK# be de-asserted with

the turn-around cycle of IRDY# at the end of the transaction. A locked agent unlocks itself

whenever LOCK# and FRAME# are sampled de-asserted. Back-end monitors FIFO OUT

after being locked to check when the Lock info bit becomes de-asserted again: it means the

agent is free. It is possible to get the unlock information on the PCI bus out of a

transaction: there is a special message for back-end to provide an immediate report about

the lock release.

Info progress (3-bit): each transaction is divided into write or read and single or

burst one. Target provides the single information with the address if it samples FRAME#

Master/Target PCI VHDL Core

 46

de-asserted the following clock the address phase. This means that if single info is given

to the back-end application, this can be sure this is a single cycle. In case of burst

sometimes a master can delay the assertion of IRDY# for the first data transfer; FRAME#

has to remain asserted the clock following the address phase even if it is a single

transaction. This is not a problem because Target provides the last data or stop message in

any case.

When the 32-bit Address and data write are carrying write data or 4-bit Command

and Byte enables the BEs of not-prefetchable read, this is indicated by a Data Valid info;

the final data is marked as Last Data.

Target has to stop a prefetchable read, by writing into FIFO OUT a Stop_message.

It is possible getting the unlock protocol on the PCI bus at any time; back-end is

informed about the end of an exclusive operation as soon as the Target decodes it on the

bus. When this occurs out of a transaction there is a special message about Lock_release.

Table 4.5 shows the encoding of these three bits:

Bit[38] Bit[37] Bit[36] Description

0 0 0 Single write

0 0 1 Burst write

0 1 0 Single read

0 1 1 Burst read

1 0 0 Lock release

1 0 1 Data valid

1 1 0 Last data

1 1 1 Stop info

Table 4.5 Status info encoding

Master/Target PCI VHDL Core

 47

4.4 EXTERNAL SIGNALS

Three signals are used out of FIFOs to carry some information, which need to be

provided to/from back-end application real-time without the timing separation of the fifo

buffer memories.

• Halt (PCI Core-Target Block => Back-end user)

• Shutdown (PCI Core-Target Block => Back-end user)

A Special Cycle command is like any other bus command where there is an address

and a data phase. The uniqueness of this command compared to the others is that no agent

responds with the assertion of DEVSEL# and the transaction concludes with a Master

Abort termination, which is a normal one. The broadcast message is valid on the first clock

IRDY# is asserted: there are two possible messages according to the Standard definition,

Halt and Shutdown. They are decoded by the Target block, which reports the message to

back-end as soon as it has been decoded.

• Posting_en (Back-end user => PCI Core- Master Block)

The Posting of Memory Write transactions is a way to improve the performance

optimization of the PCI system. Posting means the transaction is captured by an

intermediate buffer: the transaction completes at the source before it actually completes at

the intended destination. This allows the source to proceed with the next operation while

the transaction is still making its way through the system to its ultimate destination.

While posting improves system performance, it complicates event ordering. A

device can never make the acceptance (posting) of memory write transaction as a target

contingent on the prior completion of a non-posted transaction as a Master. Otherwise a

deadlock may occur. To be compliant with this specification, because the PCI Core is a

Master and Target Bus Interface, the master side of the local user can unable posting by

de-asserting the Posting_en signal.

Master/Target PCI VHDL Core

 48

5. FUNCTIONAL BLOCKS

The PCI Core is an interface, which is used to connect an agent, that is both master

and target, to the PCI Local Bus. Because of this double capability the PCI Core is divided

into a Master Block, a Target Block and a Configuration Block.

There is a clear division between the master and the target part, not only from the

functional, but also from the architectural point of view. These two parts have its own state

machine that can operate independently from other in order to avoid possible deadlocks.

Although it should be possible to build the other functions into single blocks with

master/slave capability, a separation between the two parts was chosen.

Except from the Configuration block, the others are divided into four functional

parts: the relevant description was provided in the Chapter 2, Bus Sequencer Architecture.

In this section each unit will be describe with more details about its architecture and its

functional behavior.

5.1 MASTER FUNCTIONAL DESCRIPTION

The Master block consists of five different blocks as shown in Fig. 5.1.

