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Chapter 1
BACKGROUND AND SCOPE OF WORK

1.1 Background

The development of GALILEO receivers has to go in parallel with the development of the GALILEO
system itself, because only with appropriate receivers it will be possible to fully exploit the new
characteristics of the GALILEO signals. The GALILEO system will improve the performance of
satellite-based navigation, and hence introduce its use in new applications and extend it in existing
ones. However, receivers capable of taking full advantage of the new signals and processing them
together with the existing signals in an efficient way will have to be developed in the near future.
Industry is still reluctant to start hardware developments of GALILEO receivers because of the large
resources needed to do so when the GALILEO definition is not frozen yet. But it is time to start
software developments that, with more flexibility and smaller costs, will help in providing an
understanding of the new signals, proving new / optimised reception concepts, paving the way to the
fabrication of future hardware receivers, and assessing what GALILEO can provide in order to satisfy
in a more optimal way the needs of different users and their demanded applications. However, since
there are still no signals available in the sky, in order to test the new agorithms implemented in those
receivers, a ground-based transmitter (name it signal generator) must be developed.

1.2 Objectives of the activity

The objective of the activity is to develop a signa generator for GALILEO and GPS signals, which
serves as a starting point for the final implementation on hardware, typically an FPGA. Firstly a
software signal generator, using a high level programming language shall be implemented. The
software signal generator has to serve to rapidly prototype different transmitter configurations,
algorithms and techniques, assess the performance of GALILEO signals, and create initial designs for
further hardware implementations. The hardware signal generator will introduce a more efficiency due
to its higher processing speed, thus allowing real-time generation of the signal.

1.3 Organization Of The Text

The second chapter explains the architecture of the signal generator implemented in Matlab. It goes one
by one through its constituent blocks (files) and explain how these are interconnected. Finally it shows
some simulation results for al possible generated signals, illustrating the effects of filtering, addition
of white noise and multipath.

The third chapter is dedicated to the explanation of the hardware model, created using ModelSim v5.6
SE. At the end, there is the explanation on how to make simulations and the interpretation of the
obtained results.

The fourth and last chapter gives some recommendations and sets the guidelines for some future
developments using the present models as a starting point.



Chapter 2
MATLAB SIGNAL GENERATOR

2.1 System Architecture

The system architecture coded in Matlab correspondsin a very close way to the one presented in Figure
2.1. It uses 14 different blocks in order to generate L1-GPS (C/A plus P(Y)-code), L1-GALILEO (aso
called E1, generating the three individual components or the three sub-signals multiplexed using the
Tricode Hexaphase Modulation or the Multiphase Interplexing), E5a, E5b and, E5a plus E5b,
modulated using the Alternative BOC modulation scheme. In this project the generation of E6 has been
not considered since this signal is going to be encrypted and its nature is very close to that of E1, thus
the results obtained for the latter may be extrapolated for E6.

For more information about the GALILEO multiplexing and modulation techniques, see [5] and [6].

At the highest level, and from the functionality point of view, it can be divided in three main blocks
named: Generation, Channel and PlotResults. On top of this, there is the Parameters sub-block, which
contains all parameters and variables which are necessary to generate all the signal scenarios. From the
user’s point of view, thisisthe block that acts as the interface with the simulator.

When one wants to run a simulation, one simply hasto follow the following steps:

- Firgt, the parameters file has to be modified in the appropriate way so that the desired signal is
generated. This implies defining the simulation time, the type of signal, front-end filter (of the
satellite) and the channel characteristics, among others.

- Next, one simply has to return to the Matlab command line and type “main”. This will start
the signal simulator. While the simulation is running, the users can follow its status by
checking the messages that appear in the command window. Once the simulation is finished,
the selected results are plotted.
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2.2 Matlab Files

2.21Main - nmain. m

Thisisthe “executable” file that will make the signal generator run. Basically what it doesisto load al
the parameters into the main 3 blocks and links them with each other in a sequential way (i.e. first load
the parameters, then execute the generation of the signal, afterwards feed it to the channel and finally
use the PlotResults block as a sink for the results).

It also outputs the simulation time taken to generate the signal plus output the results.

MAIN

l v Simulation

> —» > Results

Figure 2.2.- General scheme of Sgnal Generator model’ s main blocks.

It has no inputs and no outputs since all the simulation takes place within.

2.2.2 Parameters - paraneters. m

This function declares all the variables and parameters that alow to set up the signal generator. These
parameters have been divided in 5 groups: signal, filter, channel, plots and other.

Signal parameters

The signal parameters define all the signal variables such as the carrier frequency, code rate and signal
bandwidth. After defining these set of parameters, the ideal signal (as transmitted from the satellite)
will be completely defined.

Codel ength: length of the PRN code in chips.

CodeRate: rate at which the PRN code is transmitted, in chips/second.

DataRate: rate at which datais modulated, in bits/second.

ubCarrierFreq: frequency of the BOC signal, in Hz.

RFCarrier: carrier frequency of the generated signal, in Hz.

SgnalBW: bandwidth at which the signal will be filtered (SSB), in Hz.

SamplingFregDef: it is the predefined (default) sampling frequency for the simulation, which is the
lowest multiple of the basis 1.023 MHz frequency that accomplishes Nyquist.

ReceivedPower : isthe nominal received power at the receiver’s antenna[dBW].

PowerRatio: is the ratio the power is split between the different channels of signals modulated on the
same carrier.

CodeNumber: isthe number of the PRN code, within its family of codes, that will be generated.

For the E1 signal the sub-signal parameters are specified individually.
Filter parameters

This set defines whether the transmitted signal will be filtered or not, and how the filter of the signal
will look like.

FilterSgnal: specifiesif the generated signal isfiltered (1) or not (2).
TypeFilter: selectsthe type of filter among a FIR, Butterworth or Chebyschev.
FilterOrder: selectsthe filter order.

FilterRipple: setsthe ripple in the pass-band of the filter [dB].



Channel parameters

These parameters will allow the user to configure the channel where the signal will pass through in its
way to the receiver’s front-end. It offers the possibility of adding gaussian white noise and a reflected
signal (multipath). Both noise and multipath are fully configurable.

AddNoise: activates the addition of white noise.

SN\RdB: setsthe SNR [dB]

SNRcheck: when this option is selected, the simulation computes the effective SNR and compares it to
the specified value.

AddMP: activates the addition of one reflected signal.

SMRdB: setsthe SMR [dB]

DelayMP: setsthe delay of the reflected signal with respect to the LOS-signal [9].

PhaseMP: sets the phase of the reflected signal with respect to the LOS-signal [deg].

Plots parameters

PlotSpectrum: plots the spectrum of the ideal generated signal, and compares it to the filtered version
(if the filter is activated).

PlotTime: plotsthe ideal plus the signal affected by the channel (hoise and/or multipath) — in case any
of these parameters are selected (It shows the in-phase and quadrature values of the signal).

PlotSgnal Congtellation: plotsthe signal constellation.

PlotDoppler: in case Doppler is added to the signal, it plots the Doppler profile for the ssmulation time.

In case E1 with no multiplexing is selected, it will present the results for each of the sub-signals
separated.

Other parameters

SmTime: sets up the length (in time) of the generated signall:.I

AddPcode: in case the selected signal is L1-GPS, it allows to add the P(Y)-code to the C/A-code on the
same carrier. If another signal is selected, the value of AddPcodeisirrelevant.

MultiplexSqueme: this parameter is defined in the L1-GALILEO signal. Thusif that signal is selected,
it will be overwritten afterwards. The purpose of replicating it out of thissignal, isto avoid errors when
any of the other signalsis selected (since MultiplexSqueme is a common input of the generation
function).

Satellite: it selects the satellite under study. The value of this parameter is used to load the Doppler
pattern of one of the satellites.

