

a

 ESTEC
European Space Research and Technology Centre - Keplerlaan 1 - 2201 AZ Noordwijk - The Netherlands
Tel. (31) 71 5656565 - Fax (31) 71 5656040 www.esa.int

FFT_FT_Preyes

D O C U M E N T

document title/ titre du document

YSTEM NOWLEDGE ASED
ROTECTION ECHNIQUES
GAINST S CAUSED BY

SPACE RADIATION FOR AST
OURIER RANSFORMS

prepared by/préparé par

reference/réference
issue/édition
revision/révision
date of issue/date d’édition
status/état
Document type/type de document
Distribution/distribution

 Esa Standard document
issue revision -

2page ii of ii

s

A P P R O V A L

Title
Titre

System Knowledge Based Protection Techniques Against SEE caused
by radiation effects for Fast Fourier Transforms

issue
issue

 revision
revision

author
auteur

María del Pilar Reyes Moreno date
date

approved by
approuvé par

 date
date

C H A N G E L O G

 reason for change /raison du changement issue/issue revision/revision date/date

C H A N G E R E C O R D

Issue: Revision:

 reason for change/raison du changement page(s)/page(s) paragraph(s)/paragraph(s)

 Esa Standard document
issue revision -

3page iii of iii

s

T A B L E O F C O N T E N T S

1 SCOPE ...1

2 TERMS AND ACRONYMS..1

3 INTRODUCTION..2

4 DFT: BASICS, PROPERTIES AND IMPLEMENTATIONS3
4.1 DFT hardware implementations...4
4.2 DFT properties ...5

5 RELATED WORK ..6
5.1 Use of the FFT structure or properties to detect/correct faults ..6
5.2 Use of the DFT properties to detect/correct faults ...9

6 PROPOSED FAULT TOLERANT FFT IMPLEMENTATIONS............................12
6.1 Fault tolerant FFTs based on checksums ...12

6.1.1 Checksum- based Fault tolerant FFT ...13
6.1.1.1 General Description ...13
6.1.1.2 Conclusions and restrictions ..16

6.1.2 Checksum- based Fault tolerant FFT enhanced ...17
6.1.2.1 General Description ...17
6.1.2.2 Conclusions and restrictions ..19

6.2 Fault tolerant FFTs combining time and space redundancy ..20
6.2.1 Fault tolerant fft based on recalculation...20

6.2.1.1 General Description ...20

7 CASE STUDY ..23
7.1 Original FFT design ...23
7.2 Modified FFT design to be protected with the fault tolerant techniques ...24

8 RESULTS. FAULT COVERAGE AND EXTRA AREA COST25
8.1 Fault coverage ..25

8.1.1 Fault coverage of Checksum Based Fault Tolerant FFT techniques26
8.1.2 Fault coverage of the protection techniques based on time and space redundancy34

8.2 Area cost ..35

9 CONCLUSSIONS AND FUTURE WORK ...40

 Esa Standard document
issue revision -

4page iv of iv

s
10 REFERENCES...42

APPENDIX A FFT RADIX-2 DECIMATION IN TIME ...46

 Esa Standard document
issue revision -

page 1 of 47

e

1 SCOPE
The scope of this document is to present some protection techniques against Single Event Effects

(SEEs) based on the System Knowledge for one specific type of Digital Signal Processing (DSP)
circuits as Fast Fourier Transform. These error mitigation techniques show a different way to
protect digital designs with respect to the traditional systematic soft error mitigation mechanisms as
TMR, FTMR or EDAC Codes. However, as it could be extracted from the rest of the document no
optimal fault tolerant FFT implementations (in area cost terms) have been found due to the
extremely regular and symmetric structure of the FFT.

2 TERMS AND ACRONYMS
SEE-Single Event Effects
SET-Single Event Transients
SEU-Single Event Upsets
TMR- Triple Modular Redundancy
FTMR- Functional Triple Modular Redundancy
EDAC- Error Detection and Correction Codes
ECC-Error Correction Codes
MBU- Multiple Bit Upset
FTU-FT-Unshades
DSP- Digital Signal Processing
DIT- Decimated in time
DIF- Decimated in frequency
ABFT-Algorithm Based Fault Tolerant
CED- Concurrent Error Detection

 Esa Standard document
issue revision -

page 2 of 47

e

3 INTRODUCTION

The effects of radiation on microelectronic circuits have a number of consequences that impact

the design of devices that operate in certain environments [ShFl04]. One type of these effects are
Single Event Effects (SEEs), which cause changes in the values of flips-flops or combinational logic
[DoMa03]. In order to mitigate the effects of SEEs, a number of techniques can be used at the
physical level (device size and structure) [BaBM00]. In addition to those techniques, redundancy can
be introduced in the design so that it can detect and correct SEEs, the proposed protection techniques
exposed in this document are in this category. Single Event Effects (SEEs) can be classified in
Single Event Upsets (SEUs) and Single Event Transients (SETs), depending on whether the change
in the digital value occurs in a permanent storage element or in a combinational element. Single
Event Transients (SETs) would only result in a persistent error if they propagate to the input of a
storage element and they meet the setup and hold constraints there [DoSS04].

To deal with SEUs, a common hardware or space redundancy approach is Triple Modular

Redundancy (TMR), which triplicates the flip-flops in the design and adds logic to vote in case of
conflict. If it is necessary to deal with SETs, Functional Triple Modular Redundancy (FTMR), which
also triplicates the combinational logic, can be used [Hanb02].

One advantage of both TMR and FTMR is that they are general techniques that can be applied to

most digital circuits. However, this comes at a high cost in terms of circuit area and power and more
so for FTMR. As they can be applied to any digital design, they can be used to protect Digital Signal
Processing circuits against SEEs, as filters and Fast Fourier Transforms (FFT) designs, the kind of
circuits on which this work is focused, but, as it has just been mentioned, the use of TMR or FTMR
will incur in an expensive extra area overhead. Another possible solution to deal with SEEs on
electronic devices could be using the System Knowledge concept, that consists in employing some
structural or computational characteristics of the circuit under protection to obtain a fault tolerant
implementation with lower extra area overhead than some of the common error mitigation
techniques used in space applications as, for example, FTMR, XTMR. Therefore, in this document
the analysis of different error mitigation techniques based on the concept of System Knowledge and
applied to protect in place FFT radix-2 implementations against non destructive effects caused by
radiation in space environments, as SEEs, will be performed. A comparison of these techniques with
the FTMR protection in terms of area cost and fault coverage is also carried out.

As it will be seen in the rest of the document, it is difficult to obtain an optimal fault tolerant FFT
implementation (in terms of area cost) although the System Knowledge concept is used, because of
the low redundancy of the Discrete Fourier Transform (DFT) computation by mean of the FFT and
its regularity or symmetry, which has a good computational efficiency thanks to this redundancy
elimination. However, the solutions proposed here can be used as an alternative to FTMR in some
applications (those that satisfy the requirements specified for each proposed error mitigation
technique). Besides, it has been proved that the System Knowledge it is a good methodology that can

 Esa Standard document
issue revision -

page 3 of 47

e
be used to protect efficiently other kind of DSP applications, as FIR, adaptive filters or
communication system interleavers [RRMR07a], [RRMR07b], [RRMR07c], [RRMR06], and
[RRMR08]. It could be also used to protect other type of DFT implementations, as the sliding DFT.
As it will be extract from Related Work (section 5) finding a good FT-FFT design with low extra
area overhead continues being an open problem.

In the rest of the document a brief introduction related to the DFT/FFT computation process and
its main properties will be introduced (because the proposed protection techniques are based on the
System Knowledge concept and the designer needs to know some characteristics about the device
under protection). Next, some related work with other fault tolerant FFT implementations is shown
in order to justify the work carried out, followed by the presentation of the error mitigation
techniques proposed in this document, for an specific type of FFT circuits. Then, fault tolerance and
area cost results are illustrated and compared with the obtained when protecting with FTMR, using a
simple case study. The fault coverage analysis is accomplished by mean of using two different fault
injection tools (FT-UNSHADES and SST tool). Finally, the main conclusions of this work and some
proposals for the future will be presented in section 9.

4 DFT: BASICS, PROPERTIES AND IMPLEMENTATIONS

As the proposed fault tolerant techniques for FFT circuits are based on the System Knowledge
concept, we need to know the basics of the DFT transforms, its properties and the most common
implementations in order to understand the content of the rest of the document.

The time and frequency domains are alternate ways of representing signals. The Fourier

Transform is the mathematical relationship between these two representations. Therefore, the
Discrete Fourier Transform is the mathematical procedure used to determine the harmonic
(frequency) content of a discrete signal sequence.

The DFT pair is defined in equations (1) and (2)

1,...2,1,0][][
1

0
−=⋅= ∑

−

=
NkWnxkX

N

n

kn
N (1)

1,...1,0][1][
1

0
−=⋅⋅= ∑

−

=

− NnWkX
N

nx
N

k

kn
N (2)

kn
N

jkn
N eW

π2
−

= (3)

where k
NW are the twiddle factors (complex exponential), x[n] is the time domain signal and X[k]

the frequency domain representation, in this definition both x[n] and X[k] are assumed to be
complex [OpSh75].

 Esa Standard document
issue revision -

page 4 of 47

e
4.1 DFT hardware implementations

The DFT transform has a lot of hardware implementations, some of the most common ones are
the Decimation in Time (DIT) and Decimation in Frequency (DIF) Fast Fourier Transforms (FFT).
These implementations are based on a simple butterfly module and on a pipeline mode operation,
and they need all input samples available to start the FFT computation. In the case of radix-2 FFT,
each butterfly module compute two DFT output sequences. Therefore, for an N-point DFT
calculation we will need N/2 2-point butterflies and log2(N) pipeline stages. Figures 1 and 2 illustrate
the 8-point FFT radix-2 DIT and DIF implementations (see Appendix A for an explanation of how
the FFT computes the DFT, for the case of a DIT implementation). In order to have a good
performance of the FFT, the value of N must be a power of two.

0
NW

0
NW

0
NW

0
NW

2
NW

0
NW

0
NW

2
NW

0
NW

1
NW

2
NW

3
NW

-

-

-

-

-

-

-

-

-

-

-

-

x(0)

x(1)

x(2)

x(7)

x(4)

x(5)

x(6)

x(3)

X(4)

X(2)

X(7)

X(1)

X(5)

X(3)

X(6)

X(0)

Figure 1. 8-point FFT Decimated in Time radix-2 implementation.

0
NW

0
NW

0
NW

0
NW

2
NW

0
NW

0
NW

2
NW

0
NW

1
NW

2
NW

3
NW

-

-

-

-

-

-

-

-

-

-

-

-

x(0)

x(4)

x(2)

x(7)

x(1)

x(5)

x(3)

x(6)

X(1)

X(2)

X(7)

X(4)

X(5)

X(6)

X(3)

X(0)

Figure 2. 8-point FFT Decimated in Frequency radix-2 implementation.

The implementations shown in figures 1 and 2 are only two examples of the multiple FFT forms.

And the FFT is one of the most computationally efficient implementation of the DFT.

 Esa Standard document
issue revision -

page 5 of 47

e
But, for applications whose throughput does not need to be very high, other DFT implementations

can be used, as direct calculation using equations (1) and (2), Goertzel algorithm which is based on a
recursive filter implementation or the Sliding DFT. Goertzel filter has lower area cost than the direct
calculation and it computes a single complex DFT spectral bin value for every N input time samples
(equation (4) represents the z-domain transfer function of Goertzel filter). Another possible
interesting implementation could be the sliding DFT whose bin output rate is equal to the input data
rate, on a sample by sample basis, with the advantage that it requires fewer computations than
Goertzel algorithms for real time analysis [JaLy03].

