Single Event Effects in SRAM based FPGA for space applications Analysis and Mitigation

Diagnostic Services in Network-on-Chips (DSNOC'09)

Roland Weigand David Merodio Codinachs European Space Agency Microelectronics Section

24th April 2009

Slide # (1)

Outline (1)

- Introduction on radiation effects
 - Total Ionising Dose (TID) effects
 - Single Event Latch-up (SEL)
 - Single Event Transient (SET) Effects
 - Single Event Upset (SEU) in user flip-flops and RAM
 - Single Event Upset (SEU) in FPGA configuration memory
 - Single Event Functional Interrupts (SEFI)
 - Quantifying SEE: LET threshold, cross-section, statistical upset rates

SEE mitigation, in general and dedicated to SRAM FPGA

- Triple Modular Redundancy (TMR) for flip-flops in ASIC designs
- Functional TMR (FTMR) and the Xilinx TMR tool (XTMR) for SRAM FPGA
- Configuration memory scrubbing
- Reliability Oriented Place & Route algorithm (RoRA)
- Block and device level redundancy
- Temporal Redundancy
- Rad-hard reconfigurable FPGA

Outline (2)

- Analysis of SEE, verification of mitigation methods
 - → Radiation testing: Heavy Ions, Protons, Neutrons
 - Fault simulation and fault injection
 - Functional an formal verification
 - Analysis of circuit topology
- Selection of the appropriate mitigation strategy
- Actual or planned use of SRAM FPGA in space projects
 - Example: Mars Explorer
- Conclusion
 - Are Single Event Effects a concern in non-space applications?
 - Are our SEE mitigation methods suitable for NoC?
 - What happens in future technology generations?

References

Radiation effects in space components

- Presence of Galactic Cosmic Rays and Solar Flares
- Total Ionising Dose (TID)
 - → Defects in the semiconductor lattice, degradation of mobility and V_{th}
 - Reduced speed, increased leakage current at end-of-life
 - Mitigation: process, cell layout (guardrings), design margins (derating)
- Single Event Effects (SEE)
 - Electron-hole pair generation by interaction with heavy ions
 - Glitches when carriers are caught by drain pn-junctions

Single Event Effects

- Single Event Latchup (SEL)
 - SEE induced triggering of parasitic thyristors
 - Mitigation: process and cell layout
- Single Event Transients (SET) in clocks and resets
 - → Glitches on clocks \rightarrow change of state, functional fault
 - Asynchronous resets are clock-like signals
- Single Event Transients (SET) in combinatorial logic
 - SEE glitches in combinatorial logic behave like cross-talk effects
 - Causes SEU when arriving at flip-flop/memory D-input during clock edge
 - Sensitivity increases with clock frequency
 - Synchronous resets are (normal) combinatorial signals
- Single Event Upset (SEU) in Flip-Flops and SRAM
 - SEE glitch inside the bistable feedback loop of storage point
 - → Immediate bit flip \rightarrow loss of information, change of state, functional fault

Single Event Effects in SRAM FPGA

Single Event Upset (SEU) in configuration memory

In SRAM FPGA, the circuit itself is stored in a RAM. A bit flip can modify the circuit functionality – e.g.

» modifying a look-up-table (combinatorial function)

» changing IO configuration (revert IO direction)

» causing an open connection

» causing a short circuit

Single Event Functional Interrupts (SEFI)

- Defined in [2]: SEFI is an SEE that results in the interference of the normal operation of a complex digital circuit. SEFI is typically used to indicate a failure in a support circuit, such as:
 - » a region of configuration memory, or the entire configuration.
 - » loss of JTAG or configuration capability
 - » Clock generators
 - » JTAG functionality
 - » power on reset

Quantifying SEE

LET (Linear Energy Transfer) threshold (unit: MeV * cm² / mg)

- LET = energy per length unit transferred by an ion travelling through the device (MeV/cm) divided by the mass density (Si = 2320 mg/cm³)
- → LET threshold is the minimum LET to cause an effect (activation energy)
- (Saturated) Cross-Section (unit: cm²/device or cm²/bit)
 - X-section = Number of errors / Ion fluence
 - Saturated value is the horizontal part of the curve
- During radiation test
 - Measure LET vs. X-section
 - LET depends on ion energy and on the test setup (tilt)
- But how does my chip behave in orbit, in real application?