Figure 5.1 Master Block of the PCI Core

MASTER STATE

MACHINE

FIFO OUT
BLOCK

MASTER

FIFO IN
BLOCK

MASTER

PARITY&ERROR
MASTER

AD/CBE
BUFFERS

Master/Target PCI VHDL Core

 49

5.1.1 Master State Machine

This block manages the right PCI protocol for all supported commands, driving the

interface control signal of the PCI bus.

FRAME# is driven active during the transaction and it is de-asserted for the last

data phase or because of Master Abort, Target Abort, or Retry. There is another end-

condition, which is called time-out: the GNT# line is de-asserted and the Latency Timer

has expired. A special condition is the timer expiration during a Memory Write &

Invalidate command: the master has to complete the transfer of the entire current

cacheline; this feature is achieved thanks to a cacheline counter, which is implemented into

the Master State Machine.

IRDY# is driven according to an internal ready signal, which depends on the FIFO

full condition and the back-end ability to provide or accept data. As soon as a Master or

Target Abort, a Retry or a time-out condition are detected, IRDY# is asserted

independently of the ready signal to permit an immediate stop of the transaction. A similar

immediate stop occurs when the 8-clock rule about the Master Data Latency requirement is

not complied.

LOCK# is asserted to keep its ownership even if the Master is not working on the

bus; it is de-asserted as soon as an Abort termination is detected or when the first read

exclusive attempt finishes because of a Retry.

REQ# is used to request the ownership of the bus to the central arbiter when there is

a pending request from the back-end application. After a Target STOP# termination the

state machine goes to the Stop Turn Around state and REQ# is de-asserted at least for two

PCI clocks.

The Master State Machine has a simple Lock State Machine for handling the

exclusive access and a synchronous Main State Machine for the general control. The last

one consists of six states (Fig. 5.2):

• Idle is the state where the Master waits for a request from FIFO IN block.

• Addr is an one clock state; it is used to implement the address phase driving the

address and the command. This state is reached after a request from back-end when the

PCI Bus is not busy and the Master has got the grant from the arbiter.

Master/Target PCI VHDL Core

 50

• M_Data is where data is transferred; there is a path to Addr because the Master PCI

Core supports the Fast back-to-back transaction.

• Turn_Ar is the state for de-asserting signals in preparation for tri-stating them. It is

required on all signals that may be driven by more than one agent to prevent

contention.

• Stop_Turn_Ar has the same function as the previous state but it is reached after a

Target Initiated Termination in order to de-assert the REQ# signal.

• Bus_Park occurs when GNT# has been asserted and the Master has not pending

requests from back-end user. The Master has to drive PCI signals as the Bus Parking

protocol requires.

Figure 5.2 State diagram of the Main State Machine

Idle

Addr

Bus_Park

M_Data

Turn_Ar

Stop
Turn_Ar

Master/Target PCI VHDL Core

 51

The Lock State Machine consists of two states as shown in Fig. 5.3:

• Free is the state which indicates that the Master has the current ownership of the

LOCK# or it is not driven by any agent.

• Busy means that another master is keeping the ownership of the LCOK# signal.

Figure 5.3 State diagram of the Lock State Machine

A part of the Master State Machine is dedicated to the generation of the read-

request signal to FIFO IN. This signal is asserted when the Master itself changes the value

of the AD lines (at the beginning and the end of the address phase and after each data

transfer, when both TRDY# and IRDY# are asserted).

This block samples write data coming from FIFO IN (Ad-int => Ad_Master_int,

Fig. 5.4) and data from the PCI AD lines during reads (AD_In => Data_Read_int, Fig.5.5)

Figure 5.4 Internal data path for address and data write

Free

Busy

Ad_int
Ad_Master_int

Master/Target PCI VHDL Core

 52

Figure 5.5 Internal data path for data read

Fig. 5.6 shows the path for the byte enables and the commands: they are provided

by the FIFO IN block. During a prefetchable read Cbe_Master_int takes the default value

0000. When the Memory Write & Invalidate enable bit of the Command Register has a

value of 0, the Master drives the encoding of the Memory Write into the Cbe_Master_int.

Figure 5.6 Internal path for command and byte enables

This block implements the general functions of the Master Block and provides

internal control signals to support the other blocks; this avoids the propagation of the PCI

control signals to the back-end side.