AddDoppler: if set to “1”, it adds Doppler on the generated signal.

SamplingFregUser: is the custom sampling frequency, selectable by the user. If it happens to be a
frequency that does not accomplish Nyquist or it is not a multiple of the basic frequency (1.023 MHz),
the generator will inform about that, and automatically select the default frequency (SamplingFregDef)
defined inside the signal parameters.

SamplesChip: is the number of samples per chip code.

NumSamplesCode: is the total number of samples in period of the generated PRN code/s for the
selected signal.

SmSamples: isthe total amount of samples in the simulation. This parameter is directly proportional to
the total simulation time (SmTime) and the sampling frequency.

22.3GENERATOR - generation.m

Thisisthe core main block that performs the generation of the desired signal.

Lt atoo large value is selected, Matlab can run out of memory and overflow.



Inputs

SmTime, DataRate, SubCarrierFreq, Friaries, latitude, longitude, height, Tini_Kepler, CodeRate,
SamplingFreq, NumSamplesCode, SmSamples, satellite, CodelLength, SgnalType, ReceivedPower,
PowerRatio, MultiplexSqueme, SgnalBW, FilterSgnal, TypeFilter, FilterOrder, FilterRipple,
PlotTime, PlotSpectrum, PlotSignal Constellation, AddPcode

Outputs

y_dop: it isthe generated ideal signal with added doppler (in case this option was sel ected).
yfilter: it isthe filtered signal. In case no filtered is selected, it will matchy_dop.
SmSamples: the total amount of samples generated.

Functionality

The function starts computing the Doppler to be added during the simulation time. Thistask is done by
the sub-function called ComputeDoppler (see chapter 2.2.13). After that it computes the selected signal,
and Doppler is added. Once the signal is generated, it is filtered (if this option has been selected) using
the selected filter defined in Parameters.

In the filtering process of the signal, the filtered signal is advanced filter_delay samples in order to
compensate for the delay introduced by the filter. In case of a FIR filter, it is well known that the delay
introduced equals:

. FilterOrder/2 if FilterOrder is even
filter_delayq i terOrder-1)/2 if FilterOrder is odd
For the other types of filter, the delay was computed by the performance of several experiments.

The output of this block are the y_dop, Yfilter and SmSamples; y_dop is the ideal signal plus doppler,
yfilter is the filtered signal and SmSamples is the number of samples that will be generated in the
simulation. If the signal is not filtered, y_dop and yfilter will be the same.

224 CHANNEL - channel . m

The input of the block is the signal transmitted by the satellite at the antenna. At this point gaussian
white noise and areflected signal (multipath) is added to the LOS ideal signal.

Inputs

GenSgnal, AddNoise, SNRdB, AddMP, SMRdB, DelayMP, PhaseMP, SamplingFreq, LOSPower,
SmTime, PlotSgnalCongtellation, CodeRate, SubCarrierFreq, NumSamplesCode, Codelength,
Sgnal Type, Sgnal BW, SNRcheck, AddPcode, MultiplexSqueme

Outputs
ychannel: the signal with multipath and noise (in case these options were selected).

Functionality

First, the multipath signal is created as a vector of same length as the received signal, just as indicated
in Equation 1. The SMR, which is in dB, is turned into its linear value, and the multipath delay is
converted from seconds to samples. The multipath phase is also converted from degrees to radians. A
signal called ychannel is formed then by the LOS plus a replica with different amplitude, delay and
phase.

Swe (t) = ATBR(t = Syp ~ dup) )
where A is a value in the interval ]0,1]E|and represents the attenuation of the multipath signal with

respect to the LOS, dyp and @yp are the relative phase and the relative delay of the multipath signal,
respectively.

2t could be larger than the unit if the LOS was shadowed thus allowing the reflected signal to reach the antenna with higher
power. To simulate that, the user must introduce a negative value of the SMR



If AddNoise equals 1, noise is added to the signal. Noise is created as arandom vector of numbers with
variance equal to 1. The vector has two rows, one for the in-phase component and another one for the
quadrature. Since the two components are generated separated, we are guaranteeing that both | and Q
channels will be datistically independ?t. Noise is thus added separately for the in-phase and
guadrature channels of the received signal™

In the end, if the user selected the option of checking the SNR, a computation of the effective SNR
achieved in the current simulation will be computed and displayed. This computation is done by taking
a piece of the generated signal (we arbitrary chose 100000 samples as a good compromise between
computational load and accuracy of the result) and calculate its autocorrelation function. Once we have
that, it is known from [1] that:

Pt)=R,(0)=[s,(f)df 2

Thus, since the autocorrelation function is even and of length equal to twice the length of the original
signal minus one, the value of the obtained vector at length(vector)/2 will give us the power. The same
principle is used to compute the noise power. From that point, the effective SNR is computed.
Finally, the signal at the end of our generator chain will be the one represented in Equation 3:

S, (t)=s(t)+ AB. (t —t,, — @) + Noise ®3)

2.2.5PRN CODE GENERATION - PRNgeneration. m

This functions generates a Pseudo-Random Noise (PRN) sequence of hits.

Inputs
CodeNumber, CodeRate, SamplingFreg, NumSamplesCode, Codel ength, Shift, SmTime, CodeType

Outputs
CA: PRN seguence

Functionality
The generation of the codes can be done in two different ways:
- adding 2 ML (Maximum Length) sequences (in the case of a Gold code) or adding a Gold
Code with a Lidner code (in the case of a Tiered Code). For more information about the

GALILEO spreading code design see [2]. In this option, the shift between the two ML
sequences which form the final codeis:

shift =2" - SatedShif -1

where N isthe length of the LFSR, and StatedShift is the shift stated in [2].

(SIhfiffft] Jriefofifsftje]r]

e |

€

ML Sequence

Figure 2.3.- Generation of a Maximum Length Sequence.

3\t the signal isreal, only thefirst column is used.



- Reading the codes from afile (preferred).

By default, the second option is selected, since the computational 1oad, and hence the simulation time
will be much less. By these means, all the generated codes (except the non-periodic on L1-A) are read
from afile*.mat which contains the bipolar version (+/-1's) of each code (-1 for the logic level “1" and
+1 for the logic level “0"). For the L1 signal option, if the simulation time is less than 100 ms. (length
of a Gold Code using a 14-taps shift register) it is advisable to read one of the codes of L1-C to act asa
non-periodic code on L1-A, since the length of the resultant code at 2.046 Mchip/s will be equal or less
than the simulation time, thus it will appear as non-periodic for all purposes.

The Gold codes were generated adding two ML sequences with the appropriate initial state and tap
selection (for the feedback).

The input value CodeType decides the type of code to generate; that is, a Truncated Gold code (L1-B),
a Tiered code (L1-C), a non-periodic code (L1-A) or the codes on E5a (in-phase and quadrature) and
E5b (in-phase and quadrature). If the shift input is different from zero, it will generate the PRN code
with shift chips of delay (useful for being able to re-use the function in a the correlators block of a
future receiver or two add a custom initial chip of the code, for example to account for the fact that the
receiver will have to be able to decode any PRN with any initial phase).

2.2.6 QPSK MODULATION - QPSK. m
It generates a QPSK signal from two different input signals.

Inputs
PowerRatio, InPhaseCode, QuadratureCode, DataRate, SmSamples, SmTime

Outputs
out: vector containing the complex signal.

Functionality

The in-phase and quadrature channels, will be constructed by the InPhaseCode and QuadratureCode
input signals. If DataRate is a vector (that is if its length is more than 1) then a data signal will be
modulated in the two channels, else, only the in-phase channel will carry data bits.

2.2.7BOC MODULATION - BCC. m

Generates a BOC (Binary Offset Carrier) signal, see [4] and [7], modulated by a PRN code and data
bits sequence (if the signal carries data; L 1-C does not, for instance).