Device/Bit Error Rates

Error rate in space is related to the energy spectrum

- Depending on the orbit (low earth orbit, geostationary etc.)
- Depending on solar conditions (11 years min/max cycle, flares)
- Influence of the magnetic field
- Radiation belts
- Different Error Rates
 - Bit error rate: # errors/bit/day
 - → # errors/device/day
 - FIT = # failures in 10⁹ hours

CREME96 [3]

- Numerical models of the ionising radiation environment
- Calculate error rates from LET vs. X-section curve and orbit parameters
- Developed by the US Naval Research Laboratory

24th April 2009

Slide # (8)

Mitigation of SEU in User Logic

Standard synchronous RTL design

TMR and single voters for flip-flops for hard-wired logic (ASIC)

Functional TMR (FTMR) [4] for SRAM (reprogrammable) FPGA

24th April 2009

Slide # (9)

FTMR – XTMR

- FTMR is based on full triplication of the design and majority voting at all flip-flop inputs and/or outputs
 - Tolerates single bit flips anywhere in user or configuration memory
 - » Bit flips are 'voted' out in the next clock cycle
 - Mitigates SET effects (glitches in clocks and combinatorial logic)
 - The VHDL approach presented in [4] requires a special coding style, it is synthesis and P&R tool dependent and therefore difficult to use

XTMR developed by Xilinx has a very similar topology

- Voters only in the feedback paths (counters, state machines)
 - » Bit flips are voted out within N clock cycles
 (N = number of stages of linear data path)
 - » less area and routing overhead
- Implemented automatically by the TMRTool [5]
- Independent of HDL coding style and synthesis tool
- Well integrated with the ISE tool chain
- Also triples primary IO signals

Multiple SEU – Configuration Scrubbing

Multiple bit flips can be

- Single bit flips (SEU), accumulated over time
- → A single particle flipping several bits (Multiple Bit Upset MBU)

Neither XTMR nor FTMR tolerate multiple bit flips

- Refresh of configuration memory at regular intervals required
- Background configuration scrubbing by partial reconfiguration [6]
 without stopping operation of the user design function
- Scrubbing protects against accumulated single bit flips, provided the scrubbing rate is several times faster than the statistical bit upset rate
- Requires an external rad-hard scrubbing controller

Scrubbing does not protect against MBU

- MBU are rare in current technology
- MBU could become an issue in future technology generations
- MBU usually affects physically adjacent memory cells
- MBU mitigation requires in-depth knowledge of the chip topology

RoRA: Mitigation at Place and Route

In spite of (X)TMR, single point failures (SPF) still exist

- Optimisation during layout leads to close-proximity implementation
 - » Flipping one bit may create a short between two voter domains
 - » Flipping one bit may change a constant (0 or 1) used in two domains

Malfunction in two domains at a time can not be voted out any more

The Reliability oriented place & Route Algorithm (RoRA) [7]

- Disentangles the three voter domains
- Reduces the number of SPF (bits affecting several resources)
- Besides giving additional fault tolerance to (X)TMR designs, RoRA is applicable also to non- or partial-TMR designs

Protection of SRAM blocks (1)

EDAC = Error Detection And Correction

- Usually corrects single and detects multiple bit flips per memory word
- Regular access required to preventing error accumulation (scrubbing)
- Control state machine required to rewrite corrected data
- Impact on max. clock frequency (XOR tree)