Cbe_int
Cbe_Master_int

AD_In
Data_Read_int

Master/Target PCI VHDL Core

5.1.2 Master AD/CBE Buffers

This block connects the 32-bit bi-directional and multiplexed PCI AD bus to the

two 32-bit unidirectional buses. AD_In are provided to the Master State Machine for

sampling data during read operations; Address/Write data and Command/Byte enables

come from internal data path and are put out to the bus lines through tri-state ports

controlled by the Master State Machine with output enable signals.

Fig. 5.7 shows the data path for the AD port, which is bi-directional for the Master

Block; Fig.5.8 indicates the tri-state buffer for the CBE port, output for the Master Block.

Figure 5.7 Master internal d

Figure 5.8 Output tri-state b

AD
32

CBE

 4
OE_AD
ata path

uf

Ad_Master_int

AD_In

OE_CBE
53

fer of the Master CBE lines

Cbe_Master_int

Master/Target PCI VHDL Core

5.1.3 FIFO IN Block Master

This block decodes the information coming from back-end application through

FIFO IN and drives the requests to the Master State Machine with the right timing. Fig.5.9

shows the path of the 40-bit input bus, which represents the value of the last word read

from FIFO IN. Address / data write are provided to the Master State Machine by

Ad_int_first and command / byte enables by Cbe_int_first.

Figure 5.9 Internal path of the 40-bit input

Fig: 5.10 indicates a list of internal request signals decoded by the combinatory

logic DECOD_A, DECOD_B and DECOD_C. Ignored_int becomes asserted when back-

end application has requested a not-supported command.

Figure 5.

Req_int_0

Req_int_1

Req_int_2

Req_int_3

DECOD_A

DECOD_B

DECOD_C

40

Data in

4

32

4

Ad_int

Cbe_int
Req_int_1

Req_int_0

Req_int_2

Req_int_3

Req_int_1
Req_int_0

Cbe int
10 Combinatory logic for decoding b
Request_int
Pref_int
Ready_int

Stop_int
Lock_req_int
FtSA_int

Sp_Cycle_int
R_W_int
MWI_int
Ignored_int
54

ack-end’s requests

Master/Target PCI VHDL Core

 55

The output request signals are provided to the Master State Machine by a Type

Request Logic, which is a combinatory block under the control of an internal state machine

(Fig:5.11).

Figure 5.11 Generation of the request signals

The FIFO IN Block state machine consists of four different states, as shown in

Fig:5.12:

Figure 5.12 State diagram of the FIFO IN Block state machine

COMB.
LOGIC

DECODER

TYPE

REQUEST
LOGIC

STATE
MACHINE

No_Req

Partial
Flush

Data

Pending

40

4

32

4

Master/Target PCI VHDL Core

 56

• No_Req is the state where the machine waits for a new request from back-end

application. FIFO IN is empty.

• Pending is reached as soon as the address is read from FIFO IN, request signals are

asserted and the machine waits for the beginning of the transaction on the PCI side

(FRAME# asserted).

• Data reflects the data phase on the PCI bus. It is present a path to Pending in order to

allow fast back-to-back transactions.

• P_Flush is used to read data from FIFO IN till the last data of operations with

abnormal termination or not-supported (ignored) commands from back-end user.

This block generates a signal, which drives, together (logic OR) with the one

coming from the Master State Machine, the read request for reading from FIFO IN. The

address is read by this block when the state machine is in the Idle state; if Master State

Machine wanted read a new data but FIFO is empty, it is FIFO IN Block’s responsibility

read this data as soon as a new word is pushed into FIFO. Read signal is asserted when the

state machine is making the partial flush or after a prefetchable request, when the master is

waiting for the Stop message.

The read signal coming from the Master State Machine and the one coming from

this block work as asynchronous request: data is provided after the rising edge of this read

request signal.

5.1.4 FIFO OUT Block Master

This block provides the information to back-end application by writing 40-bit

words into FIFO OUT.

A final info about the result of the transaction is written at the end of a write PCI

operation with the right timing: it is necessary waiting for the error result of the last data

transfer. Each read data is reported to back-end with other info (parity error is detected by

an internal parity checking and not by sampling PERR# line as in a write: this information

occurs one clock before respect to the write case).

Master/Target PCI VHDL Core

Read data come from the Master State Machine through Read_Data_int bus, which

is the one clock delayed copy of PCI AD lines during read data transfers. There is another

sampling block on this path in order to get read data with a two PCI clock delay, i.e.

synchronous with the parity error response (Fig. 5.13).