Inputs
SubCarrierFreq, CodeRate, DataRate, PRN, SamplingFreg, NumSamplesCode, Codelength, SmTime,
SmSamples, CodeType

Outputs
out: is the code modulated by the BOC signal and which the generated data bits (in case it includes data
modulation).

Functionality

Here the key parameters are the SubCarrierFreq (M), which indicates the BOC sequence frequency
and CodeRate, which isthe rate (N) of the PRN code modulated on the BOC (PRN input here — it
matches the CodeNumber variable, see the Parameters section). These two parameters will form the
desired BOC(M,N)* The BOC modulation is showed in Figure 2.4.

The resulting vector is truncated to always verify that its length equals SmSamples.

4 M and N arethei ntegers resulting from dividing the code rate and sub-carrier frequency by the basic frequency of 1.023 MHz.
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Figure 2.4.- BOC modulation scheme.

2.2.8 GENERATION OF L1-GALILEO - GeneratelLl. m

It generates the three sub-signals in L1: L1-A, L1-B and L1-C. For this purpose it uses the function
BOC, described in the former subsection.

Input
CodeNumber, CodelLength, NumSamplesCode, CodeRate, SmTime, SmSamples, DataRate,
SamplingFreq, SubCarrierFreq, ReceivedPower, Power Ratio

Output
y: isa3 row vector containing one of the three signals which form L1 in each row.

Functionality
As described before all the computation of this function relies on the BOC function. The output is a

vector, containing three rows, each of which is one of the sub-signals on L1. The length of the non-
periodic code is set to be aslong as the simulation (i.e. SmSamples)

229 TRICODE HEXAPHASE MULTIPLEXING - THM m

It performs the THM multiplexing scheme, which gives name to this function, and it is explained in
detailed in [10].

I nput
y: isthe output of Generatel 1.

Output
out: modulated signal.

Functionality
This function is called from the generation block. The only input is directly the output from the

Generatel 1 function. It adds the first two components y(1) and y(2) of the signal vector vy, in phase and
the third component y(3), in quadrature. Equation 4 depicts this operation:

Spw =S+ S, + 5 4

where S; isL1-A, S, isL1-B and S; is L1-C. Note that the power ratio of each signal isintroduced in
the Generatel 1 block.

2210 MULTIPHASE INTERPLEXING - Ml ti phasel nt erpl exi ng. m

I nput
y, ReceivedPower, PowerRatio, SmSamples, SmTime

Output



out: L1 modulated signal.

Functionality

It carries out the implementation of the Coherent Adaptative Subcarrier Modulation (CASM)
technique, studied in [3] and [11] which aims to get a constant envelope, and which herein is used as a
multiplexing rather than a modulating scheme. From the three different options given in [5], option 2
was chosen™ This leads us to the following equation:

S(t) = %[(ﬁes (1) V26 (1)) | H2ex (1) + e (Des (Dec (1) @

where e, ez and e account for L1-A, L1-B and L1-C respectively.
Notice that in the function the values of y are divided by the PowerRatio since the CASM already takes
thisinto account, thus forcing us to work with the “ power unbalanced” sub-signals.

2211 ALTERNATIVEBOC- Alternati veBOC. m

I nput
Codelength, CodeRate, DataRate, SubCarrierFreq, SamplingFreq, NumSamplesCode, SmTime,
ReceivePower, SmSamples, CodeNumber

Output
Out: vector containing the modulated signal.

Functionality

The alternative BOC modulation, modulates the four signal contained in E5a and E5b into a single
carrier. Thus the first thing this functions does, is to generate the 4 independent PRN codes
corresponding to E5a-1, E5a-Q, E5b-I and E5b-Q; and the data bits modulated in the in-phase channels
(datal and data3). This way, the g(t) i [J{1,..,4} signals are created, where the codes are e,=E5b-I,
e=Eb5a|, es=E5b-Q and e,=E5a-Q.

Finally it computes the sub-signals used to perform the modulation, and the output signal, which is a
composition of the former sub-signals, as specified in [5].

2.2.12 DATA GENERATION - GenDat a. m

I nput
SmTime, DataRate, SmSamples

Output
data

Functionality

It generates a random data signal at DataRate bits/second. However, if DataRate equals 10.23-10°, it
generates a PRN sequence corresponding to the P(Y)-code. It was decided to generate the P(Y)-code
like that in order to save computational load.

The function generates always at least the samples corresponding to 1 bit, even if the ssimulation lasts
less. In that case, the signal vector will be truncated to match SmSamples.

2.2.13DOPPLER COMPUTATION - Conput eDoppl er. m

I nput

® The base-band equation given by [5] is somewhat erroneous since some constants are missing. See Annex A



satellite, Sgnal Type, SamplingFreq, SmTime, data_output, PlotDoppler

Output
InterpDoppler: thisisthe interpolated doppler with an interpolation each 0.1 ms (default).
Doppler_out: isthe re-sampled version (to 1/SamplingFreq) of the InterpDoppler.

Functionality

Reads from the file data_output.txt the doppler values for the chosen satellite. These values are given
each 60 seconds, thus if we want to know the doppler we have to add to each sample, an interpolation
has to be carried out. The data structure of the file data_output.txt isgivenin Table 2.1.

Column Data

Time (seconds)
Type of satdllite
Satellite number
Pseudorange (m)

Received Power (dBm)
Doppler (Hz)
Satellite elevation (rad)

N[O~ [W[N|F

Table 2.1.- Data format of file data_output.txt

The function searches for the given satellite number within the file and stores the doppler values in the
variable doppler. The vector InterpDoppler contains the interpolated version of the values given in
doppler, using the time vector timelnterp (this gives an interpolation of 1 doppler sasmple each 0.1 ms.-
of course this value was chosen in an arbitrary way, and can be altered if necessary). Thus, the vector
Doppler_out is a re-sampled version (at a rate of 1/SamplingFreq) of InterpDoppler. To do so, al the
samples of Doppler_out in the interval [10™(step-1), 10™step[ where step [IN contain the same
doppler value.

Finally it plots the doppler profile of the selected satellite for SimTime seconds (if this was selected in
parameters.m).

To learn more about the interpl function type «hel p i nt er p1»in MATLAB or read the annex at
the end of ComputeDoppler.m.

2214PLOTS- PlotResult.m

I nput

y, Yfilter, ychannel, PlotSpectrum, PlotTime, PlotSignalConstellation, SamplingFreq, SmSamples,
ReceivedPower, PowerRatio, FilterSgnal, QubCarrierFreq, CodelLength,  CodeRate,
NumSamplesCode, AddMP, AddNoise, Signal Type, MultiplexSqueme

Output
There are no output variables. The output are the desired plots.

Functionality

Depending on the set up of the parameters function, it can plot the Spectrum, Time and Signal
Constellation of the generated signal. If L1-C with no multiplexing is selected, it will present the
results individually for each sub-signal.

Note: the doppler profile is not plotted through this function but directly in ComputeDoppler.



2.3 Simulation Results

In the present section a series of results and examples using the Matlab Signal Generator are presented.
For each type of signal, the time, spectrum and signal constellation are given both filtered and
unfiltered, and with an ideal channel as well and affected by noise and/or multipath.