Parity protection allows detection but no hardware correction

- When redundant data is available elsewhere in the system
 - » Embedded cache memories (duplicates of external memory) \rightarrow LEON2-FT
 - » Duplicated memories (reload correct data from replica) \rightarrow LEON3-FT
- On error: reload in by hardware state machine or software (reboot)

Proprietary solutions from FPGA vendors

- → ACTEL core generator [24]
 - » EDAC and scrubbing

XILINX XTMR [5]

» Triplication, voting and scrubbing

Protection of SRAM blocks (2)

EDAC protected memory (Actel)

- Scrubbing takes place only in idle mode (we, re = inactive)
- Required memory width
 - » 18-bit for data bits <= 12
 - » 36-bit for 12 < data bits <= 29
 - » 54-bit for 20 < data bits <= 47

- Triplicated memory (Xilinx)
 - Scrubbing in background using spare port of dual-port memory
 - Triplication against configuration upset

Other Mitigation Techniques (1)

Block and device level redundancy [6]

- Implementation of each design is plain (non-voted)
- Design/verification of plain blocks/devices does not require special tools
- \rightarrow 2x1 implementation (\rightarrow error detection and restart)
- → 3x1 or 2x2 implementation (\rightarrow continue operation in case of fault)

Other Mitigation Techniques (2)

... Block and device level redundancy

- Redundant blocks or devices must be re-synchronised
 - » Context copying when error in one instance is detected
 - » Reset system or restore context from snapshot stored at regular intervals

Device TMR overcomes shortage of gate resources and IO pins

- Device TMR also protects against SEFI
- Device TMR requires separate rad-hard voting and reconfiguration unit
- Also applied for non-FPGA COTS devices [11]

Temporal redundancy

- Repeat processing two or more times and vote result
- Employed for embedded microprocessors

Partial (Selective) TMR [12]

- Triple only the most sensitive parts of a system
- Trade fault tolerance against complexity, but difficult to validate

Single instance and watchdog

Rad-Hard Reconfigurable FPGA (1)

- The Atmel ATF280E [8]
 - The ATF280E is a radiation hardened SRAM-based reprogrammable FPGA
 - It has SEE hardened
 - » Configuration memory
 - » User flip-flops
 - » User memory
 - It offers 280K equivalent ASIC gates and 115Kb of RAM
 - Packages MQFP256 / MCGA 472 with 150 / 308 user I/O
 - Implemented in 180 nm technology
 - Development of larger devices is planned in cooperation between
 - » Atmel Aerospace
 - » Abound Logic http://www.aboundlog
 - » CNES (French Space Agency)
 - » JAXXA (Japanese Space Agency)
 - » ESA (European Space Agency)

TF280E2J-E

0706 678044

Slide # (17)

Rad-Hard Reconfigurable FPGA (2)

The Xilinx SIRF Project [9]

- SIRF = Single-event effects Immune Reconfigurable FPGA
- Based on the Virtex5 architecture, implemented in 65 nm technology
- Developed under US air force funding
- Subject to export regulations (ITAR)
- → Packages FF665/1136/1738 (TBC)
- Flash based FPGA
 - → Actel Pro-ASIC [10]
 - Radiation evaluation is ongoing
 - ASIC-like SEE mitigation required
 - → Flash is reconfigurable
 - » A limited number of reconfiguration cycles
 - » No on-line reconfiguration (while circuit is operating)
 - → Packages CCGA/LGA-484, 896

24th April 2009

Slide # (18)

Rad-Hard FPGA Overview

Verification of fault-tolerant designs

- Verification has to answer three main questions
 - Does the mitigation strategy provide adequate fault tolerance?
 - » Radiation testing, fault simulation and fault emulation
 - Was the planned mitigation strategy properly implemented?
 - » Analysis of netlist and physical implementation (layout)

Are we sure the TMR did not break the circuit function?