21

1
2

)2cos(21

1)(
−−

−−

+−

−
=

zz
N

k
zezH

N
kj

G π

π

 (4)

The mentioned implementations are only examples of the multiple variations of the DFT

hardware solutions.

4.2 DFT properties

In this section some of the most useful (for our purpose) DFT properties are exposed.

A. Linearity of the Fourier Transform

The Fourier Transform is linear, that is, it possesses the properties of homogeneity and additivity.
Homogeneity means that a change in amplitude in one domain produces an identical change in
amplitude in the other domain. In a mathematical form the linearity property can be expressed as
follows:

][2][1][3
][2][1][3
nXbnXanX

nxbnxanx
⋅+⋅=

⋅+⋅= (5)

B. Symmetry and periodicity properties of the twiddle factors

As twiddle factors are complex exponentials they have some properties that have been used, for
example, to reduce the computational complexity of implementing the DFT by means of the FFT.

Periodicity property:
k

N
Nk

N WW =+ (6)

 Esa Standard document
issue revision -

page 6 of 47

e

Symmetry property is mathematically represented by equation (7).

k
N

N
k

N WW −=
+

2 (7)

C. Parseval’s relation

Parseval’s relation represents the energy conservation theorem what means that the energy of the
input signal must be equal to the energy of the output signal.

∑ ∑
−

=

−

=

=
1

0

1

0

22][1][
N

i

N

k
kX

N
ix (8)

5 RELATED WORK

In critical missions, as the space ones, some levels of fault tolerance must be integrated to ensure
that the results of a digital circuit in general and one FFT design in particular are valid.

The main points to optimize when designing a fault tolerant FFT circuit are:

• The degradation of the original performance should be minimal.
• Minimal error detection latency.
• The hardware overhead should be minimal.
• The detection schemes need to be able to cover small magnitude errors.

In this section we review the previous work related with some of the most interesting fault

tolerant FFT implementations, most of them use a similar approach to the System Knowledge one to
perform their protection. The presented techniques include error detection and/or error location and
correction mechanisms.

5.1 Use of the FFT structure or properties to detect/correct faults
If we try to eliminate the SEE when it occurs we need to protect each FFT butterfly module. One

idea, proposed by Lombardi et al. in [LoMu92], consists in using some interesting properties of the
butterfly (see the basic operation of a butterfly module in figure 3) to include a fault detection
mechanism as it is illustrated in the following equations.

 Esa Standard document
issue revision -

page 7 of 47

e

k
NW

][0 kx

][1 kx

][kX

]
2

[NkX +
−

Figure 3. Radix-2 butterfly operation.

From figure 3 the next equations can be set

)()()2/(

)()()(

10

10

kxWkxNkX

kxWkxkX
k

N

k
N

⋅−=+

⋅+=
 (9)

Therefore,

)(2)2/()(0 kxNkXkX ⋅=++ (10)

If)(kx are complex signals, then:

jBAkx +=)(0 (11)
jDCkx +=)(1 (12)

)sincos()](Re[αα DCAkX ++= (13)
)sincos()]2/(Re[αα DCANkX +−=+ (14)

)sincos()](Im[αα CDBkX −+= (15)
)cossin()]2/(Im[αα DCBNkX +−−=+ (16)

BNkXkX
ANkXkX

2)]2/(Im[)](Im[
2)]2/(Re[)](Re[

=++
=++

 (17)

Therefore, the sum of the real parts of the butterfly outputs is equal to the double of the real part

of the upper input signal to the butterfly, a similar result is observed for the imaginary parts. This
operation can be used to check errors in the adders. However, it does not detect errors in multipliers,
so extra logic must be introduced to perform the error detection mechanism in these modules. This
technique has a high extra area overhead (each butterfly is 50% bigger than the non protected
version). Besides, it only detects faults but not locate them directly and extra delay and logic for fault
location and FFT reconfiguration purposes should be added. However, it can detect any single fault
in a component block per module (butterfly) in comparison with other techniques that only detect
single faults during the complete FFT computation. The extra area overhead ratio for this error
detection technique is approximately NNNN 22 log2/log ⋅⋅⋅ . Figure 4 illustrates the fault tolerant
mechanism proposed by Lombardi et al. [LoMu92].

 Esa Standard document
issue revision -

page 8 of 47

e

+

−

+

−

+
−

+
−

βcos

βcos−

βsin−

βsin−

]}[Re{ 0 kx

]}[Im{ 0 kx

]}[Re{ 1 kx

]}[Im{ 1 kx

CA

CB

CM

]}[Re{ kX

]}[Im{ kX

]}
2

[Re{ NkX +

]}
2

[Im{ NkX +

1/2
A

]}
2

[Re{

]}[Re{
NkX

kX

+
Ea

CA

1/2
B

]}
2

[Im{

]}[Im{
NkX

kX

+

Eb

CB

Mds
Mcc

CM

Mdc
Mds

Em

Figure 4. FFT module with concurrent error detection [LoMu92].

Other fault tolerant FFT implementations based on the butterfly architecture and several designs
for easy testability have been also proposed and analyzed in several works [LLHW00], [FeML93],
[AnSa91], [LuWK93], [WuCh93], [LuSH05].

 Esa Standard document
issue revision -

page 9 of 47

e
5.2 Use of the DFT properties to detect/correct faults

In [JoAb88] Jou et al. propose an Algorithm Based Fault Tolerant implementation (ABFT) as
Concurrent Error Detection (CED) mechanism (the ABFT solution comprises one encoder, one
decoder and a TSC (Totally Self Checking) Comparator). They also introduce a fault location and
correction by retry mechanism. Therefore, their fault tolerant implementation combines space
redundancy for fault detection and time redundancy for fault location and correction. The CED
algorithm proposed in [JoAb88] consists in using the linearity and rotation properties of the DFT to
perform a checksum scheme that detects almost all possible single functional errors in the FFT
circuit. Equation (18) illustrates the checksum used to detect errors in the FFT operation.

)(11 bxaxAbXaX N +=+ (18)

Where a and b are scalars, X and X1 are the transformed values of x and x1, and the upper index 1

indicates that x1 is the one step rotated version of x, AN represents the twiddle factors matrix. (They
select the values 2 and 1 for a, b scalars, respectively). Considering some simplifications they
conclude that their proposed error detection mechanism has a low area overhead ratio with respect to
the non protected FFT version, approximately 2/log2(N), and one delay overhead ratio of 1 more
stage or cycle. They also propose a fault location and correction (data retry, reconfiguration)
mechanism that incurs in a maximal error latency of logN/3. The proposed scheme is shown in
figure 5. The disadvantage of this scheme is that different encoding schemes are needed for one-
dimensional and two dimensional FFT's, and that the encoding/decoding mechanism are in serial
with the FFT computation. Therefore, the FFT results and the encoder/decoder ones will have a high
round off error and the fault coverage of this system will be influenced by this situation.

8-points
 FFT

2x(0)+x(1)

2x(1)+x(2)

2x(2)+x(3)

2x(3)+x(4)

2x(4)+x(5)

2x(5)+x(6)

2x(6)+x(7)

2x(7)+x(0)

0

4

2

6

1

5

3

7

k

Decoding multiplier

)2/(k
NWA −+A

∑

x(0))
8

TSC

Comparator

Error Indicator

Figure 5. CED scheme proposed for FFT designs in [JoAb88]

 Esa Standard document
issue revision -

page 10 of 47

e

Other ABFT fault tolerant FFT implementation was proposed in [WaJh94] by Wang et al., where
the authors present a solution with a fault coverage near to 100% over the complete FFT
computation process. They propose to use encoding and decoding schemes that weight all outputs
that can be affected by the same error with different values, so that the final addition is erroneous in
case of fault in any stage of the FFT computation. Due to the regularity and symmetry of the FFT
computation, if one fault affects different final outputs, these erroneous signals have the same error
magnitude but with alternate sign and their total addition could not detect some errors. Using the
notation presented in the following expressions (for a single dimension FFT) equations (20) and (21)
illustrate the proposed ABFT Concurrent Error Detection scheme by Wang et al.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

⋅

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

− −−−

−

)1(
...

)1(
)0(

...
............

...

)1(
...

)1(
)0(

)1)(1()1(0

110

0000

Nx

x
x

WWW

WWW
WWWW

NX

X
X

NNN

N

 (19)

T

s

N
T

T
N

T

x
w
F

NX
X

xFX

r
r

r

rr

∗⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

∗=

)(

 (20)

T
wNws

q
jqN

w

XrNXFrw

eWwhereWWWr
rrrr

r

∗=∗=

==
−−

)(

),...,,(3
2

3
1

3
1

3
0

3

π

 (21)

The input encoder generates the input weighted checksum and the output decoder generates the
output weighted checksum, both of them are equal in a fault free environment, so in a fault-free
scenario equation (21) will be true. In the input side N complex multipliers are need for the encoding
process and in the output side only two complex multipliers will be needed.

In [OhY094] and [OhY095] different CED schemes (including fault correction) are presented,

based on ABFT solutions. They select distinct linear weight factors to minimize the possibility of
masking when an error occurs. Notice, as it has been commented before, that the FFT circuit is
regular and symmetrical. Therefore, an error in the DFT computation can most likely produce an
output checksum different from an input checksum when each input data is assigned a different
weight equally distributed between 0 and 1, while the computation occurs through the balanced
symmetric FFT design. The authors assure that a high error coverage with low false alarm rate is
obtained by applying the linear weight factors to the checksum.

 Esa Standard document
issue revision -

page 11 of 47

e

8-points
 FFT

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

TSC

Comparator

X(0)

X(4)

X(2)

X(6)

X(1)

X(5)

X(3)

X(7)

ws(0)

ws(1)

ws(2)

ws(3)

ws(4)

ws(5)

ws(6)

ws(7)

∑

∑ ∑ ∑

1
3W 2

3W

∑

Figure 6.The weighted checksum CED scheme for an 8-point FFT [WaJh94]

Other ABFT systems have been presented in [TaHa93] and in [CiJG07], in this last reference the

author propose a solution to detect and correct faults in software FFT implementations used in space
applications, the authors present one of the experiments in the Space Technology 8 mission of
NASA’s New Milennium Program.

Another CED scheme that uses some of the properties of the computation algorithm implemented
by the DFT, as Parseval’s Theorem is proposed in [ReBa90], see equation (8), this kind of
checksum, referred as SOS (Sum of Squares) is valid for both one-dimensional and two-dimensional
FFTs. In this case, the ratio area overhead needed to implement this error detection scheme is 3N real
multipliers and at most 3N real adders, where N is the number of input samples to the FFT circuit.
The butterfly operation on complex numbers involves four multiplications and six additions of real
numbers. Hence, the hardware overhead is O(N/N·log2N), or O(1/log2N). The throughput of the
system is not affected by the error checking hardware since the pipelining delay is limited by the
complex butterfly operation rather than the real multiplications involved in the error checking
hardware. The sum of squares of the elements may be large in magnitude and would require a word
length larger than that used for FFT computation.

In [ChMa88] Choi et al. propose a method to achieve fault tolerance by introducing a redundant

stage for an FFT design. In this proposal, a Concurrent Error Detection mechanism called
recomputing by alternate path detects errors during normal operation. Because it is based on
recalculation, this scheme requires a time overhead of 100% and hence it greatly reduces the system
throughput.

 Esa Standard document
issue revision -

page 12 of 47

e

6 PROPOSED FAULT TOLERANT FFT IMPLEMENTATIONS

In this section a number of fault tolerant FFT implementations to deal with SEUs and SETs based

on the System Knowledge concept will be proposed and analyzed in order to compare them with the
FTMR protected version of the same in place-DIT FFT design.