Figure 5.13 One clock delay path for read data

The other 8 bits of the 40-bit output word written into FIFO have a particular path, as

shown in Fig. 5.14, for handling full conditions, i.e. when FIFO OUT becomes full. If

Master is reading at full speed there will be three extra read (one not written word before

the assertion of the full signal , two extra not written read after full).

Figure 5.14 Interna

Read_Data_int_int

Read_Data_int

2 clk
delay

4

Own
lock

First
data

1 clk
delay

r

Type end

Info
latch1
4
Data bit
Parity erro
57

l path of end type and status info 8 bits

8

Info
latch2

Master/Target PCI VHDL Core

 58

A parallel three-level latch system is necessary to store 40-bit word in the worst

case (FIFO OUT full when Master is reading at full speed). The path indicated in Fig: 5.15

completes this latch system (Data_out_aux, Info_latch1 and Info_latch2).

Write signal requests a writing operation, which will occur the next rising edge of

PCI clock.

Figure 5.15 Data out path of the FIFO OUT Block Master

5.1.5 Master Parity & Error Block

The Parity & Error block generates the parity and checks possible parity errors for

the Master side of the PCI Core.

The agent that is driving the PCI AD bus has to calculate and manage the parity line

of the bus, which is called PAR. Master drives PAR during the address phase of each

transaction it is implementing and the data phase of write operations. The number of “1”s

on AD, CBE# and PAR equals an even number. The timing requirements of PAR signal

are supported thanks to the control of the Master State Machine, which enables the output

buffer of PAR.

Fig. 5.16 illustrates the generation of PAR through two different XOR-trees. The

output value is delayed by one PCI clock to achieve timing requirements on this signal.

Data_out_int Data_out_aux

Data_out

Master/Target PCI VHDL Core

Fig. 5.17 shows the XOR-tree to calculate the PAR_CBE internal signal; the same

structure is used to get PAR_AD from the AD_Master_int 32-bit line.

Figure 5.16 Internal path for the calculation of parity

Figure 5.17 XOR tree for the generation of PAR_CBE signal

This block also manages the checking of possible parity errors and d

signal during read data phase; it works during writes as well to report error i

FIFO OUT block. The general structure of the parity error checker is shown i

Figure 5.18 Parity checker overview

XOR

XOR
AD_Master_int

PAR_AD

XOR

XOR

XOR
t

E

PAR_In

Data_Read_int

XOR
TREE

XOR

CBE_Master_int PAR_CBE
PAR_Out
CBE Master in
riv

nfo

n F

XO
PAR CBE
es PERR#

rmation to

ig. 5.18.

R
PAR CB
PERR_Out
Parity Error
59

Master/Target PCI VHDL Core

 60

5.2 TARGET FUNCTIONAL DESCRIPTION

Figure 5.19 shows the organization of the Target Block, which consists of four

different blocks.

Figure 5.19 Target Block of the PCI Core

5.2.1 Target State Machine

This block implements the main functions of the Target Block of the PCI Core; it

drives the interface control signals of the PCI bus, handling the bus handshake with the

master of the PCI transaction.

DEVSEL#, TRDY# and STOP# are sustained tri-state signals and are driven by tri-

state output buffers enabled with internal signals.

DEVSEL# is asserted to claim the transaction, two clocks after the PCI address

phase when this slave is targeted by the master for the current operation. This means that

TARGET STATE

MACHINE

FIFO BLOCK
TARGET

PARITY&ERROR
TARGET

AD/CBE
BUFFERS

Master/Target PCI VHDL Core

 61

the PCI Core, as Target, implements the medium decode. DEVSEL# is de-asserted at the

end of the transaction or when a Target Abort occurs.

TRDY# is active when the back-end application is ready for data transfer: it is de-

asserted after a data transfer during a not-prefetchable read or an I/O access to get time for

sampling byte enables and providing them to back-end. When it becomes ready it is

asserted again and a new data transfer occurs. The other operations can complete with

zero-wait cycles.

STOP# is driven active when the target is going to implement a Target Termination.

All kind of termination are supported: Retry, Disconnect with or without data and Target

Abort.

Target handles exclusive access; a partial lock of a BAR is supported instead of a

complete resource locking. When the Target is locked, an attempt by another master to the

locked BAR is stopped by a Retry. Fig. 5.20 shows the state diagram of the Lock State

Machine, which consists of two state.