» Dedicated formal verification tools are required

Standard verification methods and tools are not sufficient

- Simulation of a TMR netlist "works" with a defect in one voter domain
- COTS formal verification tools are confused by TMR
- Structural verification of TMR ASIC designs: InFault [19]
- NASA/Mentor: Formal verification for TMR designs [1]
- STAR, the STatic AnalyzeR tool [20]
 - » Performs static analysis of a TMR circuit layout in SRAM FPGA
 - » Identifies critical configuration bits (single bit affecting two voter domains)

Radiation Testing

- There is nothing like real data to f' up a great theory
 - → Richard Katz, NASA Office of Logic Design, circa 1995
- Heavy lon Testing
 - → Using fission products (e.g. Californium 252) [13]
 - → Cyclotron, e.g. UCL [14]

- Other Radiation Testing
 - → Proton testing e.g. PSI [15]
 - Protons penetrate silicon \rightarrow backside irradiation, suitable for flip-chip
 - Neutron Testing, interesting for ground and aircraft applications

24th April 2009

Slide # (21)

Fault Simulation and Emulation

- Fault injection to user flip-flops (but not configuration memory)
 - → SST, an SEU simulation tool [16]
 - → FT-Unshades for user flip-flops and memory [17]
- Fault injection to configuration memory by FPGA emulation
 - → The FLIPPER test system [18]

Injections (Cfg bit upsets)

24th April 2009

Slide # (22)

Selection of a Mitigation Strategy

- SEE mitigation has area and performance overhead
- Trade-off between cost and fault tolerance
 - Same hardening scheme for the complete design is easiest to implement
 - Selective hardening of critical parts is often the only acceptable solution
 - Life time requirement of applications can be very different

Slide # (23)

SRAM FPGA in Space Projects

- FPGA are flying on several, mostly US space missions [21]
- Various mitigation schemes are used
 - Many of them use device level redundancy
 - Most of them involve configuration readback or scrubbing
 - Example: Pyro module on the Mars Explorer Rover, launched 2003

SEE in non-space applications

Increasing SEE awareness also in non-space designs

- High reliability products: Avionics, Networking, Medical
- Radiation is different (Neutrons and Alpha)
- Functional effects are the same as in space
- Several companies are affected by SEE effects [22]
 - Recall of Sun Enterprise servers (late 90's)
 - CISCO SEU application note for network products

Neutron Testing shows non-negligeable error rates [23]

		Configuration vice Upsets (SEUs)	Logic Errors (SEFIs)	Logic Error FIT Rates			
Vendor	Device			Sea Level	5,000 ft.	30,000 ft.	60,000 ft.
Actel	AX1000	Not Measured	0 3	<0.08 FITs	<0.28 FITs	<12 FITs	<39 FITs
Actel	APA1000	Not Measured	0	<0.04 FITs	<0.13 FITs	<5.6 FITs	<18 FITs
Xilinx	XC2V3000	3,459	349	1,150 FITs	3,900 FITs	170,000 FITs	540,000 FITs
Xilinx	XC3S1000	1,936	405	320 FITs	1,100 FITs	47,000 FITs	150,000 FITs
Altera	EP1C20	Not Measured	453	460 FITs	1,600 FITs	67,000 FITs	220,000 FITs

Table 1: Neutron Test Results (iRoC Testing at LANSCE)

Slide # (25)

SEE Mitigation for NoC

- Analysis and trade-off required, as for any other design
 - Criticality, area and performance overhead
- A NoC can also be protected by XTMR
 - Block memories should be protected by EDAC and scrubbing
 - The > 3x area overhead may be tolerated if NoC is not too large
 - But do we really need it?