The fault tolerant implementations can be classified in two categories: those which are for a

specific number of points N of the FFT, and those which are independent of N.

The protection techniques proposed here are presented for in place DIT FFT implementations

(high-throughput) that means that the memory used for the input signals is reused to store the
intermediate and final results of the FFT computation. Therefore, input, output data and intermediate
FFT results are written in the same memory [OpSh75], [Lyon01]. However, these fault tolerant
techniques can be extrapolated to other kinds of FFT implementations with minimal changes.

Consider one small (N reduced) in place FFT implementation where input data directly used by

the FFT core is written one by cycle and the FFT computation is carried out using a pipelined mode
operation. In this situation, if sum of the memory write operation time plus the FFT computation one
is smaller than the minimal time interval between consecutive SEEs we can use the implementations
referred as Checksum-based Fault tolerant FFT and Checksum-based Fault tolerant FFT enhanced
commented in section 6.1.

 For large FFTs (and in general for N points FFTs, N not limited to any constraint), different

schemes based on a combination of space and time redundancy are presented in section 6.2.

It must be noted that we have assumed the module level fault model in this work. This model

includes all possible functional errors that can occur in a butterfly, errors in the inputs, outputs,
adders and multipliers. When a fault appears in a butterfly, the resulting error can be modelled as an
additive error at one of the input or one or two (errors in multipliers) of the outputs ports of the
module. [JoAb88].

6.1 Fault tolerant FFTs based on checksums

Taking into account the previous consideration related with the time interval between consecutive

erroneous bit flips in the design. We can consider the possibility of performing (in parallel to the
memory write operation) the calculation of some checksums that we will need to decide if the FFT
results are correct. This mechanism will be used as correction and fault masking logic, using as CED
mechanism a duplicate version of the FFT circuit.

 Esa Standard document
issue revision -

page 13 of 47

e
These techniques are based on the System Knowledge concept because they use some

properties/characteristics of the DFT computation to carry out the error mitigation. Also, they follow
a similar protection mechanism to the used in the ABFT solutions commented on Related Work
(section 5) in the sense that some checksums are computed to detect/locate any possible bit flip in
the butterfly module (in multipliers, adders, registers). Therefore, as these SEE detection and
correction mechanisms are based on the comparison of values that are calculated by distinct ways,
the checksums on one hand and the normal FFT computation results on the other hand, these values
will have different precision errors due to the quantization and round off or truncation and these
differences should be taken into account to analyze the real fault coverage of these fault tolerant
implementations.

There are several ways to accomplish the fault coverage analysis of these types of fault tolerant
techniques, by means of analytical expressions or through exhaustive fault injection campaigns. In
this document, an exhaustive set of fault injection campaigns has been performed on the proposed
fault tolerant protection techniques based on checksums and the main results are exposed in section
8.1.

6.1.1 CHECKSUM- BASED FAULT TOLERANT FFT

The error mitigation technique presented in this section will be referred as Checksum-based fault

tolerant FFT.

6.1.1.1 General Description

If we consider an in-place FFT with a reduced value of N, (in our case, memory write operation
and FFT computation times must be lower than the time interval between consecutive SEEs or bit-
flips to assure a good fault tolerant effectiveness) we can use the fault tolerant implementation
shown in figure 7 for an 8-point FFT. In this figure three main modules are shown:

• Two FFT parallel cores are used to detect any possible bit flip on the FFT computation.
• A checksum module that represents the combinational and sequential logic used to

compute some simple checksums from the input signals of the FFT that are needed to
decide what FFT is the erroneous one and correct it, in case of SEE occurrence.

• A comparator that
o Compares the outputs of the two FFT cores and

 If no differences are found, the two FFT computations are assumed to be
correct and the output of one of them is selected to be connected to the
output interface of the design. Note that input data must be correctly
protected to guarantee that indeed the output is correct. For this specific
example, two in place parallel FFTs, the data processed by each FFT core
are stored in different storage cells but the problem of how input data are
written in these different storage structures correctly is assumed to be
resolved previously.

 Esa Standard document
issue revision -

page 14 of 47

e
 If differences are found, one error has occurred in one of the two FFT

computations. In this situation, the checksums previously calculated are
used to find which FFT core has not been impacted by the single event and
connect its results to the output interface of the device.

8-points
 FFT1

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

X(0)

X(4)

X(2)

X(6)

X(1)

X(5)

X(3)

X(7)

N/2 Checksums computation

8-points
 FFT2

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

X(0)

X(4)

X(2)

X(6)

X(1)

X(5)

X(3)

X(7)

Comparator

X(0)’
X(1)’
X(2)’
X(3)’

x(0)

Comparator Logic

if FFT1 outputs /= FFT2 outputs then
 compute the checksum: x(0)’=sum(X(i));
 compare checksums X(i)’ and x(0)’ with X(i) and x(0); --i=0...N/2-1
 if (the comparison is below the threshold value) then
 correct_FFT = FFT1;
 else
 correct_FFT = FFT2;
 end if;
else
 correct_FFT = FFT1; --default selection
End if

Correct_FFT

Figure 7. Checksum- based Fault tolerant FFT scheme for an 8-point FFT

The traditional CED mechanisms based on checksums (see section 5) to detect errors in FFTs,

compute two kind of checksums from the FFT inputs and outputs and compare them to detect the
maximal number of possible errors in any butterfly module. These checksums are computed using
extra multipliers, adders and additional logic. The main difference with these CED schemes is that in
our proposal we compute the minimal number of Simple Concurrent Error Detection Checksums to
assure that the maximal number of possible errors in the butterfly model can be determined. Note
that we consider a maximal number of possible errors detected because, as we have just commented
before, even if a check is shown to detect all faults in the system in infinite precision, the

 Esa Standard document
issue revision -

page 15 of 47

e
performance of any algorithm-based check is essentially limited by the round off/truncation errors,
and due to finite-precision errors some hardware faults cannot be simply detected. Section 8.1
introduces a fault coverage analysis of the checksums based fault tolerant techniques by means of
exhaustive fault injection campaigns.

As Simple Concurrent Error Detection Checksum we understand the computation of one specific

DFT output, using any of the possible implementations, as direct calculation or Goertzel algorithm,
for example.

From the same property that is used to compute the DFT by mean of the FFT (DIT), the

symmetry of the twiddle factors (see equation (7)), we can infer that we need N/2 different Simple
Checksums to detect all possible errors in a FFT computation, with the exception of errors in one of
the outputs on the last step of the FFT computation, to detect these errors an extra Simple Checksum
will be needed (the computation of the value of the input sample x[0], in our case). Figure 8 shows
the number of twiddle factors that we need to compute 64-point (left image) and 8-point (right
image) FFTs, related to the minimum number of output signals of the FFT that we need to calculate
as Simple Concurrent Error Detection Checksums. Concretely, the first N/2 FFT outputs are
calculated using the twiddle factors shown in figure 8 in the last stage of the FFT computation (see
figure 1), and these outputs will be the ones that the Simple Concurrent Error Detection Checksums
should compute to detect all possible errors on the FFT calculation (except in last stage).

 0.5

 1

30

210

60

240

90

270

120

300

150

330

180 0

 0.5

 1

30

210

60

240

90

270

120

300

150

330

180 0

Twiddle Factors: Complex roots of unity

Figure 8. Twiddle factors needed to compute specific FFTs (64-point and 8-point FFTs)

The extra area overhead of the Checksum-based fault tolerant FFT consists of one extra FFT
parallel core, and one checksum module that needs N/2-2 complex multipliers (the twiddle factors
corresponding to 0 and 270 degrees do not need multipliers) and N/2 complex adders, some extra
registers are also needed to store the value of the Simple Checksums. Besides extra logic is also
needed to detect errors in the last stage of the FFT computation, this process is carried out by mean

 Esa Standard document
issue revision -

page 16 of 47

e
of an extra Simple Concurrent Error Detection Checksum, the sum of the FFT outputs (equal to x[0]
input). Equations (22) and (23) illustrate the Simple Checksums needed to detect all possible single
errors in an N-point FFT, using direct calculation.

12,...2,1,0][][
1

0
−=⋅= ∑

−

=

NkWnxkX
N

n

kn
N (22)

∑
−

=

⋅=
1

0
][1]0[

N

k
kX

N
x (23)

6.1.1.2 Conclusions and restrictions

Most of the ABFT solutions presented in Related Work (section 5) do not take into account the
possibility of errors in the checksum calculation used to detect or locate the error. In this technique
the checksums are not protected against SEEs either because with the assumption that only one SEE
(SEU or SET) can occur during the time needed to write the memory and compute the FFT (for N-
point FFTs with N low). In this scenario, if the error occurs in one of the checksums, the outputs of
the two FFT cores will be identical and the checksums will not be used to decide which is the correct
FFT.

To enhance the fault coverage of this technique, some extra logic can be included into the

comparator so that, when differences are found between the outputs of the two FFT cores, the
nearest value to the checksums is selected as the correct one, in place of using one threshold to
compare the checksum values with the outputs of one of the FFT cores. However the fault coverage
of this last solution will not be 100% in real applications limited by round off errors, as it has been
tested using the FTU hardware fault injection emulator.

Although several cases of multiple errors can be detected and corrected using this protection

technique (as for example several errors on the computation process of one of the two FFT cores) it
deals only with SEEs that cause single bit-flips. The protection against MBUs (or SEEs that generate
MBUs) or consecutive errors in a time interval lower than the specified before (time needed to write
the data and compute the FFT) is not considered. A similar situation applies to the FTMR protection,
but in this last case, one error can be tolerated each clock cycle.

Extrapolation of this fault tolerant technique to any type of other FFT implementation must

analyze some characteristics that are implementation dependent as for example, high or low
throughput FFT, if it is in place or not, if it uses intermediate buffers or FIFOs to compensate
different operation speeds…

However, the extra area overhead of this error mitigation technique based on checksums might be

lower than the area cost increment of the FFT protected version using FTMR (see section 8.2) in
most of the high-throughput implementations, but in any case, area overhead is

 Esa Standard document
issue revision -

page 17 of 47

e
architecture/implementation dependent and it should be analyzed for each specific case. One
possible exception for the error mitigation technique proposed here could be, for example, a low-
throughput FFT implementation with one single butterfly ‘running’ across the memory with all N
data points. In this situation, it might be less overhead to triple the butterfly instead of doubling it
and adding the checksum calculation (but it may be found a checksum based mechanism adjusted for
this type of implementations).

 Therefore, we could try to reduce the area cost of this protection method by means of using the

solution proposed in section 6.1.2.

6.1.2 CHECKSUM- BASED FAULT TOLERANT FFT ENHANCED

6.1.2.1 General Description

From figure 8 we can note that the complex twiddle factors are equally distributed over the unity

circle, therefore, we could think about reducing the number of multipliers combining the N/2
checksums that we need to detect all internal possible faults in the FFT computation two by two. In
order to decrease the number of multipliers (and the number of registers needed to store the
checksums), these combinations must be made between those FFT outputs which basic twiddle
factors have a certain relation.

The following equations show the new proposed scenario:

12,...2,1,0][][
1

0
−=⋅= ∑

−

=

NkWnxkX
N

n

kn
N (24)

∑∑
−

=

−

=

=⋅=
1

0

1

0
][][]0[

N

n

N

n

o
N nxWnxX (25)

∑
−

=

⋅=
1

0

1][]1[
N

n

n
NWnxX (26)

∑
−

=

⋅=
1

0

2][]2[
N

n

n
NWnxX (27)

 ...