Figure 5.20 State diagram of the Target Lock Machine

Free: the target becomes free, i.e. not locked after a lock access, when it samples

FRAME# and LOCK# de-asserted.

Locked: the machine goes to this state when a memory access occurs and LOCK#

is de-asserted during the PCI address phase and active the following rising clock edge.

This means that target will become locked only because of a real lock attempt. In fact

LOCK# is de-asserted during the address phase even if the current access is not a lock one.

This block has also a Main State Machine that implements the main functions and

decodes the different possible situations of the PCI bus. It consists of six states, as shown

in Fig. 5.21.

Free

Locked

Master/Target PCI VHDL Core

 62

Figure 5.21 State diagram of the Main State Machine

Idle: it indicates that an idle state is on the PCI bus; no master is implementing any

PCI transaction. As soon as FRAME# is sample asserted, i.e. there is an address phase, the

State Machine goes to Addr.

Addr: the address has been decoded by the Address decoder in the Configuration

Block and Target can check the Hit lines to understand if it is the actual slave of the current

transaction. The address decoder compares the PCI address with the BAR value; the Target

State Machine decodes the command and enables the I/O, Configuration or Memory hit

signals. A memory access to a locked BAR is terminated with an automatic Retry (path to

Targ_Term). When Target is not involved in the current transaction (hit signals de-

asserted) the machine goes to Not_Inv or Idle (if FRAME# has just been de-asserted).

T_Data: this state implements the PCI data phase where data transfers occur. At

any time the transaction can be stopped (path to Targ_Term) because of Abort or Stop

Idle

Addr

Not Inv

Turn Ar

Target
Termin

T_Data

Master/Target PCI VHDL Core

 63

request from back-end application. A Disconnect occurs after the expiration of the timer

for the Data Latency rules (16-clock for the first data and 8-clock for the subsequent one).

A combinatory block called Addr_Checker checks the correct value of the two bits

AD[1..0]: linear incrementing mode is supported and the Wrap mode when wrap enable

from the Configuration region has value of ‘1’. If an error is detected a Disconnect after

the first data transfer occurs.

Not_Inv: it means not involved, i.e. the target is not the actual slave of the current

PCI transaction.

Turn_Ar: this state implements the turn around cycle. The path to Addr is for

decoding Fast back-to-back protocols.

Targ_Term: in this state STOP# is asserted to implement a target termination.

When FRAME# is ‘1’ and IRDY# is ‘0’ the turn around cycle can occur.

This block samples address / write data and command / byte enables from the AD

and CBE# PCI lines. Fig. 5.22 illustrates the internal unidirectional multiplexed address /

data path and describes the path for command and byte enables; it is also indicated the

combinatory logic for the command decoding.

Figure 5.22 Internal ad and cbe buses

The Target State Machine block manages the Special Cycle command without

affecting any other target block. The message is decoded and the result is provided directly

to back-end application by two external signals called HALT and SHUTDOWN.

Ad_Target_int
AD_In

Cbe_Target_int

CBE_In Comm
decoder

Master/Target PCI VHDL Core

During a PCI Configuration access burst read and write data transfers are supported

with zero-wait states thanks to an internal adder which increments the address for

providing it to the Configuration Block.

5.2.2 Target AD/CBE Buffers

This block connects the 32-bit bi-directional and multiplexed PCI AD bus to the

two 32-bit unidirectional buses. AD_In are provided to the Target State Machine for

sampling data during write operations. Command/Byte enables are only input for the

Target Block: CBE_In are provided to the Target State Machine as AD_In.

Read data come from back-end application through FIFO IN (Data_Read_int) or

from the Configuration Space (Data_Read_CONF). A multiplexer controlled by the Target

State Machine selects the right path, which is put out to the bus lines through tri-state ports

controlled by the Target State Machine with output enable signals (Fig.5.23).

Figure 5.23 Internal Data path of t

AD
OE_AD
he Target Block

D

Data_Read_int
64

ata_Read_CONF

Master/Target PCI VHDL Core

 65

5.2.3 FIFO Block Target

This block manages the handshake with back-end application through FIFO IN and

FIFO OUT. There is a State Machine, which has four valid states and all possible

transactions are divided into Memory Write, Memory Read (prefetchable and not-

prefetchable), I/O read / write and Configuration read / write (Fig.5.24).