The simulations were performed over an interval of 10 ms. with a sampling frequency of 140
Msamples/s. When noise is added an SNR of 30 dB is set. Multipath is delayed 500 ns. And the
SMR=10 dB. Thefilter isa 15th order FIR.
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A piece of the C/A code is shown. Obvioudly, there is no signal in the quadrature channel.
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Figure 2.4.- C/A code, ideal (a) and with noise and MP (b)
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Figure 2.5.- C/A spectrum. Ideal (blue) and filtered to nominal BW (red)

Signal Constellation
Since thereis no signal in the Q channel, all the variance of the signal isinthe | channel, and it is due
both to noise and multipath.
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2.32L1C/A + P(Y)
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The higher chipping rate of the P(Y)-code can be observed now on the quadrature channel.
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Figure 2.7.- C/A plus P(Y) codes, ideal (a) and with noise and MP (b).
Spectrum

Now the first lobe of the P(Y)-code shows up, on top of which the C/A code appears.
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Figure 2.8.- C/A plus P(Y) spectrum. Ideal (blue) and filtered to nominal BW (red)



Signal Constellation

Now we have a typical QPSK signa constellation. When multipath is added, there appear points
around the ideal point. Thisis due to the fact that at the moments when the signal is being sampled, the
multipath signal affects, giving amplitude values out of the expected ideal one.
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Figure 2.9.- C/A signal constellation, ideal (a) and with noise and MP (b)
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Figure 2.11.- L1 components spectrum, ideal (blue) and filtered (red).
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Figure 2.13.- THM spectrum, ideal (blue) and filtered (red).

Signal Constellation
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Figure 2.14.- THM signal constellation, ideal (a) and with noise and multipath (b).
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Figure 2.16.- MI spectrum, ideal (blue) and filtered (red).
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Figure 2.17.- Ml signal constellation, ideal (a) and with noise and multipath (b).

2.3.6 E5a and E5b
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Figure 2.18.- E5a signal, ideal (a) and with noise and multipath (b).
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Figure 2.19.- E5a signal spectrum, ideal (blue) and filtered to nominal bandwidth (red).
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Figure 2.20.- E5a signal constellation, ideal (a) and with noise and multipath (b).

2.3.5 Alternative BOC
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Figure 2.21.- Alternative BOC signal, ideal (a) and with noise and multipath (b).
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Figure 2.22.- Alternative BOC spectrum, ideal (blue) and filtered to nominal BW (red).
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Figure 2.23.- Alternative BOC signal constellation, ideal (a) and with noise and multipath (b).

2.3.5 Filtering effect

The following figures show the filtering effect due to the use of the three different filters available
(FIR, Butterworth and Chebyschev). For each filter, the power spectral density and the effect of
filtering one chip is shown. For all figures a GPS with C/A and P(Y) codes was generated. The user can
carry out the same kind of simulations for the other more complex types of signals by means of

changing the type of generated signal.

Since the sampling frequency was 140x1.023 MHz, the spectrum appears centred at 70x1.023 MHz.
Also note that for the same filter order, the Chebyschev filter achieve a faster falling to the stop band,
accomplishing alarger stop band attenuation. As a drawback, the chips of the transmitted code (the
time-domain signal) are filtered its high component frequencies, thus resulting more distorted.
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Figure 2.24.- FIR filtered GPS - C/A plus P(Y) code — signal spectrum.
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Figure 2.25.- FIR filtered GPS- C/A (a) plus P(Y) code (b) - chip.
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Figure 2.26.- Butterworth filtered GPS - C/A plus P(Y) code - signal spectrum.
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Figure 2.28.- Chebyschev filtered GPS - C/A plus P(Y) code - signal spectrum.
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Chapter 3
VHDL HARDWARE SIGNAL GENERATOR

3.1 System Architecture

The criteria to create the VHDL Signal Generator was to start with the basic blocks (which does not
mean more simple). These were mainly the clock.vhd (which helped to have a clocking signal during
the design) and the blocks which generate the basic ML sequences (PRNgenerator13.vhd and
PRNgenerator14.vhd). The complex blocks are built using 2 or more basic or other non-basic blocks.
Themain file in our model is the Sgnal Generator.vhd.

EW/ S‘ gnal Generator < CL K
Esa | | E5b | | AlternativeBOC | [L1-A| [L1B] [Li-C| | MI | [THM]|

Figure 3.1.- High level VHDL model.

Besides, since the goal was to program an FPGA and be able to see the GALILEO analog signal
coming out of the FPGA, a codification scheme had to be implemented. On one hand, the available
DAC has a 12 bits resolution, and on the other hand we verify that with 2 bits, we have enough to
represent the dynamic range of our signals (this gives a dynamic range of [0, 2.x]). To know the
resolution of the x, we need to set the number of bits assign to the decimal part, which was chosen to be
9 hits. Thisleaves 1 bit for the sign. Figure 3.2 shows the latter.

1 \_vi_l, 10011010;.

sgn integer deC| mal

Figure 3.2.- 12 bit coding.

Thisway, our DAC will be able to represent values ranging from -2.998 to 2.998.



3.2 Building Blocks

3.2.1 alter nativeboc.vhd

Functionality

This block groups all the blocks used to compute the Alternative BOC modulation. It uses the E5a |,
E5a Q, E5b | and E5b_Q, plus two DataMain blocks (which generate the data modulated on the in-
phase channels). Besides it includes 4 BOC sub-blocks which generate the four BOC signals (same
frequency, but with different phase, A®=174). The ComputeSubSgnals block generates the sub-signals.
Finally all the signals generated by the former blocks are converted to the 12 bits format, and then
grouped in the CEA BOC. This blocks computes the Alternative BOC modulation from the signals
provided by the former blocks.

Ports

IN:

clk: external clock signal.
G_enable: general enable.

OUT:
E5 InPhase: the in-phase part of the Alternative BOC modulation.
E5 Quadrature: the quadrature part of the Alternative BOC modulation.

3.2.2 boc.vhd and boc_|.vhd

Functionality

These two block generate a BOC signal but with a dlight different. Since the BOC.vhd is used to
generate an Alternative BOC signal, four of these blocks will be connected in cascade, in way that the
first block activates the second after T/8, the second the third after the same time, and so on, until the
fourth is active. Like this, four BOC signals are generated with an offset of T/8 between two
consecutive blocks. The signal control is used to generate the T/8 shift. Once the shift is generated,
control will be ‘0", and the permanent regime where the BOC signal is generated will be set.

1)
[ ] [ ] [ ] [ ] -
v v v v
BOC (t) BOC (t-T/8) BOC (t-T/4) BOC (t-3T/8)

Figure 3.3.- Interconnection of four BOC.vhd.

On the other hand, BOC_L .vhd is used to generate a hormal BOC signal for the L1 signal. Note that
half clock periods are used for the counter on BOC.vhd, while full clock periods are used in the
BOC_L.vhd. Thisis due to the fact that more precision is needed in BOC.vhd, since one has to be able
to count the exact number of clock cycles to generate precisely a shift of T/8. It was founded that by
counting half cycles, the former shift was achieved (while by choosing full cycles, the obtained shift
was not exactly T/8). Further investigation is encouraged in this issue to find out other possible waysto
do that.

Ports



IN:

BOC freq: it isthe frequency of the BOC signal.
clk: external clock signal.

G_enable: general enable.

enable _in: enable block.

OUT:

enable_out: thissignal is used to enable the following BOC block.

BOC_period: it marks the boundaries of a BOC pulse. Used for synchronization purposes.
BOC_out: isthe generated BOC signal.

3.2.3 cea_boc.vhd

Functionality

It generates de Alternative BOC modulation from the sub-signals given by the ComputeSubSignals
block, the PRN codes and the data signals.

To compute the additions and subtractions, first we find out which will be the resulting sign of the
XOR operation. If it is positive, we add that result to the accumulated value, if negative, we subtract it.
Let us see an example:

Al ternativeBOC | d<=(AlternativeBOC |Ic + Sc134_1) when (E5b_I_12b(11) xor datal_12b(11)
xor E5b_Q 12b(11) xor E5a_Q 12b(11)) = '0' else

(Al ternativeBOC Ic - Scl134_1);

In the former piece of code, the sign of the different components of the product is checked. Thisis done
by looking in the MSB (11th) of the 12 bit word containing the coded value of the represented signal.
When the overall product is positive (the MSB bit will be zero) then the sub-signal Sc134 | is added,
else, it is subtracted.