∑∑∑
−

=

−

=

−
−

=

− ⋅−⋅=⋅⋅=⋅=⎥⎦
⎤

⎢⎣
⎡ −

1

0

*
1

0

)2(
1

0

)2()()1(][][][1
2

N

n

n
N

n
N

n

n
N

nN

N

N

n

nnN

N WnxWWnxWnxNX (28)

Therefore, we could combine the next expressions

∑∑
−

=

−

=

=⋅=
1

0

1

0
][][]0[

N

n

N

n

o
N nxWnxX (29)

 Esa Standard document
issue revision -

page 18 of 47

e

 ∑∑
−

=

−

=

⋅−=⋅=⎥⎦
⎤

⎢⎣
⎡ 1

0

1

0

)4(][)(][
4

N

n

n
N

n

nN

N nxjWnxNX (30)

 [] 1
4

,...,2,1)()1(][)(][
2

1

0

*
1

0
−=⋅−⋅+⋅=⎥⎦

⎤
⎢⎣
⎡ −+ ∑∑

−

=

−

=

NkWnxWnxkNXkX
N

n

kn
N

n
N

n

kn
N (31)

If ⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛==

−
kn

N
jsenkn

N
eW

kn
N

jkn
N

πππ 22cos
2

, then,

[]

1
4

,...,2,12][)1(2cos][)1(

2][2cos][
2

1

0

1

0

−=⎟
⎠
⎞

⎜
⎝
⎛⋅⋅−⋅+⎟

⎠
⎞

⎜
⎝
⎛⋅⋅−

+⎟
⎠
⎞

⎜
⎝
⎛⋅⋅−⎟

⎠
⎞

⎜
⎝
⎛⋅=⎥⎦

⎤
⎢⎣
⎡ −+

∑

∑
−

=

−

=

Nkkn
N

sennxjkn
N

nx

kn
N

sennxjkn
N

nxkNXkX

N

n

nn

N

n

ππ

ππ

 (32)

[]

1
4

,...,2,1

)1)1((2][))1(1(2cos][
2

1

0

−=

−−⋅⎟
⎠
⎞

⎜
⎝
⎛⋅⋅+−+⋅⎟

⎠
⎞

⎜
⎝
⎛⋅=⎥⎦

⎤
⎢⎣
⎡ −+ ∑

−

=

Nk

kn
N

sennxjkn
N

nxkNXkX n
N

n

n ππ

 (33)

 The benefit of these combinations is that the number of multipliers is reduced to N/4-2 and the
number of extra registers used to store the simple checksum values or their combinations is also
reduced to N/4 registers of a certain length (with a similar precision to the input samples).

But, when using this fault detection scheme based on simple checksum combinations, not all

errors in the butterfly module can be detected. For example, consider the case of an 8-point FFT and
one error in the multiplier of the second butterfly in the second stage of the computation (see figure
1). In this situation, the error will be propagated to the FFT outputs X [1], X [3], X [5] and X [7],
with alternate sign, that means that

[] []
[] []
[] []
[] [] eXX

eXX

eXX

eXX

−=

+=

−=

+=

77

55

33

11

'

'

'

'

 (34)

Where X[i]’ represents the erroneous output and X[i] is the non-erroneous value of the i-th

output, being e the error magnitude.

In this example, the simple checksums or/and combinations will be X [0], X [1] + X [3] and X[2]

(see equations 29, 30 and 31). Therefore, in the final comparison to detect errors the addition of the
FFT outputs X [1]’+ X [3]’ will be equal to the previously calculated checksum X [1] + X [3], so

 Esa Standard document
issue revision -

page 19 of 47

e
the error will not be covered with these type of checksum combinations. This problem could be
resolved by weighting the checksum addition with different values aX[k]+b*X[N/2-k], to continue
using the advantage of the multipliers reduction, we can consider the basic combination of
X[k]+2*X[N/2-k] (a=1 and b=2) that may be implemented without multipliers by means of shifting
operations. With this last modification, equation (31) will be changed by equation (35)1.

[] 1
4

,...,2,1)()1(][2)(][
2

2
1

0

*
1

0

−=⋅−⋅⋅+⋅=⎥⎦
⎤

⎢⎣
⎡ −⋅+ ∑∑

−

=

−

=

NkWnxWnxkNXkX
N

n

kn
N

n
N

n

kn
N (35)

6.1.2.2 Conclusions and restrictions

The ratio computational overhead (in comparison with the non protected FFT) of the commented
implementations will be 1 and 1/2 for the Checksum Based Fault Tolerant FFT technique and for the
enhancement using the checksum combinations, respectively (See area cost results in section 8.2. for
the specified case study 7). Also, the extra logic for comparisons, registers and adders is less than the
corresponding for the FTMR protection. However, when using the proposed solutions to accomplish
fault detection and correction (adding a duplicate version of the FFT computation module) they have
a very high extra area overhead although it may be still lower than for FTMR protection for high-
throughput implementations (but it is implementation dependent in a general sense, and this should
be analyzed for each specific design).

The proposed implementations assume also a minimal time interval between consecutive SEE to

assure a complete fault coverage, if for example one bit-flip occurs in one of the checksum
accumulators and then another SEE flips the value in one line of the FFT network the system will
not be able to decide correctly what is the FFT free of faults, in this sense we could try to protect the
checksums using some kind of parity (Hamming codes) or triplication (TMR) but as they are
proposed for small in place FFTs (reduced time to write the memory and compute the FFT,
approximately equivalent to the minimal time interval between consecutive SEEs), this
considerations has not been taken into account.

It should be noted that the maximal frequency operation of these error mitigation techniques, for

implementations whose outputs are available at the same cycle, is lower than the obtained for other
fault tolerant methods (as FTMR) because of the Simple Checksum used to compute the addition of
all FFT outputs at the end of the computation.

1 This fault tolerant implementation and the previous one (exposed in section 6.1.1) has been modelled and tested in matlab for

different random input streams, non-random inputs and considering all possible butterfly errors for infinite precision and they two
have full error coverage.

 Esa Standard document
issue revision -

page 20 of 47

e
If an extrapolation of these solutions to FFTs with large N is analyzed, the protection (for

example using TMR and Hamming) of the memory used to store the input data and the checksums
has to be considered. Besides, the word length of input, output and checksum data should be
increased to maintain the same precision on the FFT results. In this situation, the techniques will
allow one single error each FFT computation, that means that the minimal time interval between
consecutive faults could be reduce to the time needed to perform the FFT computation
(approximately), addressing, of course, a higher extra area cost. This technique (for large FFTs) has
not been implemented because it seems to have not any advantage with respect to the protected
implementation by means of FTMR.

6.2 Fault tolerant FFTs combining time and space redundancy

One fault tolerant technique is proposed in this section for situations in which some extra delay

can be tolerated between the SEE (SEU or SET) occurrence and its correction. Therefore, the error
latency in these FFTs fault tolerant implementations will be higher that the one obtained for the FFT
protected version with FTMR. However, the number of points of the FFT (the value of N) under
protection is not restricted to any value in particular.

Using the benefit of TMR protection for the memory that contains the input data, we can use one

of the triplicate memories as back up of the previous (error free) stage during the pipelined FFT
computation. Once a fault is detected, the previously stored stage is restored and the last computation
is retried. This fault tolerant protection mechanism has some error latency cycles and low extra area
cost if we assume that the memory used for the input data is TMR protected. It will be known as
Fault Tolerant FFT based on Recalculation.

6.2.1 FAULT TOLERANT FFT BASED ON RECALCULATION

6.2.1.1 General Description

If the memory used to store the input data is TMR protected and the FFT implementation is an in

place one (similar to the previous FFT designs protected), a fault tolerant FFT implementation that
combines space and time redundancy can be performed as follows:

• During the memory write/read operations the data are TMR protected.
• During the FFT computation (one butterfly stage that executes log2(N) times):

o Two parallel FFT cores are used to detect all possible faults in the computation
process.

o Two of the TMR protected memories store the intermediate and final results during
the FFT computation.

o The third TMR protected memory is used to store the results of the last error free FFT
computation step (this module is used as back up memory).

 Esa Standard document
issue revision -

page 21 of 47

e

Therefore, as it is an in place FFT, where the memory used to store input data is also reused for
the intermediate and output results, two of the triplicate memory modules used to protect the initial
data (inputs for the FFT circuit) should be used to store the computation results of the two parallel
FFTs, and the third memory module could save the results of the last non erroneous stage of the FFT
computation. In this scenario, in case of SEEs occurrence over one specific FFT data path and
computation step the restoration of the error free results of the previous stage (that are stored in the
module used as backup memory) can be made and the recalculation of the last erroneous
computation can be launched then. At the end of the FFT processing, the TMR protection for the
final output results can be carried out again.

Figure 9 illustrates a simple diagram and a brief logic description of the proposed solution. As it

can be seen in the figure the main modules of the proposed protection technique referred to as Fault
Tolerant FFT based on recalculation are:

• Two FFT cores that perform the same computation in parallel in order to detect any fault

during the FFT calculation
• Input/Output data Memory with TMR protection
• C&R (Comparison and Retry) module compares the FFT outputs at the end of each pipelined

step of the computation. In case of error it launches the restoration of the results of previous
step and retries the last computation.

This technique will have an error latency that depends on the parallelism of the structure but the

higher the parallelism is the lower the error latency of the proposed implementation is, in case of
faults. The minimal time interval between consecutive SEEs (SEUs and SETs) to assure a correct
operation of this technique is 1 cycle. Some MBU patterns can be tolerated too, concretely, all
MBUs that affect the results of the two FFT computations in a different way will be detected during
the comparison process (at the end of each FFT step). Different outputs will trigger launch the
recalculation process (in this faulty scenario the memory used to store the previous results should be
error free). MBUs only in the memory used as back up memory can be tolerated too, because in this
case the outputs of the two FFT computations should be identical. Furthermore, if we assume that
TMR protection is accomplished for the input data memory, the hardware overhead for this
protection technique includes a replication of the data path of the FFT and a comparator that
performs the C&R logic shown in figure 9 and logic to copy back up data in case of error. (See fault
coverage and area cost results in section 8).

 Esa Standard document
issue revision -

page 22 of 47

e

 if FFTCycle=FFT_E then
 while q<logN
 Co1 := Compute (FFT1,TMR1,q)
 Co2 := Compute (FFT2,TMR2,q)
 if Co1 /= Co2 then
 TMR1_D<=TMR3;
 TMR2_D<=TMR3;
 TMR3_D<=TMR3;
 else
 TMR3_D<=TMR1;
 TMR1_D<=Co1;
 TMR2_D<=Co2;
 q=q+1;
 end if
 end while
end if;

TMR1, TMR2, TMR3: current stage of the memory modules
TMR1D, TMR2D, TMR3D: next stage of the memory modules
q: is the time cycle (stage) of the FFT computation (from 1 to log2(N)),
FFT1, FFT2: FFT modules

FFT1
Execution

time 1

Memory
TMR1

Memory
TMR2

Memory
TMR3

FFT1
Execution

time
log2(N))

TMR protection TMR protection

Memory
TMR1

Memory
TMR2

Memory
TMR3

C&R C&R C&R

C&R, Logic description

Each FFT computation needs to execute the N /2 butterflies log2(N) times

FFT computation in time

FFT2
Execution

time 2

FFT1
Execution

time 2

FFT2
Execution

time 1

FFT2
Execution

time
log2(N))

 Figure 9. Fault tolerant FFT based on back up memory

 Esa Standard document
issue revision -

page 23 of 47

e

7 CASE STUDY
The protection techniques proposed have been implemented to protect an 8-point FFT circuit that

was used for several radiation test analysis performed by Saab Ericsson Space under different ESA
contracts. The related results can be found in reports [Stur04] and [Stur06].