Figure 5.24 State diagram of the State Machine in the FIFO Block Target

Idle: The machine is in the Idle state when the Target Block is not involved in any

PCI transaction.

Mem_W: The Target block is implementing a memory Write; it supports Posting

Data. When the Machine goes to Mem_W the FIFO block writes the address and the

command into FIFO OUT. If this FIFO is full or Posting enable is not active this block

requests a stop, i.e. the target Block will issue a Retry. At any time back-end can disable

posting data in order to avoid deadlock situations: a Disconnect will occur. There is a

particular data path to support a possible full condition of FIFO OUT (Fig.5.25).

Mem_R: The Target State Machine has requested a Memory Read access. They are

possible if there are not posted data into FIFO OUT; otherwise the FIFO block requests a

Retry termination.

Idle

Not
Mem

Mem_R

Mem_W

Master/Target PCI VHDL Core

Figure 5.25 Data path for writing 40-bit word into FIFO OU

Byte enables are written into FIFO OUT for not-prefetchable ope

end has to provide the next data. It is not necessary writing BEs during

At the end of the transaction a stop message is given to back-end and FIF

Not_Mem: This state is used to implement I/O and Config

operations. When FIFO OUT is not empty, these accesses cannot occur:

the expiration of a retry-counter. After that FIFO will be flushed. PCI Co

are reported to back-end through FIFO OUT without any interactio

application.

5.2.3 Target Parity & Error Block

This block has the responsibility to drive the PAR, PERR# and SE

Target provides the parity on the PAR line during the data phase of read

5.26 shows the architecture of the parity generator, which consists of t

the PCI CBE# lines are sampled for reducing the input delay on this PCI

40
Data_out to
FIFO OUT
66

T

rations; then back-

prefetchable read.

O IN is flushed.

uration read/write

there is a Retry till

nfiguration cycles

n with back-end

RR# PCI signals.

 transactions. Fig.

wo trees of XOR;

input path.

Master/Target PCI VHDL Core

 67

Figure 5.26 Structure of the parity generator

The checker is a parity checker and drive PERR# signal during write data phases.

SERR# is used only to report parity errors during address phases and Special Cycles. The

functional and structural organization of the parity checker is shown in Fig. 5.27.

Figure 5.27 Parity checker of the target block

Fig. 5.28 shows the PAR port which is an input-output one; the output is driven, as

for PERR# and SERR#, with tri-state buffers which are controlled by the enable signals

generated by the Target State Machine.

Figure 5.28 PAR input – output port

CBE

Data_Read_bus

XOR
TREE

XOR
TREE

PAR_Out

AD_Target_int

XOR
TREE

CBE

XOR
TREE

PAR_In

Parity
error

OE_PAR

PAR_Out

PAR_In PAR

Master/Target PCI VHDL Core

 68

5.3 CONFIGURATION BLOCK

The Configuration Block consists of the Configuration Space, the support for

handling PCI Configuration cycles and back-end direct accesses and the logic block for the

address decoding.

The PCI Core supports a predefined header region type 00h and table 5.1 indicates

which registers are read & write (shaded regions).

Address Byte 3 Byte 2 Byte 1 Byte 0

00h DEVICE ID VENDOR ID

04h STATUS REGISTER COMMAND REGISTER

08h CLASS CODE REVISION ID

0Ch BIST HEADER TYPE LATENCY TIMER CACHELINE SIZE

10h BASE ADDRESS REGISTER 0

14h BASE ADDRESS REGISTER 1

18h BASE ADDRESS REGISTER 2

1Ch BASE ADDRESS REGISTER 3

20h BASE ADDRESS REGISTER 4

24h BASE ADDRESS REGISTER 5

28h CARDBUS CIS POINTER

2Ch SUBSYSTEM ID SUBSYSTEM VENDOR ID

30h EXPANSION ROM BASE ADDRESS REGISTER

34h RESERVED

38h RESERVED

3Ch MAX _LAT MIN_GNT INTERRUPT PIN INTERRUPT LINE

Table 5.1 Type 00h Configuration Space Header

Master/Target PCI VHDL Core

 69

Reserved 9 8 7 6 5 4 3 2 1 0

Table 5.2 Layout of the Command Register

15 14 13 12 11 10 9 8 7 6 5 Reserved

Table 5.3 Layout of the Status Register

Table 5.2 and table 5.3 indicate the layout of the Command and Status registers:

shaded regions shows read & write bit-register.