Ports

IN:

E5a_|_12b, E5a Q 12b, E5Sb_|_12b, ESb_Q 12b: 12 hit coded PRN codes.

datal 12b, data2 12b: datasignal.

Scl |, Sc2 1, Se3 1, Sc4 1, S123 1, Sc124 1, Sc134 1, Sc234 1, Sel_Q, Sc2_Q, Sc3 Q, Scl123 Q,
Sc124 Q, Sc134 Q, Sc234 Q:

clk: external clock signal.

OUT:
AlternativeBOC_out_|: 12 bit coded in-phase component of the generated Alternative BOC.
AlternativeBOC_out_Q: 12 bit coded quadrature component of the generated Alternative BOC.

3.2.4 clock.vhd

Functionality

It generates a clock signal. Since it is an external signal, its period will be also defined from the
outside. However in this model, like stated before, an external frequency of 160x1.023 MHz is
assumed in order to set the internal counters.

This block is only designed for serving as a test bench input. In the final model the clock will be an
external signal coming in the FPGA.

Ports
OUT:
clk: clocking square signal. In the final model, it is an external signal fed to the FPGA.



3.2.5 compute_mi.vhd

Functionality

Computes the Multiphase Interplexing scheme used to multiplex the three signal components (A,B and
C) of L1. The technique used to implement this multiplexing scheme was to compute off-line al the
possible results depending on the values of the incoming signals L1-A, L1-B and L1-C. Since we have
a little number of different signals (only three) this is faceable. Doing so, 8 different constants are
obtained. Then a kind of true table is build up, where a result is assigned for each combination of the
signals.

| nPhase <= ¢00304 when L1 A 12b=mone and L1 B 12b=m one and
L1 C 12b=m one el se
¢cm0303 when L1 A 12b=m oneand L1 B 12b=m oneand L1 C 12b=one else

c00304, cm0303, m_one and one are pre-calculated constants (stored as a 12 bit standard logic vector).

Ports

IN:

L1 A 12b: 12 bit coded L1-A signal.
L1 B 12h: 12 hit coded L1-B signal.
L1 C 12b: 12 bit coded L1-C signal.

OUT:
InPhase: in-phase component of the generated multiplexed signal.
Quadrat: quadrature component of the generated multiplexed signal.

3.2.6 computesubsignals.vhd

Functionality

Computes the sub-signals necessary to create the Alternative BOC modulation.

Note that this block does not have a general enable signal since it is a combinational one. This means
that the value of its output ports only will change when any of the input signal changes. Since some of
the input signals come from sequential blocks (the BOC signals), if that block is not enable neither will
be this, and all signals will remain with their initial value.

Like in the former block al the possible values for the generated sub-signals are computed a priori and
stored. Then the same sort of combinational true tableis build up for each sub-signal.

Ports

IN:

BOC_sinmPi4, BOC_sin, BOC_sinPi4, BOC_cos: BOC signals shifted /4 between each consecutive
signal

clk: external clock signal.

OUT:

Scl |, Sc2 1, Sc3 1, Sc4 1, Sc123 1, Sc124 1, Sc134 1, Sc234 1, Sl Q, Sc2 Q, Sc3 Q, sS4 Q,
123 Q, Sc124 Q, Sc134 Q, Sc234 Q: set of generated sub-signals.

3.2.7 datagenerator 2.vhd

Functionality
Itisasimplified version of the block PRNgenerator13.vhd. Since the generated data bits are not an
important issue in our model, the bits are generated as a PRN sequence. However, to avoid to start



generating bits before they can be modulated on the correspondent PRN code, the block does not start
until enable="1". This enable will be linked to a marker signal output by a PRNmain block (making
sure that the first bit will start when the first chip of the PRN codeis available).

Ports

IN:

DataRate: rate at which the data is generated.

clk: clock signal

connexions: like in PRNgenerator13.vhd, to set which cells feed back the LFSR (see 3.2.13)
enable: if *1’, the block is activated.

G_enable: general enable.

OUT:
bit_out: asit changes from 0 to 1 and vice versa, it signals when a bit transition occurs.
Data: generated data hits.

3.2.8 datamain.vhd

Functionality

It isthe data generator block. For debugging purposes, it incorporates a clock component (commented
on the general simulation mode). Thus, it includes one datagenerator2 block, having the same input
and output ports.

The sequence vector is defined on the upper level architecture (i.e. on the immediate upper block that
includes datamain as a sub-bl ock).

Ports

IN:

DataRate: same as on datagenerator2.vhd.

clk: same as on datagenerator2.vhd.

seguence: same as connexions on datagenerator2.vhd.
enable: same as on datagenerator2.vhd

G_enable: same as on datagenerator2.vhd

OUT:
bit_out: same as on datagenerator2.vhd
Data: same as on datagenerator2.vhd

3.2.9 Eba.vhd

Functionality

It isformed by three main blocks: an E5a | for the in-phase component, a E5a_Q for the quadrature
component and a DataMain for the data modulated on the in-phase channel (the block also carries out
this modulation “E5a_|_Out XOR Data” ). On addition to this, there are two more blocks
(corresponding to the same Std_to_12bit component, see 3.2.34) with the aim of converting to 12 bits
the output values of the in-phase and quadrature channels.

Ports

IN:

clk: external clock signal.
G_enable: general enable.

OUT:
E5a_InPhase 12b: 12 bit coded in-phase channel.
E5a Quadrature 12b: 12 bit coded quadrature channel.



3.2.10 E5a_|.vhd

Functionality
It is formed by two different blocks: a E5a | PRNmain which provides the Gold code, and a
E5a |_TieredCode which modulates that Gold code with a Lidner code.

offsetl —P»| gg(lj d > » E5a |_out
clk — e
s %  Esal

Figure 3.4.- High level scheme of Ea5_|.vhd

Ports

IN:

offsetl: is the offset to be applied on one of the two ML sequences in E5a | PRNmain in order to
generate the desired Gold code.

clk: external clock signal.

G_enable: general enable.

OUT:

E5a _|_Out: main output of the block. It is directly the output of the E5a_|_TierdCode block.
marker_aux: it signals when the Gold code starts to be generated (it will also match the time instant
when the Tiered code begins).

ChipOut: signals a chip transition of the generated PRN code.

3.2.11 E5a_|_PRNmain.vhd

Functionality

The same way as the basic block PRNmainl4 (see 3.2.32), it has the function of generating a Gold
code. However, unlike that former block, it includes one more input (offsetl, whose value is now set by
upper level blocks) and output (ChipOut, which marks the chip boundaries).

Ports

IN:

offsetl: is the offset to be applied on one of the two ML sequences in E5a | PRNmain in order to
generate the desired Gold code.

clk: external clock signal.

G_enable: general enable.

OUT:

ChipOut: signals a chip transition of the generated PRN code.
marker: it signals when the Gold code starts to be generated.
GoldCode: generated Gold code.

3.212E5a | _TieredCode.vhd

Functionality

It performs the XOR of a stored Lidner code of length 20, with a Gold code. The block will start
functioning when marker issetto ‘1’ (that is, when the first chip of the Gold codeis available).

When the last bit of the Lidner codeis used, it will start again from the first bit (Lidner Code20(0)).



The variables g _var and p_var are created as auxiliary forms of q and p. The constant limit of 10230
(for p_var) is the length of the Gold code (it should not change, since it was set this way for E5a). For
g _var itisobvioudy 20 sinceit is the length of the Lidner code.

Ports

IN:

GoldCode: Gold code.

LidnerCode20: isthe Lidner code of length 20.

ChipOut: it signals when a new chip from the Gold code is generated
marker: it signals when the Gold code starts to be generated.
G_enable: general enable

OUT:
E5a |_Out: the XOR of the incoming Gold code with the pre-stored Lidner code.