7.1 Original FFT design

The FFT was chosen to achieve high proportion of both combinatorial and sequential logic. The
flow for the FFT-module (see Figure 10) is described in the next points [Stur06]:

1. The in data shift register is loaded from DataIn by DataInEn inputs.
2. The Randomizer generates randomized data from the In Data Shift Register and stores it in
Data Matrix.
3. A Fourier Transform is performed on the Data Matrix. The result is rewritten to the Data
Matrix.
4. The sum of each result from the Fourier transform is added to the Sum of Fourier Register.
5. Step 2 and 4 is repeated until FFT has been performed on 1024 samples.
6. When all Fourier transforms have been performed, the Sum of Fourier Register is shifted out
on DataOut output with DataOutEn asserted.

 Figure 10. Dataflow of the original FFT design [Stur06]

 Esa Standard document
issue revision -

page 24 of 47

e
7.2 Modified FFT design to be protected with the fault tolerant

techniques

The original FFT circuit was modified to control the input stimuli generation (using matlab) for
testing purposes and to record the output data in files for further analysis in matlab. The input and
output data (not their sum) are written/read one by cycle during the memory write/read
corresponding states. Besides this, some little modifications were performed to the butterfly modules
to obtain the correct FFT outputs (see figure 11).

The data flow for the modified FFT circuit is:

1. The in data is loaded in the Data Matrix from DataIn by DataInEn inputs (from an Input data
file generated in Matlab). The FFT stage associated with this operation will be referred to as
Gen_E stage and it lasts 8 clock cycles, because one complex input value is written each cycle.
2. An 8-point in place Fast Fourier Transform is performed on the Data Matrix. The results are
rewritten to the Data Matrix. This corresponds to the Fft_E stage that comprises 3 clock cycles.
3. The complex output results are written one by one each clock cycle and they are written in the
Output Data file for further analysis in Matlab. This stage is the Sum_E one and it lasts 8 clock
cycles.
4. Steps 1 to 3 are repeated until the FFT has been carried out on any specified number of samples
(its maximal value is 32756), depending on the fault injection test performed.

Data Matrix
2x8x16 bits

State
Machine

Fourier
Transform

DataInEn

DataIn

DataOutEn

DataOut
Input

data file
Output
data file

Figure 11. Dataflow of the modified FFT design

 Esa Standard document
issue revision -

page 25 of 47

e
Other information related with the FFT data path is the following:

•
• Complex input signals are represented using fixed point arithmetic.
• A sign magnitude representation of 16 bits is used for of real and imaginary parts.
• As it is an 8 point FFT (a small FFT), the bit reverse function and the twiddle factors

generation are accomplished by mean of LUTs.
• Several counters and a simple FSM are used to control the FFT computation.

8 RESULTS. FAULT COVERAGE AND EXTRA AREA COST

Results in terms of fault coverage and extra area cost of the fault tolerant implementations

presented in section 6 and applied to the FFT introduced in Case Study (section 7) are illustrated in
this section. These results are compared with the FFT protected version using FTMR to deal with
SEUs and SETs.

8.1 Fault coverage
The accuracy of digital systems is limited because only a finite number of bits are available. As a

result, round-off errors are unavoidable and care must be taken to prevent the overflow [OpSh75].
Due to the finite precision, when the same value is computed by different paths (as it is the case of
the checksum-base fault tolerant FFT implementations proposed in sections 6.1.1 and 6.1.2) with
different precision errors, the values obtained by these two paths may not be equal to each other,
even if the FFT computation is free of any functional error caused by radiation effects, such as SEEs.
One approach to solve such a problem is to allow a small difference (threshold),η, between the
values compared. But there is a trade-off for selecting η. A small η will increase the false alarms in
the system, which means, that the result of the comparison will be that one error has occurred when
the system is error free, whereas a large η will reduce the fault coverage and errors in the FFT
computation will be masked by the round-off ones. In this last situation, the error mitigation
mechanism may not detect that an error has occurred in the system. For the checksum based fault
tolerant FFT implementations presented in this work, false alarms and fault masking will be a
problem because the use of the checksums is only triggered when faults are detected in one of the
two FFT cores. In this situation, if the checksum comparison with one of the two FFTs outputs has a
false alarm response or the fault is not covered the outputs of the protected system will be erroneous,
as it will be analyzed in section 8.1.1. This will be the main problem of fault coverage of the
checksum based proposed solutions.

For the reason commented, the study of how round off errors modify the theoretical fault

coverage of one specific error mitigation technique based on checksums must be carried out by
means of analytical error models or exhaustive fault injections. In this work, to prove the fault
coverage of the different fault tolerant techniques, a number of fault injection campaigns and tools
have been performed and used. A hardware fault injection emulator based on FPGAs, the FT-
Unshades (FTU) v1.0 developed by the University of Sevilla (AICIA-GTE) under an ESA contract,

 Esa Standard document
issue revision -

page 26 of 47

e
has been used for the exhaustive fault injection campaigns performed to the Checksum based FT-
FFT implementations (section 6.1). This fault injector provides a test and analysis framework to
check the design protections (TMRs and voters, EDACs, …) of an IP or ASIC, before the place and
route and fabrication processes [AgBM04], [AgTo04]. Furthermore, a software fault injection has
been used based on ModelSim simulations (using scripts derived from the SST tool [Gonz04],
[RMRR07]) to carry out the fault tolerant analysis of the error mitigation techniques based on space
and time redundancy presented in section 6.2.

8.1.1 Fault coverage of Checksum Based Fault Tolerant FFT techniques

As a consequence of finite precision, that introduces different round-off errors depending on the
computation process used to obtain any specific value, some soft errors or SEEs will remain
undetected. Therefore, we need to perform an exhaustive analysis of the system operation and its
fault coverage in real environments, (real input signals, operation conditions, threshold values…). To
do this, a number of fault injection campaigns have been performed on the two proposed error
mitigation techniques based on checksums to determine their effectiveness against SEEs. In our
techniques, as the Simple Checksums calculated are compared with the results of one of the two FFT
cores only when faults are detected between the final results of the two parallel FFT cores (what
means that a single event caused by radiation has impacted the device and generated one bit-flip),
several cases could occur:

• If the comparison is performed between the Simple Checksums and the erroneous FFT

results, several scenarios can occur:
o The comparison detects that the FFT under study is erroneous and decides that the

correct FFT is the other one, connecting its results to the output interface of the
devices. In this scenario, the correct operation of the device is assured (case A).

o No faults are found between the Simple Checksums and the erroneous FFT results
because the magnitude of the difference between the checksums and the output is
below the threshold value that takes into account the round off errors. In this case,
as no faults are found, the outputs of the erroneous FFT will be connected to the
output of the device. Therefore the system results will not be correct. This scenario
corresponds to the one when a fault is not detected or covered (case B).

• If the comparison is performed between the Simple Checksums and the FFT results

without errors:
o If the comparison detects that the FFT results are erroneous, a false alarm is

launched and the results of the other FFT core (the erroneous one) will be
connected to the output interface of the device. The system outputs will be
erroneous. In this situation, a false alarm (because the difference between the
correct FFT outputs and the checksums is higher than the threshold, η) is the cause
of the erroneous operation (case C).

o If the comparison decides that the FFT results are correct, they will be connected
to the output of the device, therefore the system will operate correctly (case D).

 Esa Standard document
issue revision -

page 27 of 47

e

Therefore, there are two different scenarios of possible errors in the operation of the Checksum
based Fault Tolerant implementations, errors not covered and false alarms (cases B and C).

To prove the analysis above, the fault coverage of each Checksum Based Fault Tolerant

technique for in place DIT FFTs (presented in section 6.1 for the case study presented in section 7)
has been tested by mean of using the FTU fault injector, using different input sequences of distinct
lengths (at most 32768-sample lengths) and fault injection campaigns on any register of the design in
all states of the FSM used to perform the FFT computation.

The different states controlled by the FSM are the following:

• Idle_E: default stage.
• Gen_E: In this state the input data are stored into the Data Matrix (see figure 11).
• Fft_E: computation of the FFT on the Data Matrix and save the outputs into Data Matrix.
• Sum_E: The fault tolerant system outputs the FFT results cycle by cycle.
• Cnt32768_E: To check at the end of each FFT computation if it was the last computation.

FAULT INJECTION ANALYSIS: FTU

Similar results from fault injection campaigns using the FTU tool have been obtained for the two

techniques tested. Therefore, the results commented here are applicable to the following techniques:

• Checksum based fault tolerant FFT
• Checksum based fault tolerant FFT enhanced (multipliers reduction)

• Fault injection characteristics:

o 10 different input signals of 32768 samples (input signals of random and Fourier

series samples).
o 1 SEE is injected during each simulation.
o Each campaign is repeated until all interesting possibilities are explored. Therefore

thousands of fault injection campaigns are performed to carry out each experiment.

Fault injection results are summarizes in the next points.

1. Bit-flips on Idle_E and Cnt32768 states

Fault injection in all registers of data and control paths has been performed during Idle and

Cnt32768 Count1024 states

• Bit flips on data path registers: single errors on Data Matrix, Simple Checksums, data out
and enable registers do not cause faults in the output of the design.

 Esa Standard document
issue revision -

page 28 of 47

e
• Bit flips on FSM registers (control path): counters and registers of the simple FSM that

controls the normal operation of the FFT processor are TMR protected and their correct
operation has been validated by exhaustive fault injection on all possible registers.

2. Bit-flips in Gen_E, Fft_E and Sum_E states.

These states are the ones that control the FFT process and computation, writing the input data

into the Data Matrix, processing the FFT and connecting the correct results to the output
interface of the device.

• Bit flips on FSM registers (control path): Exhaustive fault injection campaigns in all

registers (TMR protected) used to control the system operation (during the states Gen_E,
Fft_E and Sum_E) have been performed. No faults are found in the outputs of the fault
tolerant implementations studied.

• Bit flips on Data Path registers:

Errors in adders, multipliers and memory cells can be modelled as single, double,
quadruple… faults in Data Matrix depending on the case and state of the FFT computation
where the single event generates the bit flip.

Results of exhaustive fault injection campaigns in all data path registers and states
commented are exposed in the following points:

o During the FFT computation (Fft_E state) single events on adders, multipliers and
registers have been analyzed, (note that single events in one butterfly multiplier
can be modelled as double errors at the two outputs of the butterfly module).
Depending on the FFT computation step where the SEE occurs, one or several
outputs of one of the two FFT cores (whose outputs are compared) will be
erroneous. In this situation, at the end of the FFT computation, when the
comparison is performed, the stored Simple Checksums are used to decide which
FFT is the correct one. In this scenario, and considering bit flips during the Fft_E
states several situations have been observed.

 Single bit flips on the Simple Checksums do not cause any fault in the

output of the device. The system operation is correct.

 Single bit flips on Data Matrix registers (remember that there are two Data

Matrix registers in the system, referred to as Data Matrix1 for the first FFT
and Data Matrix2 for the second one). Suppose that the first FFT (Data
Matrix 1) is the one compared with the Simple Checksums

 Esa Standard document
issue revision -

page 29 of 47

e
• Bit flips on MSB registers on Data Matrix1 (from register 15 to

register 5). The system operation is correct, and no faults are found
in the output of the device (similar to case A).

• Bit flips on LSB registers on Data Matrix1 (from 4 to 0), some of
them are not detected during the comparison process with the
Simple Checksums (due to round off errors) and the fault is not
covered. As a result of this situation, the outputs of the system are
erroneous, but the error magnitude observed in the output of the
device is very small (see figures 12, 13 and 14, similar to case B).