The support for handling read and write accesses to the Configuration Space has a

State Machine, which makes the control and the data handshake. An access to the

Configuration registers is possible from the PCI and the local user side; it is necessary an

arbitration between these two possible masters, the PCI one and the back-end application.

The State Machine deals with these problems and consists of three states, as shown in Fig.

5.29.

Figure 5.29 State diagram of the Configuration Block

Idle: there are not accesses to the Configuration Space neither from the PCI side

nor from back-end local interface. When a PCI request occurs at the same time of a back-

Idle

Busy
BACK

Busy
PCI

Master/Target PCI VHDL Core

end one, the machine goes to the Busy PCI, giving the priority to the PCI Master, which is

implementing the Configuration cycle.

Busy_PCI: in this state a Configuration Read or Write is occurring. Any back-end

attempt is not accepted (Ack_BACK is kept de-asserted) and data on the output bus are

indicated not-valid.

Busy_BACK: back-end is writing a 32-bit word into the Configuration Space. A

PCI request is stopped with a Retry command to the Target State Machine.

The Configuration Space is divided into 32-bit lines and each line into four bytes:

the write operation from the PCI bus is controlled by the Byte enables. The granularity of

the access from back-end side is not byte: local user is allowed to write only with single

32-bit cycles.

Figure

...

Data_in_back

Write_back
Write_PCI
O

70

 5.30 Write support of the Configuration Block

...

CBE Ad_Target_int

Master/Target PCI VHDL Core

 71

Fig. 5.30 shows the structure of the support for writing into the Configuration

Space: there are two separate input data paths with different de-multiplexer blocks. The 32-

bit line is selected with the write signal: for PCI Configuration Write accesses, byte

enables are used to indicate the byte selected inside the line.

There are two multiplexer blocks for providing read data, as shown in Fig. 5.31.

Figure 5.31 Support for reading from Configuration Space

The Address Decoder is a simple comparator: when the value of the AD_Target_int

bus is equal to the one written in the Base Address Register an Hit signal is asserted. It is

possible indicate if the BAR selected refers to the Memory or I / O space. This block drives

also the prefetchable signal, which reports the value of the bit 3 of memory BARs.

...

...

Data_Read_CONF

Data_out_back

Master/Target PCI VHDL Core

 72

6. VHDL CODE OVERVIEW

This section wants to provide a guide for reading and checking the VHDL code

attached in the APPENDIX A. The design was carried out in a hierarchical and modular

way; the functional organization of the PCI Core was kept during the writing of the VHDL

code.

6.1 VHDL FILE NAMES

Figure 6.1 shows the VHDL organization of the PCI Core.

Figure 6.1 VHDL file names and organization

PCI CORE Block

Master_Block Configuration Block Target Block

MSM

FIFO IN Mblock

FIFO OUT Mblock

Parity & Error M

AD CBE Mbuffer

TSM

FIFO Tblock

Parity & Error T

AD CBE Tbuffer

Master/Target PCI VHDL Core

 73

REFERENCES

• PCI Local Bus Standard, Revision 2.1 – June 1995, PCI Special Interested Group

* PCI Hardware and Software architecture & design – March 1995, E.Solari &

G.Willse

Master/Target PCI VHDL Core

 74

APPENDIX A: VHDL CODE

	E.W.P 2047
	Acknowledgment
	Table of Content
	
	INTRODUCTION..		6
	ORGANISATION...		6
	MASTER FUNCTIONAL DESCRIPTION..........................		48

	VHDL CORE OVERVIEW...		72
	REFERENCES
	APPENDIX A: VHDL CODE
	
	OVERVIEW

	This chapter wants to give to the reader a general description about the features and the functional organization of the PCI Core, without describing details but providing an overall overview.
	
	C/BE#[3::0]
	Interrupt Acknowledge
	RST# is the system reset. It can be asserted asynchronously to the PCI bus clock edge. The synchronized version of this signal is used as general reset of the complete PCI Core.

	In
	
	
	
	READ Cycle: back-end has only to drive the Address_back bus with the right address value and the corresponding data can be read on the Data_out_back, except when Notvalid_back is asserted; this means that a PCI access is occurring and data read are not-v

	Write commands
	Write commands