3.2.13 E5a Q.vhd
It is equivalent to the block E5b_|.vhd, and it can be explained the same why just changing a by b in
any variable. However it lacks a marker output. This marker has the purpose of synchronizing the

modulation of the data bits on the PRN code. Since no data is on the Q channel, this output is not
needed here

3.2.14 E5a_ Q PRNmain.vhd

It is equivalent to the block E5a.vhd, and it can be explained the same why just changing a by b and |
by Q in any variable.

3.2.15E5a Q TieredCode.vhd

This block generates a Tired code from the combination of a Lidner code (length 100 chips) and a

truncated Gold code. It is equivalent to the block E5a | TieredCode.vhd, and it can be explained the
same why just changing a by b in any variable.

3.2.16 E5b.vhd

It is equivalent to the block E5a.vhd, and it can be explained the same why just changing a by b in any
variable.

3.2.17 E5b_I.vhd

It is equivalent to the block E5a_|.vhd, and it can be explained the same why just changing a by b in
any variable.

3.2.18 ESb | PRNmain.vhd

It is equivalent to the block E5a_|_PRNmain.vhd, and it can be explained the same why just changing a
by b in any variable.



3.219E5b | TieredCode.vhd

This block generates a Tired code from the combination of a Lidner code (length 4 chips) and a
truncated Gold code. It is equivalent to the block E5a | TieredCode.vhd, and it can be explained the
same why just changing a by b in any variable.

3.2.20 E5b_Q.vhd

It is equivalent to the block E5b_|.vhd, and it can be explained the same why just changing a by b in
any variable. However it lacks a marker output. This marker has the purpose of synchronizing the
modulation of the data bits on the PRN code. Since no data is on the Q channel, this output is not
needed here.

3.2.21 E5b_Q_PRNmain.vhd

It is equivalent to the block E5a | PRNmain.vhd, and it can be explained the same why just changing a
by b in any variable.

3.2.22 E5b_Q TieredCode.vhd

This block generates a Tired code from the combination of a Lidner code (length 100 chips) and a
truncated Gold code. It is equivalent to the block E5a | TieredCode.vhd, and it can be explained the
same why just changing a by b in any variable.

3.223L1 A.vhd

Functionality
This block groups all necessary sub-blocks in order to generate the L1-A signal (PRNgeneratorA,
DataMain and BOC_L), in the following way:

L1 A Qut <= (outputO xor outputl) xor BOC out xor Data ;

outputO and outputl are the ML sequences used to build up the Gold Code. In the real signal the code
on L1-A is created as the concatenation of a series of Gold Codes. In our model, the same PRN code is
being generated all the time. A 13 register LFSR was chosen (thus, it is generated in avery similar way
as PRNgenerator 13, but without having to take into account the offset between the two sequences, thus
itisasimplified version of PRNgenerator13).

Another possibility was to generate a Gold code of 8190 chips, storeitin astd logic vector, and then
do the XOR with an “on-the-fly” generated Gold code. This other possibility would make use of the
fileL1 A TieredCode.vhd, afile amost identical to the L1_C_TieredCode.vhd.

Ports

IN:

clk: external clock signal.
G_enable: general enable.

OUT:
L1 A 12b: 12 bit coded L1-A signal.



322411 A TieredCode.vhd

Not used in the final model.

3.225L1 B.vhd

Functionality

This block groups all necessary sub-blocks in order to generate the L1-B signal (PRNmainl3,
DataMain, BOC L and std to_12bit). The code rate, type of generated code (via the offset), and BOC
frequency are defined here.

Ports

IN:

clk: external clock signal.
G_enable: general enable.

OUT:
L1 B 12b: 12 bit coded L1-A signal.

3.2.26 L1 C.vhd

Functionality

This block groups all necessary sub-blocks in order to generate the L1-C signal (L1 _C_PRNmain,
L1 C TieredCode, BOC L and std to_12bit). The BOC frequency is defined here. The parameters
concerning the Gold code are set inthe L1_C_PRNmain block.

Ports

IN:

clk: external clock signal.
G_enable: general enable.

OUT:
L1 B 12b: 12 bit coded L1-A signal.

3.227L1 C TieredCode.vhd

Functionality
It generates a Tiered code from a predefined Lidner code (length 25) and a truncated Gold code. The
functionality isidentical to that of other TiredCode.vhd type files used in the model.

Ports

IN:

GoldCode: 8184 chip long Gold code.
LidnerCode25: Lidner code.

ChipOut: not used in the final version.

Marker: it marks when the Gold code is available.
G_enable: general enable.

Clk: external clock signal.

OUT:
L1 C Out: generated Tiered code.



3.2.28 M1.vhd

Functionality

It generates a Multiphase Interplexed signal used to multiplex the three signalson L1 (A,B and C) onto
a single carrier. The result are two 12 bit vectors containing the coded version of the complex base-
band signal. It groups all the necessary blockstodo so (L1 A, L1 B, L1 Cand Compute MI).

Ports

IN:

clk: external clock signal.
G_enable: general enable.

OUT:
MI_InPhase: in-phase component of the generated signal.
MI_Quadrat: quadrature component of the generated signal.

3.2.29 PRNgenerator 13.vhd

Functionality

It generates a ML sequence of length CodelLength, at a CodeRate chips/s and using a 13 cell LFSR. To
generate a Gold code, two PRNgeneratorl3 blocks are needed. They are interconnected so that one
starts generating the ML sequence starting with LFSR1 initialised to {1111111111111}. The other
block is not activated until Offset chips are counted by the first block. At this precise time, the second
block starts to generate the ML sequence (since chipEnable >= Offset will be ‘1’), and the two
sequences start to be added, chip by chip to form the Gold Code. Like this, the two blocks generate the
same sequence but with Offset chips of difference.

Ports

IN:

connexions. vector containing the cells of the LFSR which contribute to the feedback. Changing this
vector will change the generated sequence.

CodeRate: rate of the code to generate

Offset: of one of the ML sequences with respect to the other. Changing this will generate different PRN
codes. Note that the offset used follows the following rule: offset = 2'-StatedOffset - 1,

offset =2V - SatedOffset - 1

where StatedOffset is the offset declared on [Astrium], and N is the length of the register (in this case
13).

Codelength: length of the final Gold code.

clk: clock signal.

type block: indicates if the block is type="1" (starts generating sequence from the beginning) or
type="0" (starts generating sequence when chip reaches Offset)

G_enable: general enable.

OUT:

marker:
output: isthe generated ML sequence (is directly the output of the LFSR).

3.2.30 PRNgenerator 14.vhd

It generates a ML sequence using a 14 register LFSR. It is similar to PRNgeneratorl3, with the
difference of having one more output, ChipOut. This signal marks the chip boundary, and in the



beginning it was used to synchronize the XOR addition of the Gold code with the Lidner code to form
aTiered code.

3.2.31 PRNmain13.vhd

Functionality

It isthe block that generates a Gold code from two ML sequences offset by offset chips. The sequences
will be different and depend upon the val ue of the connexions vector (connexionl and connexion2).

It is hence formed by two PRNgenerator13 blocks. The block simply adds (XOR) the outputs of the
two blocks to produce the Gold code.

It is here were one can change the values of the CodeRate, Offset (see [Astrium]), CodeLength and the
feedback connexion vectors in order to generate different types of Gold Code using 13-cells long
LFSR.

Ports

IN:

clk: clock signal.
G_enable: general enable.

OUT:
marker: it points out when the Gold code starts to be generated
GoldCode: generated Gold code.

3.2.32 PRNmain14.vhd

Functionality
Basically it does the same as the former PRNmainl13, but using two PRNgenerator 14 blocks.

3.2.33 SignalGenerator.vhd

Functionality

Thisisthe main file of the VHDL model. It contains the main sub-blocks that allow generating all the
signals. A given signal will be generated if thereisa‘l’ in the position assign to that signal according
to Table 3.1.