• Bit flips on any register on Data Matrix2. The system operation is
correct, and no faults are found in the output of the device. This
means that no false alarms (case C is not observed) are found in the
operation of the device because the threshold value selected is large
enough to not trigger this type of situations (the system behaviour
in this scenario is similar to Case D).

o If the bit flip is injected when the FFT results are connected to the output interface,

Sum_E state, the following scenarios have been arisen:

 Single bit flips on the Simple Checksums do not cause any fault in the
output of the device. The system operation is correct.

 The SEE occurs in one of the Data Matrix1 or Data Matrix2 registers that

has just been read (to the output interface). In this situation, the system will
have a correct and normal operation.

 The bit-flip is injected in one register (Data Matrix1 or Data Matrix2) that

has not been read yet. This situation is similar to the commented before; in
this case the error mitigation technique will locate the correct FFT in base
on the checksums values and the threshold. Therefore it can occur that
some small errors will not be detected and the outputs of the device have
some small level of error (cases A, B and D observed for similar conditions
to the shown in state Fft_E).

o If the bit flip is injected when the input data are written on Data Matrix1 and Data

Matrix2, that means during state Gen_E, similar scenarios to the shown for the
state Sum_E can be arose, depending on if the SEE affect to registers that have
been or not written with the new input data. Besides, single bit flips on the Simple
Checksums do not cause any fault in the output of the device.

Table 1 summarizes the main conclusions of the fault injection results obtained assuming only

single events.

 Esa Standard document
issue revision -

page 30 of 47

e
SEEs location Error propagation analysis
DataMatrix1 or DataMatrix2
(bit-flips on Data Matrix
registers can model faults in
multipliers, adders or storage
cells)

• Errors during the writing process of the input data (Gen_E state)
• Errors during the FFT computation (Fft_E state)
• Errors during the read process of the FFT results (Sum_E state)

In all of these cases the fault coverage and round off errors must be
studied because the Simple Checksums (and the threshold used to
support the different round-off errors of the distinct computation paths)
are used to locate the correct FFT, cases A,B and D are found. Case B
(associated with a fault not detected, the output of the system is
erroneous) is only observed when injecting faults on the LSB bits of
Data Matrix, situations in which the error magnitude observed in the
system outputs is near to the error precision of the FFT computation.

Simple Checksums Errors do not cause any fault in the output.
In this situation the values of DataMatrix1 and DataMatrix2 (outputs of
the two FFT parallel cores) will be identical and one of then will be
selected as correct output.

Errors on the FSM registers Errors on the FSM registers do not affect to the computation because
all of them are protected using TMR in all proposed error mitigation
techniques solutions

Table 1. SEEs location and brief analysis of their propagation and or correction on the checksum based fault
tolerant techniques of section 6.1

Considering that all possible errors are equally likely and weighting them with the function that

takes into account if each possible bit flip affects or not to the output (considering the state of the
FSM when it occurs, if it occurs before or after writing/reading the input/output data, …), the fault
coverage of the system is very close to 100%. The error magnitude observed in the outputs of the
Checksum Based Fault Tolerant FFTs (in case the fault is masked by the checksums, i.e., only when
the fault impacts on LSB bits of DataMatrix1 in the suitable states) is near to the error precision of
the FFT computation itself. That means that in case of errors in the output, the difference between
the correct output and the erroneous one is very small, for the case study presented the maximal
value of this difference is around 2-13. Figures 12, 13 and 14 show the error magnitude observed in
the output of the fault tolerant systems analyzed when a fault on LSB bits of Data Matrix 1 is not
detected (note that bit flips on equivalent bits of Data Matrix 2 do not cause faults in the output of
the device).

Figure 12 illustrates the case of one SEU in bit 4 (bit 0 corresponds to LSB bit) on the imaginary

part of the fifth register of Data Matrix 1 during the writing process of input data into DataMatrix1
(gen_E state) in clock cycle 15. As it can be seen, and due to the round off errors the error magnitude
of the outputs of the system with respect to the correct ones (fault free results) is around 2-14, similar
to the round off error that affects to the normal FFT computation. Of course, this type of errors will
be propagated to the FFT outputs only in the cases when the register affected by the SEU has already
been written with the new input data.

 Esa Standard document
issue revision -

page 31 of 47

e

0 50 100 150 200 250 300 350 400 450 500
-8

-6

-4

-2

0

2

4

6

8
x 10

-5

clock cycle

Er
ro

r m
ag

ni
tu

de
 o

n
D

FT
 o

ut
pu

ts

SEU in bit 4, genE state

Im
Re

Figure 12. Error magnitude in the output of the Checksum Based Fault Tolerant FFT Enhanced when it is
masked by the threshold used to address different round off errors (stage GenE).

When one FFT computation finishes and its results are output, the last useful value is maintained

in the output of the device until the following FFT results are obtained, this is the reason why the
marked errors (rounded in Figure 13) are kept until clock cycle 41. This can be eliminated by means
of a reset operation of the output each time one complete FFT computation is finished (with low
extra area overhead).

A number of errors on LSB bits of Data Matrix1 during FFT_E state can not be detected either.

Figure 13 illustrates the outputs of the Checksum Based Fault Tolerant FFT Enhanced technique
when one SEU is not detected and it is propagated to the output interface of the device. In this case,
the SEU is injected on bit 2 of the imaginary part of the third Data Matrix1 register (cycle 38). As it
can be seen in the figure, the error magnitude is also similar to the round off error estimated in the
normal FFT computation, around 2-15.

 Esa Standard document
issue revision -

page 32 of 47

e

0 50 100 150 200 250 300 350 400 450 500
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
x 10

-5

clock cycle

Er
ro

r m
ag

ni
tu

de
 o

n
D

FT
 o

ut
pu

ts

Error in bit 2, ff tE stage

Im
Re

Figure 13. Error magnitude in the output of the Checksum Based Fault Tolerant FFT Enhanced when it is
masked by the threshold used to address different round off errors (stage Fft_E).

Similar results can be observed when the SEE occurs in the Sum_E state, during the time interval

used to read the FFT results to the output interface. Figure 14 illustrates the error magnitude in the
output of the device (because the bit-flip has not been correctly detected by the detection and
correction logic based on checksums) when the single event flips bit 2 on the imaginary part of the
first register of Data Matrix1.

All results shown correspond to fault injection on imaginary parts on LSB Data Matrix1 registers

of the Checksum-based fault tolerant FFT enhanced technique (presented in section 6.1.2) but
similar solutions have been obtained when faults are injected on LSB bits of real parts. Equivalent
results to those in the figures 12, 13 and 14 have been obtained for the Checksum-based fault
tolerant FFT technique (illustrated in section 6.1.1).

It must be noted that when the SEE affects bit positions higher than 4 (bit 0 LSB bit) the error is

always detected and corrected by the fault tolerant logic based on checksums. No false alarms have
been found in any of the fault injection campaigns performed.

 Esa Standard document
issue revision -

page 33 of 47

e

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

-4

clock cycle

Er
ro

r m
ag

ni
tu

de
 o

n
D

FT
 o

ut
pu

ts
Error in SumE stage in bit 2 f irst memory position

Im
Re

Figure 14. Error magnitude in the output of the Checksum Based Fault Tolerant FFT Enhanced when it is
masked by the threshold used to address different round off errors (stage Sum_E).

Although the fault tolerance of Checksum-based fault tolerant FFT techniques proposed in this

document is near to the ideal one (the maximal error magnitude observed in the output when the
faults are masked by the round off errors is around 2-13), the evolution of this capacity (the fault
tolerance or fault coverage) when the FFT size increases must be analyzed.

In this case, the higher the number of points of the FFT, the lower is the fault coverage, i.e., the

relation between the FFT size and the fault coverage of the checksum based approach is inversely
proportional. The error coverage is reduced because of the accumulation or errors in the checksums
values when the number of points increases. However, as these techniques are proposed for FFTs
with a reduced number of points the fault coverage reduction of the fault tolerant techniques when
the size increases is not a problem to consider in our specific case. Besides, although these
techniques were used for FFTs with a large value of N the fault coverage can be enhanced by means
of increasing the finite precision of the input samples (using more bits to represent their values).
Increasing the number of bits of the inputs signals (1 bit each time) whenever the FFT size is
duplicated could be a good option. For further analysis about how to calculate the fault coverage of
one checksum based approach see [TaHa93].

 Esa Standard document
issue revision -

page 34 of 47

e
As the floating point systems are less affected by round off errors than the fixed point ones, we

expect that the fault coverage of the floating point system constructed by using the proposed
schemes will be better or equal to the fix point system built.

8.1.2 Fault coverage of the protection techniques based on time and space
redundancy

The fault tolerance analysis of the protection technique based on time and space redundancy that

uses the third TMR memory as back up stage during the FFT computation (presented in section
6.2.1) has been carried out by means of software fault injection using the SST tool and ModelSim
SE 6.1b.

The same input signals used for the test analysis performed to the Checksums Based Fault
Tolerant techniques has been applied for the different test campaign performed. However, the
validation of the Fault Tolerant Technique based on Recalculation has not been made as
exhaustively as presented in the previous section for two main reasons:

• It is a time redundancy approach and a software fault injection (that takes more time to

perform the experiments) have been used
• It is not an error mitigation scheme based on checksums comparisons and the fault

tolerance of the system will be similar wherever the fault occurs (LSB or MSB bits)

The behaviour validated by means of software fault injection2 is the following:

• TMR protection of Data Matrix during the Gen_E and Sum_E states of the FFT
computation.

• Correct operation of the third memory module (use as back up device, saving previous
fault free intermediate FFT results).

If differences between FFT intermediate or final results, the detection logic jumps to a new state,

known as correction_E state that restores the previous fault free results and the values of the FSM
registers to recalculate the last operation.

It has been proven that this technique needs additional clock cycles (implementation dependent)

to perform the time redundancy, for the specific case study presented the technique implemented
needs one cycle to restore the previous fault free state and another one to recalculate the last
operation.

2 Note that the FTU can not be directly used to check time redundancy schemes, because it works with fixed length

test-benches and it can not cope with variable execution time in case of recalculation. However, some possible tricks
may be used to employ this tool in time redundancy schemes if it is needed, as wait for a time which is long enough even
in case of recalculation before reading out the output memory.

 Esa Standard document
issue revision -

page 35 of 47

e

It has been proven too that this fault tolerant technique can protect the design against single

faults per cycle like the FTMR approach, at the price of increased execution time in case of SEEs
during the FFT computation (Fft_E state).

This type of systems should trigger a signal to the rest of the system when the fault is found, to

notice that the next cycles will be used by the system to resolve the problem, which means that those
cycles do not have useful information.

8.2 Area cost

Experimental results of area cost using XST ISE Xilinx synthesizer for FPGAs and Leonardo
Spectrum for ASIC are shown in this section.

Synthesis results, in equivalent gates, of the three techniques proposed using Leonardo Spectrum

from Mentor Graphics and TSMC 0.25u technology are shown in figures 15 and 16 for FFTs of 8
and 16 points (fixed-point data representation with 16 bits for imaginary and real parts, see section
Case Study). As it can be observed, in figure 15, the extra area overhead of the checksum-based
protection techniques proposed in comparison with the non protected version is too high (near to the
cost of triplicate). Because of this reason these techniques may not be appropriated to ASICs
designs, where triplication of the complete logic (sequential and combinational) is not usually
considered (extra area cost too high). However, their area cost can not be compared with the
protected version with TMR in sequential logic because this last method do not protect against errors
in multipliers and adders (SETs converted in SEUs when they propagate to the input of a storage cell
and they meet the setup and hold constrains there). Note that Checksum based techniques protect
against faults in adders and multipliers. In this scenario, although it is impracticable in many real
applications, the area cost of the proposed solutions should be compared with a systematic error
mitigation mechanism with equivalent fault tolerance level as, for example, the triplication of the
complete FFT module and the addition of some voting logic at the end of the comparison (its area
cost, in equivalent gates, would be the triple of the area cost of the non protected version,
approximately).