Signal «enable» vector

E5a “00000001"
E5b “00000010"
Alternative BOC | “00000100”
L1-A “00001000”
L1-B “00010000"
L1-C “00100000”
L1 (MI) “01000000”
L1 (THM) “10000000"

Table 3.1.- Value of enable to generate each GALILEO signal.

Ports
IN:
enable; this 8 position vector indicates which isthe signal that is going to be generated.

OUT:
InPhase_out: in-phase component of the generated signal.



Quadrat_out: quadrature component of the generated signal.

3.2.34 Std_to_12bit.vhd

Functionality
It convertsastd logic typeto a 12 bit coded version. The criteriawas to assign —1 to the logic level “1”
and +1 to thelogic level “0".

Ports
IN:
input: standar_logic bit.

OUT:
output: 12 bit coded version of the input.

3.2.35THM.vhd

Functionality

The same way as the Ml.vhd, it generates a signal which is the multiplex of the three signals on L1
(A,B and C). The present block, however, it performs the Tricode Hexaphase Modulation. The result
are two 12 bit vectors containing the coded version of the complex base-band signal. It groups all the
necessary blockstodoso (L1 A,L1 BandL1 C)

The process Compute_THM, executes the operations to modulate the signals (in this case, very ssmple
asit can be easily depicted).

Ports

IN:

clk: external clock signal.
G_enable: general enable.

OUT:
THM_InPhase: in-phase component of the generated signal.
THM_Quadrat: quadrature component of the generated signal.

3.3 Doing Simulations

Standard simulation

If the purpose is to simulate one of the GALILEO signals, as a whole, that should be done from the
SgnalGenerator.vhd file. As shown on Table 3.1, by setting to “1” the appropriate bit of the port
enable, one can generate the desired GALILEO signal. In order to see the generated signal, the wave
window should be open before the simulation is started and load the appropriate signal environment.
To do that, go to File>Load Format, and then choose the file *.do corresponding to the selected
signal.

For example, if we want to simulate the E5a signal, first we will set enable to “0000001 and then load
in the wave window the output signals and variables corresponding to E5a. Loading the file SG.do
allows to see any possible generated signal. This is a common file for all signals when the standard
type of simulation is wanted. At this point we only need to select the simulation time (something
between 1 and 100 ms. would appropriated in order to see more than one code period and some data bit
transitions). Then, we click on the Run button.



Once the simulation is completed, the in-phase and quadrature value corresponding to L1-C will be
available on the wave window, highlighted in cyan. One can see that we have all GALILEO signals on
the wave window. However only E5a has been generated. The other remain zero, constant or undefined
for the whole simulation time. An example of such a simulation is shown in Figure 3.5. The output
signals for E5a are inphase outl and quadrat_outl, which of course match inphase out and
guadrat_out respectively sinceit is being the signal generated.

Figure 3.5.- Smulation of E5a from Sgnal Generator.vhd.

Block simulation

Apart from the standard simulation, one may want to see what is going on inside the building blocks
that form the pieces of the larger upper level block for a given signal. It is also possible to do that.
However some minor manual changes have to be done and some considerations have to be taken into
account.

The first thing to do isto load the block of interested. Let us explain this with an example. Hence let us
load the block E5a.vhd. That will allow us to check what is happening inside that block in a more
accurate way. Then like in a standard simulation we open a wave window and load the file containing
the signals and variables for that block. That is the E5a.do.

Now let’s edit a bit the E5a.vhd file. Two things must be done:

1) Remove the clock input (clk) port from the entity. For that, ssmply comment the consequent line in
the entity:

-- clk : in std_|ogic;

2) Create a clock component in the architecture. For that, simply uncomment the component
declaration from the architecture,

conmponent CLOCK
port ( clk : out std logic);
end conponent;

uncomment also the instantiation of that component after the begin,



BO : CLOCK
port nap (clk = cl k);

and create a signal, to be able to feed that clock signal to the underlying blocks; that is, uncomment
also the corresponding linein the signal declaration at the architecture,

signal clk : std_l ogic;

After that, everything will be set up to carry out the simulation. Once the simulation is completed, the
results will appear on the wave window. Note that now only the results for the chosen block show up,
and with much more detail. Obviously, one can add more signals and/or variables to the wave window
and remove any if necessary. Figure 3.6 shows a typical wave window after such a simulation was
performed.

Figure 3.6.- Smulation of block E5a.

Once we do not want to do any more simulation or test with this block, in this case E5a.vhd, restore
everything to its original format. That is, undo al the steps done before (comment everything you
uncomment and vice versa).

Changing parameters

All parameters in the model are chosen by default. If one wants to test different data rates on a given
code, or change the generated code, for instance; the values of the associated signals will have to be
changed (in the latter cases, DataRate and offset). Since it might be that a parameter is declared more
than once at different levelsin the block structure, it is advised to change it at the lowest level wereit is
assigned a value. For example, for the PRN codes, the parameters concerning code are assigned in a
file of the type xxxPRNmainxxx.vhd, while the data parameters are assigned in higher level — alwaysin
alevel when the code is already available (for instance for E5b they are assigned precisely at this same
level, i.e. in the ESb.vhd file, sinceit is the level when the PRN code becomes available).



Chapter 4

Recommendations and Future Work

In this last chapter some recommendations and some guidelines about things which need to be
improved and/or introduced as new elementsin the model will be given.

4.1 Matlab Model

The Matlab model is completely functional, but it could be improved if one followed the next
recommendations:

- Veify the (negative) delay introduced in the filtered signal in order to make it match the ideal
one (for graphical representation purposes). Apart from the FIR filter, the other delays have
been deducted from experience rather than from theory. This is important in order to obtain a
valid signal constellation plots (and also in synchronization issues in a future Matlab Galileo
Receiver).

- Even if the data modulated on the different signals is not of importance, it will be if we want
to feed the signal to a receiver (since it will check the frames, sub-frames, etc in order to
synchronize to the system). Thus the addition of these issues, plus a CRC (to check bit errors)
becomes important only in alater stage.

- Also because of synchronization issues (but now in a physical chip level), introduce a random
delay in the generated PRN code, since the code will not generally reach the receiver starting
with chip #1.

- Use more complex channel models. Thisimplies the coding of new multipath models not only
consisting on areflected ray (use the multipath models proposed by the University of Vigo).

- Introduce interference (Wide Band and Narrow Band).

- In the present model, the file data_ouput.txt is only used to extract the doppler information
associated with the selected satellite. However, as seen in Section 2.13, the file contains some
more useful data. For instance, the pseudorange could be used to adjust the received power
depending on the satellite’s distance to the receiver; the elevation could be use in conjunction
with the multipath model so that more multipath would be added for low elevation satellites.

- Introduce pulse compression/expansion due to doppler. Indeed, since the dynamics of the pair
satellite-user introduce doppler, this means the carrier frequency will be increased or reduced
around the nominal value as seenin Figure 4.1.

- Add the possibility of generating more than one type of signa (channel) at a time. Also the
possibility of generating mixed GALILEO-GPS scenarios. This could be done “on-the-fly”,
meaning that the different signals would be generated in paralel, or off-line, that is, the
signals would be generated sequentially, saved in a file or matlab variable, and added a
posteriori.

- Findly create a GUI to ease the interaction of the user with the model.

Figure 4.1.- Pulse compression due to different carrier frequency because of Doppler effect.



4.2 VHDL Model

The VHDL model was completed aimost in its totality. The debugging of the code was started using
Synplify Pro 7.1 and although all errors were corrected, there still remained several warnings. Most of
these warnings are due an inferred latch due to a missing signal assignment and/or to the lack of signal
in the sengitivity list of some functions. Hence the first thing one should try to achieve is to get rid of
these warnings.

Once the code is completely synthesizeable (there are no warnings left), the last step will be
left, which consists on programming an FPGA mounted on an evaluation board.

After that the output signals should be verified in the lab and check that the output match the
expected type of signal. For that the use of a digital oscilloscope and a spectrum analyser
might be needed.

After solving al possible problems, the model can be enhanced adding a series of new
elementsin order to obtain a more complete and realistic signal.

This elements should include a noise and a multipath generator. For the former, a PRN
generator set to generate a code with arate higher than that of the signal (for instance 10 times
higher) could be used. See Figure 4.2. The addition of multipath is less tricky since it only
implies to duplicate the generated signal, scale it and delay it. The addition of noise and/or a
multipath signal implies that the 12 bit coding might have to be revised since the dynamic
range will be now somewhat higher.
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Figure 4.2.- Addition of digital white noise.
Addition of several signals at the same time. This, asin the case of adding multipath implies a

redefinition of the distribution of the 12 bits used to convert the signal from digital to analog
(there will be needed at least 1 bit more to represent the integer part of the number).



ANNEX A
Computation of CASM

Let us have three signals which, according to notation used in [5] are modulated in a single carrier as
specified in Equation A.1:

(t)=4/2P, [&;(t)cos( w,t + M@, ) — /2P, [&,(t)sin( w,t + m@y) (A1)
where @4(t) isafunction of e;, & and e;. Also, since @, belongsto {-1,+1}, then,

cos( md?s):cos( m)
sin(md?s):cpssin(m)
thus, we can rewrite A.1 like:
s(t):sI (t)cos(aot)—sQ sin(a.ot):
[ 2P, [k (t)cos(m) - [2P, L&, (1)@ (t)sin( m)]cos( W,t) - (A2)
[/2P2 [ez(t)cos( m) + /2P2 Eel(t)tps(t)sjn( m)]sin( a)ot)

This can be seen as the combination of 4 signals:
() =[ug (1) = u,(t)]cos(wyt) ~[ug(t) +u,(t)|sin(e,t) (A.3)

@4t) istaken to be,
@(1) =e(1) [e5(t)

Then making the following assignments e; = Sz (L1-B), & = S, (L1-A) and e = S (L1-C), which
corresponds to option 2 (see Table 2.6 in [5]) and taking into account the power distribution of the L1
signals, it turns that Po=P/2, Ps=P-=P4/2. Then separating the in-phase and quadrature components and
substituting, we obtain:

5, (1)=,/25P &B(t)\g ,/29PEeA(t)eA(t)ec(t)ﬁ

(A.49)
%Jﬁ{ﬁes(t)\/g—ztec(t)%}:zg[es(t)-ec(t)]
4 2 2 1
so(t)=,[2=P EEA(t)\/:— 2P leg(t)e,(t)ec (t)—==
V%9 3 V9 V3 (A.4b)
@{%GA“)_eA(t)eB(t)ec(t)\/%}:§[2EEA(t)_eA(t)eB(t)eC(t)]

So, grouping the two components we obtain the final transmitted signal:

24/2P (A.5)

s(t)= 3j§'° [(ea(t) - ec (1)) - j(2TBalt) - en(t)es (t)ec (t))]
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	This block groups all the blocks used to compute the Alternative BOC modulation. It uses the E5a_I, E5a_Q, E5b_I and E5b_Q, plus two DataMain blocks (which generate the data modulated on the in-phase channels). Besides it includes 4 BOC sub-blocks which
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	Functionality
	It is formed by two different blocks: a E5a_I_PRNmain which provides the Gold code, and a E5a_I_TieredCode which modulates that Gold code with a Lidner code.



	Figure 3.4.- High level scheme of Ea5_I.vhd
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	The same way as the basic block PRNmain14 (see 3.2.32), it has the function of generating a Gold code. However, unlike that former block, it includes one more input (offsetI, whose value is now set by upper level blocks) and output (ChipOut, which marks
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	3.2.12 E5a_I_TieredCode.vhd
	
	
	Functionality
	It performs the XOR of a stored Lidner code of length 20, with a Gold code. The block will start functioning when marker is set to ‘1’ (that is, when the first chip of the Gold code is available).
	The variables q_var and p_var are created as auxiliary forms of q and p. The constant limit of 10230 (for p_var) is the length of the Gold code (it should not change, since it was set this way for E5a). For q_var it is obviously 20 since it is the length
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	It is equivalent to the block E5b_I.vhd, and it can be explained the same why just changing a by b in any variable. However it lacks a marker output. This marker has the purpose of synchronizing the modulation of the data bits on the PRN code. Since no d
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	This block generates a Tired code from the combination of a Lidner code (length 4 chips) and a truncated Gold code. It is equivalent to the block E5a_I_TieredCode.vhd, and it can be explained the same why just changing a by b in any variable.



	3.2.20 E5b_Q.vhd
	
	
	It is equivalent to the block E5b_I.vhd, and it can be explained the same why just changing a by b in any variable. However it lacks a marker output. This marker has the purpose of synchronizing the modulation of the data bits on the PRN code. Since no d



	3.2.21 E5b_Q_PRNmain.vhd
	
	
	It is equivalent to the block E5a_I_PRNmain.vhd, and it can be explained the same why just changing a by b in any variable.
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	This block generates a Tired code from the combination of a Lidner code (length 100 chips) and a truncated Gold code. It is equivalent to the block E5a_I_TieredCode.vhd, and it can be explained the same why just changing a by b in any variable.
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	Ports
	IN:

	L1_A_12b: 12 bit coded L1-A signal.
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	Functionality
	This block groups all necessary sub-blocks in order to generate the L1-B signal (PRNmain13, DataMain, BOC_L and std_to_12bit). The code rate, type of generated code (via the offset), and BOC frequency are defined here.
	Ports
	IN:




	3.2.26 L1_C.vhd
	
	
	Functionality
	This block groups all necessary sub-blocks in order to generate the L1-C signal (L1_C_PRNmain, L1_C_TieredCode, BOC_L and std_to_12bit). The BOC frequency is defined here. The parameters concerning the Gold code are set in the L1_C_PRNmain block.
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	Functionality
	It generates a Multiphase Interplexed signal used to multiplex the three signals on L1 (A,B and C) onto a single carrier. The result are two 12 bit vectors containing the coded version of the complex base-band signal. It groups all the necessary blocks t
	Ports
	IN:




	3.2.29 PRNgenerator13.vhd
	
	
	
	Functionality
	It generates a ML sequence of length CodeLength, at a CodeRate chips/s and using a 13 cell LFSR. To generate a Gold code, two PRNgenerator13 blocks are needed. They are interconnected so that one starts generating the ML sequence starting with LFSR1 init
	Ports
	IN:
	connexions: vector containing the cells of the LFSR which contribute to the feedback. Changing this vector will change the generated sequence.
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	It generates a ML sequence using a 14 register LFSR. It is similar to PRNgenerator13, with the difference of having one more output, ChipOut. This signal marks the chip boundary, and in the beginning it was used to synchronize the XOR addition of the Gol
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	Functionality
	It is the block that generates a Gold code from two ML sequences offset by offset chips. The sequences will be different and depend upon the value of the connexions vector (connexion1 and connexion2).
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	Functionality
	Basically it does the same as the former PRNmain13, but using two PRNgenerator14 blocks.
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	It converts a std_logic type to a 12 bit coded version. The criteria was to assign –1 to the logic level “1” and +1 to the logic level “0”.
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	Functionality
	The same way as the MI.vhd, it generates a signal which is the multiplex of the three signals on L1 (A,B and C). The present block, however, it performs the Tricode Hexaphase Modulation. The result are two 12 bit vectors containing the coded version of t
	The process Compute_THM, executes the operations to modulate the signals (in this case, very simple as it can be easily depicted).
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