The fault tolerant technique based on space and time redundancy shows an extra area cost that

might be assumed in some applications. In case of considering TMR protection of input data and, for
greater and real FFTs, a rotation scheme to prevent from unnecessary data movements between
memories its extra area overhead may be affordable, (note that logic described in figure 9 would
change, input memories to FFT computation would be rotated). See figure 16, where no rotation
improvement is used, for greater designs it should be used.

 Esa Standard document
issue revision -

page 36 of 47

e

8 16
0

5

10

15
x 10

4

FFT points

Eq
ui

va
le

nt
 g

at
es

 (T
SM

C
 0

.2
5u

)

Non protected FFT
Checksum based FT-FFT
Checksum based FT-FFT
 enhanced

Figure 15. Synthesis results in equivalent gates of the protection techniques based on checksums. Comparison
with the non-protected version.

8 16
0

2

4

6

8

10

12
x 10

4

FFT points

Eq
ui

va
le

nt
 g

at
es

 (T
SM

C
 0

.2
5u

)

Time and space redundancy based fault tolerant technique vs. non protected FFT

Non protected FFT
FT-FFT based on recalculation

Figure 16. Synthesis results in equivalent gates of the protection technique base on space and time
redundancy. Comparison with the non-protected version.

 Esa Standard document
issue revision -

page 37 of 47

e
Table 2 shows the area cost results of the different Checksum Based Fault Tolerant FFT

Techniques applied to an 8-point FFT of 16 bits fixed point representation for imaginary and
complex parts. Also the area cost of the non protected version of the same 8-point FFT and the
FTMR protected implementation are shown in the table. The results are illustrated in terms of
number of different type of sub-modules inside the simple slice of the target device xc2v6000-
4ff1152 Xilinx Virtex (number of LUTS, multipliers, flip-flops and total slices).

 Non-

protected
FFT

Checksum-
Based FT-
FFT

Checksum-Based FT-FFT
with multipliers
enhancement

FTMR
FT-FFT

Number of FF 311 848 814 933
Number of 4 input LUTs 1731 6092 5563 7602
Number of MULT18X18 12 32 28 36
Number of Slices 896 3158 2889 3801

Table 2. Synthesis results of Checksum-based Fault Tolerant FFT techniques. Comparison with the non-
protected and the FTMR protected version.

As it can be observed in Table 2, the FTMR protected version is the one whose extra area cost
(the number of all types of resources is higher than the same resource in the proposed error
mitigation techniques based on checksums) is the highest one. The relative area overhead is shown
in Table 3, expressed as a percentage with respect to the area of the Non-protected FFT. As it can be
observed the cost increment of the two proposed solutions to protect against SEE (SEU, SET) is
lower than the obtained for the FTMR protected version.

 Non-
protected
FFT

Checksum-
Based FT-
FFT

Checksum-Based FT-FFT
with multipliers
enhancement

FTMR
FT-FFT

Number of FF - 172% 162% 200%
Number of 4 input LUTs - 250% 221% 340%
Number of MULT18X18 - 167% 133% 200%
Number of Slices - 252% 223% 324%

Table 3. Area cost increment with respect to the non-protected version for the Checksum Based Protection
Techniques and the FTMR error mitigation mechanism.

Similar results in number of resources of each type are shown in Table 4 for the Fault tolerant

Technique based on Space and Time Redundancy which uses one of the three memories used for
TMR protection of the input and final data to back-up the results of the previous fault free FFT
computation step. The relative area cost increment of this technique is also illustrated in Table 5,
again as a percentage with respect to the non protected FFT. Again, the area cost of the proposed
implementation is lower than the equivalent cost of the FFT protected by means of FTMR.

 Esa Standard document
issue revision -

page 38 of 47

e
 Non-protected FFT FTMR FT-FFT Backup memory FT-FFT
Number of FF 311 933 933
Number of 4 input LUTs 1731 7602 5695
Number of MULT18X18 12 36 24
Number of Slices 896 3801 2966

Table 4. Synthesis results of the protection technique based on a backup memory. Comparison with the non-
protected and the FTMR protected version

 Non-protected FFT FTMR FT-FFT Backup memory FT-FFT
Number of FF - 200% 200%
Number of 4 input LUTs - 340% 226%
Number of MULT18X18 - 200% 100%
Number of Slices - 324% 231%

Table 5. Area cost increment with respect to the non-protected version for the Technique based on a backup
memory and the FTMR error mitigation mechanism.

Similar results to the shown in tables 3 and 5 have been obtained for a 16-point FFT.

As the FFT implementation used is not a modular or scalable design (bit reversal and twiddle

factors generation functions are not implemented, they are accomplished by means of LUT), the area
cost increment of the techniques when the number of points of the FFT increases can be extrapolated
using a mathematical approximation, taking into account that the area cost of the comparator is not
considered in all schemes because its overhead is negligible as the FFT gets larger (however, for the
FTMR protected version, an approximation that takes into account the area cost of the extra voters is
used, but these voters are used for each register or combinational logic protected, their area cost
when the size of the FFT increases is not negligible). Therefore, the ratio area overhead of each
presented technique will be approximately:

• Extra Overhead of the Checksum-Based FT-FFT:

datapathFFTextraCNANMNAN
oii 1

2
)1(2

22
+⋅+⋅−+⋅⎟

⎠
⎞

⎜
⎝
⎛ −+⋅ (36)

• Overhead of the Checksum-Based FT-FFT enhanced:

datapathFFTextraCNANMNAN
oii 1

4
)1(2

44
+⋅+⋅−+⋅⎟

⎠
⎞

⎜
⎝
⎛ −+⋅ (37)

• Overhead of the Backup memory FT-FFT:

datapathFFTextra1 (38)

• Overhead of the Fault tolerant FFT based on recalculation by Goertzel

 datapathFFTextraCMA ii 1+++ (39)

 Esa Standard document
issue revision -

page 39 of 47

e

• Overhead of the FTMR FT-FFT:

versionFFTprotectednontheoftareathetimeslyAproximate −cos5.2 (40)

Where:

• Ai and Ao are the 2-input adders used to perform the checksum calculation at the input and
output sides, respectively.

• Mi and Mo represent the complex multipliers used for the checksums at the input and
output sides, respectively.

• C is the number of storage registers (to store complex values with the same precision than
the input samples) that the technique needs to store the checksums results.

As it can be concluded from the tables/figures shown in this section, related with the area cost of
the fault tolerant implementations presented in section 6 for an FFT of 8 (16) points, all of them have
an area overhead that is below the area cost of the FTMR protected version. However their area cost
increment comparing with the non protected version is still quite large.

 Esa Standard document
issue revision -

page 40 of 47

e

9 CONCLUSSIONS AND FUTURE WORK

A lot of fault tolerant implementations (similar to the presented in this work) against functional

errors in FFT designs have already been proposed. However, the area cost of most of them is very
large only for error detection purposes and extra area overhead or throughput reduction must be
considered in case of including error correction mechanisms. Also, most of them are contained in the
fault tolerant techniques known as ABFT solutions and based on the use of different checksum
schemes to detect the faults. As it has been proved these types of fault tolerant techniques have the
problem of a fault coverage level less than 100%.

Finding an optimal solution, in area cost and fault coverage terms, does not seem to be an easy

question because of the redundancy reduction and symmetry of the FFT computation itself, that
makes it difficult to find a simple fault tolerant scheme to protect the FFT computation against SEEs,
although the System Knowledge concept is used. However, the idea of using some structure, inherent
fault tolerant or computational characteristics of the system under protection to perform a quasi-
optimal fault tolerant implementation has been employed for other DSP designs and could be applied
to other type of DFT processing implementations as the Sliding DFT.

The effectiveness to deal with SEEs of one specific fault tolerant implementation must be

analyzed by mean of fault injection. In this case, the fault coverage level of the techniques proposed
has been analyzed using two different fault injection mechanisms, the FT-Ushades and the SST
hardware and software fault injection tools, respectively.

The solutions proposed in this document could be used as an alternative to the FTMR protection

(or other equivalent systematic error mitigation technique as XTMR) when some error latency cycles
or a very small error can be assumed in the normal system operation.

Checksum based fault tolerant techniques proposed assume that the SEEs occurrence is low

enough to assure a correct operation. Also, they have the problem that some faults are not simply
detected due to round-off errors. Depending on the implementation, but for most of the high-
throughput FFTs, the maximal frequency operation of the Checksum based fault tolerant techniques
is reduced when comparing with the FTMR protected implementation (noticeable as the FFT size
increases). However, for high-throughput implementations the area cost of the proposed techniques
seems to be a bit lower than the obtained for FTMR.

The probability of occurrence of the small magnitude error observed at the output of the

Checksum based protection techniques can be reduced comparing the results of the two FFTs with
the Simple Checksums and selecting the FFT outputs with the smaller difference. In this case, some
errors at the output of the system are still found and due to the extra area cost of this proposal it is
not considered (because it does not resolve the problem completely).

 Esa Standard document
issue revision -

page 41 of 47

e
For all the above reasons, extrapolating the Checksum based techniques proposed to FFTs with N

large does not seem to be a good option. But, in case of need, several points should be considered as,
for example: increasing the precision of the signal representation, protecting the checksums and the
input data using TMR or EDAC codes, analyzing the error accumulation in checksum and FFT
computations…

The fault tolerant error mitigation technique based on the combination of space and time

redundancy (section 6.2) also has a lower extra area cost than the FTMR protected version but, if the
SEE occurs during the FFT computation, the technique proposed needs some extra clock cycles to
correct the erroneous behaviour. However, most of the time (when no errors are found during the
computation) the throughput of this technique is 100%. As additional latency in the case of error
(low probability of occurrence) is not necessarily a penalty4 and this solution is an exact protection
technique (in the sense that errors not covered due to round off are not presented) we consider that
some future work can be proposed like:

• Develop the fault tolerant technique proposed using a more generic FFT application and

analyze its extra area cost.
• Try to reduce the area overhead of the fault tolerant implementation performed, using

different optimizations (similar to the mentioned before used to prevent from copying
memories).

• Compare the area overhead with other type of systematic protections as XTMR, because
FTMR seems to have fault tolerance problems3.

• Carry out more exhaustive fault injection campaigns on it using a test system like
FLIPPER to perform fault injection in configuration memory [ACDP07].

Other ideas for future work related to fault tolerant FFT implementations are the following:

• Try to use the redundancy of the data that the FFT processes (each specific FFT

application should be analyzed to find the redundancy of the data used) to perform a fault
tolerant implementation at higher levels of the design (application level).

• Apply the System Knowledge concept to other type of DFT hardware implementations, as

the sliding DFT. In this case, similar protection to the proposed for FIR filters could be
analyzed

3The selection of FTMR to compare the techniques proposed here was made to not consider fault tolerant schemes of

any specific FPGA vendor.
4 In fact, this is done also for microprocessors, where parity detection is concurrent to instruction execution, and only

in case of a parity error, the pipeline is re-winded and the operation redone.

 Esa Standard document
issue revision -

page 42 of 47

e

10 REFERENCES
[ACDP07] M. Alderighi, F. Casini, S. D'Angelo, S. Pastore, G.R. Sechi, R. Weigand,

“Evaluation of Single Event Upset Mitigation Schemes for SRAM based FPGAs using
the FLIPPER Fault Injection Platform”, IEEE International Symposium on Defect
and Fault-Tolerance in VLSI Systems (ISSN: 1550-5774), Sep. 2007, pp. 105-113.

 [AgBM04] M. Aguirre Echánove, V. Baena and F. Munoz, “FT-UNSHADES Design Test and
Analysis Tools”, May 2004.

[AgTo04] M. Aguirre Echánove and J. Tombs, “FT-UNSHADES Design Preparation Tools”,

May 2004.

[AnSa91] A. Antola and M. G. Sami, “Testing and diagnosis of FFT arrays,” J. VLSI Signal

Processing, no. 3, 1991, pp. 225–236.

[BaBM00] M.P. Baze, S.P. Buchner and D. McMorrow, “A Digital CMOS Technique for SEU

Hardening”, IEEE Transactions on Nuclear Science Vol. 47, No. 6, Dec. 2000, pp.
2603-2608.

[ChMa88] Y.-H. Choi and M. Malek, “A Fault-Tolerant FFT Processor”, IEEE Transactions on

Computers, Vol. 37, No. 5, May 1988, pp. 617-622.

[CiJG07] Grzegorz Cieslewski, Adam Jacobs, and Alan D. George, “Fault-Tolerant 2D Fourier

Transform with Checksum Encoding”, Aerospace Conference, 2007, IEEE, Vol. 3,
No.10, March 2007, pp. 1-11.

[DoMa03] P.E. Dodd and LL. Massengill, “Basic Mechanisms and Modeling of Single-Event

Upset in Digital Microelectronics”, IEEE Transactions on Nuclear Science Vol. 50,
No. 3, June 2003, pp. 583-602.

[DoSS04] P.E. Dodd, M.R. Shaneyfelt, J.A. Felix and J.R. Schwank, “Production and

Propagation of Single-Event Transients in High-Speed Digital Logic ICs”, IEEE
Transactions on Nuclear Science Vol. 51, No. 6, Dec. 2004, pp. 3278-3284.

[FeML93] C. Feng, J. C. Muzio, and F. Lombardi, “On the testability of the array structures for

FFT computation”, J. Electronic Testing: Theory and Applications, vol. 4, Aug. 1993,
pp. 215–224.

[Gonz04] D. Gonzalez-Gutierrez, “Single Even Upset Simulation Tool Functional Description”,

ESA Report TEC-EDM/DCC-SST2, July 2004.

 Esa Standard document
issue revision -

page 43 of 47

e
[Hanb02] S. Hanbic, “FTMR:Functional Triple Modular Redundancy”, ESA Report FPGA-

003-001, Dec. 2002.

[JaLy03] E. Jacobsen, R.Lyons, “The sliding DFT”, IEEE Signal Processing Magazine, March

2003, pp 74-80.

[JoAb88] Jing-Yang Jou and Jacob A. Abraham, “Fault-Tolerant FFT Networks”, IEEE

Transactions on Computers, Vol. 31, No. 5, May 1988, pp. 548-561.

[LLHW00] Jin-Fu Li, Shyue-Kung Lu, Shih-Arn Hwang and Cheng-Wen Wu, “Easily Testable

and Fault Tolerant FFT Butterfly Networks“, IEEE transactions on circuits and
systems-II Analog and Digital Signal Processing, Vol.47, No. 9, Sep. 2000, pp.
919-929

[LoMu92] F. Lombardi, J.C. Muzio, “Concurrent Error Detection and Fault Location in an FFT

Architecture”, IEEE Journal of Solid State Circuits, Vo. 27, No. 5, May 1992, pp.
728-736.

[LuSH05] S. Lu, J. Shih and S. Huang, “Design-for-testability and fault-tolerant techniques for

FFT processors”, IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, Vol. 13, No. 6, June 2005, pp. 732-741.

[LuWK93] S.K. Lu, C.W. Wu and S.Y. Kuo, “Enhancing testability of VLSI arrays for fast

Fourier transform”, Proc Inst. Elect. Eng.—E, vol. 140, no. 3, May 1993, pp. 161–
166.

[Lyon01] R.G.Lyons, “Understanding Digital Signal Processing”, Ed. Prentice Hall, 2001.

ISBN 0-201-63467-8.

[NaAB96] V.S.S. Nair, J.A.Abraham and P. Banerjee, “Efficient Techniques for the Analysis of

Algorithm-Based Fault Tolerance (ABFT) Schemes”, IEEE Transactions on
Computer, vol. 45, No. 4, April 1996, pp. 499-503.

[OhYo94] C. G. Oh and H. Y. Youn, “On concurrent error location and correction of FFT

networks”, IEEE Transactions on VLSI Systems, Vol. 2, June 1994, pp.257–260.

[OhYo95] C. G. Oh, H. Y. Youn and V. K. Raj, “An efficient algorithm-based concurrent error

detection for FFT network”, IEEE Transactions on Computers, Vol. 44, Sep. 1995,
pp. 1157-1162.

[OpSh75] A.V. Oppenheim, R.W.Schafer, “Digital Signal Processing”, Prentice Hall, 1975.

ISBN 0-13-214635-5

[OpWi97] A. V. Oppenheim, A. S. Willsky, “ Signals And Systems“, Ed. Prentice Hall, 1997.

ISBN 0-13-651175-9

 Esa Standard document
issue revision -

page 44 of 47

e

[ReBa90] A. Reddy and P. Banarjee, “Algorithm-based fault detection for signal processing

applications”, IEEE Transactions on Computers Vol. 39, No. 10, Oct. 1990, pp.
1304-1308.

[RMRR07] O. Ruano, J.A. Maestro, P. Reyes and P. Reviriego, “A Simulation Platform for the

Study of Soft Errors on Signal Processing Circuits through Software Fault Injection”,
Proceedings of IEEE International Symposium on Industrial Electronics, June 2007.

[RRM007b] P. Reviriego, P. Reyes, J.A. Maestro, O. Ruano, “System Knowledge-Based

Techniques against SEUs for Adaptive Filters”, Proceedings of the RADECS 2007
Conference, Deauville (France), Sep. 2007.

[RRMO06] P. Reyes, P. Reviriego, O. Ruano, J.A. Maestro, “Efficient Structures for the

Implementation of Moving Average Filters in the Presence of SEUs using System
Knowledge”, Proceedings of the RADECS 2006 Conference, Athens (Greece), Sep.
2006.

[RRMO07c] P. Reyes, P. Reviriego, J.A. Maestro, O. Ruano, “A New Protection Technique for

Finite Impulse Response (FIR) Filters in the Presence of Soft Errors”, Proceedings of
IEEE International Symposium on Industrial Electronics, June 2007.

[RRMO08] P. Reyes, P. Reviriego, J.A. Maestro, O. Ruano, “Fault Tolerance Analysis of

Communication System Interleavers: the 802.11a Case Study”, Journal of VLSI
Signal Processing Systems (in press)

[RRMR07a] P. Reyes, P. Reviriego, J.A. Maestro, O. Ruano, “New Protection Techniques against

SEUs for Moving Average Filters in a Radiation Environment”, IEEE Transactions
on Nuclear Science (ISSN: 0018-9499), Vol. 54, No. 4, Aug. 2007, pp. 957-964.

[ShFl04] R.D. Schrimpf and D.M. Fleetwood, “Radiation effects and soft errors in integrated

circuits and electronic devices”, World Scientific Publishing, 2004 (ISBN: 981-238-
940-7).

[ShSL03] B. Shim, N.R. Shanbhag and S. Lee, “Energy-efficient soft error-tolerant digital

signal processing”, Signals, Systems and Computers, 2003. Conference Record of the
Thirty-Seventh Asilomar, Nov. 2003, pp. 1493-1497.

[Stur04] F. Sturesson, “Application-like Radiation Test of XTMR and FTMR Mitigation

Techniques for Xilinx Virtex-II FPGA”, 2004-11-03. D-P-REP-01272-SE

[Stur06] F. Sturesson “Particle Test of Xilinx Virtex-II FPGA using XTMR Mitigation

Technique”, 2006-09-20 Saab Ericsson Space. D-P-REP-01567-SE

 Esa Standard document
issue revision -

page 45 of 47

e
 [SuRe] J.L. Sung and G. R. Redimbo, “Practical Algorithm-Based Fault Tolerant DFT

System Implementation on an Hypercube Multiprocessor”

[TaHa93] D.L.Tao, C.R.P. Hartmann, “A Novel Concurrent Error Detection Scheme for FFT

Networks”, IEEE Transactions on Parallel and Distributed Systems, vol.4, no.2, Feb.
1993, pp. 198–221.

[WaJh94] S. Wang and N.K. Jha, “Algorithm-based fault tolerance for FFT networks”, IEEE

Transactions on Computers Vol. 43, No. 7, July 1994, pp. 849-854.

[WuCh93] C.W. Wu and C.T. Chang, “FFT butterfly network design for easy testing”, IEEE

Trans. Circuits Syst. II, vol. 40, Feb. 1993, pp. 110–115.

 Esa Standard document
issue revision -

page 46 of 47

e

APPENDIX A FFT RADIX-2 DECIMATION IN TIME

Let us consider the computation of the lN 2= point DFT by the divide-and conquer approach. If
we split the N-point data sequence into two N/2-point data sequences f1(n) and f2(n), corresponding
to the even-numbered and odd-numbered samples of x(n), respectively:

12,...2,1,0),12()(

)2()(

2

1

−=+=

=
Nnnxnf

nxnf
 (41)

Thus, f1(n) and f2(n) are obtained by decimating x(n) by a factor of 2, and hence the resulting FFT
algorithm is called a decimation-in-time algorithm.

Now the N-point DFT can be expressed in terms of the DFT's of the decimated sequences as
follows:

() ()
∑∑

∑∑

∑

−

=

+
−

=

−

=

⋅++⋅=

⋅+⋅=

−=⋅=

12

0

)12(
12

0

2

1

0

)12()2(

)()(

1,...1,0)()(

N

m

mk
N

N

m

mk
N

oddn

kn
N

evenn

kn
N

N

n

kn
N

WmxWmx

WnxWnx

NkWnxkX

 (42)

But WN
2 = WN/2. With this substitution, the equation can be expressed as

() ()

1,...,1,0),()(

)()()(

21

12

0 2
2

12

0 2
1

−=⋅+=

⋅⋅+⋅= ∑∑
−

=

−

=

NkkFWkF

WmfWWmfkX

k
N

N

m

km
N

k
N

N

m

km
N (43)

Where F1(k) and F2(k) are the N/2-point DFTs of the sequences f1(m) and f2(m), respectively.

Since F1(k) and F2(k) are periodic, with period N/2, we have F1(k+N/2) = F1(k) and F2(k+N/2) =

F2(k). In addition, the factor WN
k+N/2 = -WN

k.

 Esa Standard document
issue revision -

page 47 of 47

e

Hence the equation may be expressed as

1
2

,...,1,0),()(
2

1
2

,...,1,0),()()(

21

21

−=⋅−=⎟
⎠
⎞

⎜
⎝
⎛ +

−=⋅+=

NkkFWkFNkX

NkkFWkFkX

k
N

k
N

 (44)

We observe that the direct computation of F1(k) requires (N/2)2 complex multiplications. The same
applies to the computation of F2(k). Furthermore, there are N/2 additional complex multiplications
required to compute WN

kF2(k). Hence the computation of X(k) requires 2(N/2)2 + N/2 = N 2/2 + N/2
complex multiplications. This first step results in a reduction of the number of multiplications from
N 2 to N 2/2 + N/2, which is about a factor of 2 for N large [OpSh75], [OpSh97].