Alternatives:

- Measures at protocol level
 - » Use acknowledgement, retransmission and timeout mechanism
 - » "Running TCP instead of UDP"?
 - » Temporal redundancy: send packets twice and compare

Error detection and recovery

- » Parity bits on all registers in the data path
- » Reset Network when error detected
- » Resend all ongoing packets

Conclusion

- Single Event Effects are real, even on ground
 - They are serious for high-reliability applications
- SEE effects increase in smaller technology (<= 65 nm)
 - Redundancy remains applicable, but may need enhancement
 - Upcoming dedicated rad-hard FPGA designs
- Mitigation requires careful analysis, trade-off and verification
- Use scrubbing on configuration memory
- (X)TMR gives good protection and is easy to implement
 - But it has huge overheads if applied it on complete systems
 - Alternatives or partial hardening may be preferred
- SEU hardening of the NoC infrastructure
 - A NoC can also be protected by XTMR
 - Alternatives using smart protocols

Questions?

References/Links (1)

[1] Melanie Berg: Design for Radiation Effects

http://nepp.nasa.gov/mapId_2008/presentations/i/01%20-%20Berg_Melanie_mapId08_pres_1.pdf

[2] Single-Event Upset Mitigation Selection Guide, Xilinx Application Note XAPP987

http://www.xilinx.com/support/documentation/application_notes/xapp987.pdf

[3] CREME96: Cosmic Ray Effects on Micro-Electronics

https://creme96.nrl.navy.mil/

[4] Sandi Habinc: Functional Triple Modular Redundancy (FTMR)

http://microelectronics.esa.int/techno/fpga_003_01-0-2.pdf

[5] The Xilinx TMRTool

http://www.xilinx.com/ise/optional_prod/tmrtool.htm

[6] Xilinx Application Notes concerning SEU mitigation in Virtex-II/Virtex-4

http://www.xilinx.com/support/documentation/application_notes/xapp987.pdf http://www.xilinx.com/support/documentation/application_notes/xapp779.pdf http://www.xilinx.com/support/documentation/application_notes/xapp988.pdf

[7] A new reliability-oriented place and route algorithm for SRAM-based FPGAs, Sterpone, Luca; Violante, Massimo;

IEEE Transactions on Computers, Volume 55, Issue 6, June 2006

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=12&year=2006

[8] The Atmel ATF280E Advance Information

http://www.atmel.com/dyn/resources/prod_documents/doc7750.pdf

References/Links (2)

[9] The Xilinx SEU Immune Reconfigurable FPGA (SIRF) project

http://klabs.org/mapId05/presento/176_bogrow_p.ppt

[10] Actel Rad Tolerant ProASIC3

http://www.actel.com/products/milaero/rtpa3/default.aspx

[11] Super Computer for Space (SCS750), Maxwell, ESCCON 2002

http://www.maxwell.com/microelectronics/support/presentations/ESCCON_2002.pdf

24th April 2009

Slide # (29)

[12] Selective Triple Modular Redundancy for SEU Mitigation in FPGAs, Praveen Kumar Samudrala, Jeremy Ramos, and Srinivas Katkoori

http://www.klabs.org/richcontent/MAPLDCon03/abstracts/samudrala_a.pdf

[13] The CASE System, Californium 252 radiation facility at ESTEC https://escies.org/ReadArticle?docId=252

[14] PIF, the Proton Irradiation Facility at Paul Scherrer Institute, Switzerland

http://pif.web.psi.ch/

[15] HIF, Heavy Ion Facility at University of Louvain-la-Neuve, Belgium

http://www.cyc.ucl.ac.be/HIF/HIF.html

[16] SST: The SEU Simulation Tool

http://microelectronics.esa.int/asic/SST-FunctionalDescription1-3.pdf http://www.nebrija.es/~jmaestro/esa/sst.htm

References/Links (3)

[17] FT-Unshades, a Xilinx-based SEU emulator

http://microelectronics.esa.int/mpd2004/FT-UNSHADES_presentation_v2.pdf

[18] The FLIPPER SEU test system

http://microelectronics.esa.int/finalreport/Flipper_Executive_Summary.pdf http://microelectronics.esa.int/techno/Flipper_ProductSheet.pdf

[19] Simon Schulz, Giovanni Beltrame, David Merodio Codinachs: Smart Behavioural Netlist Simulation for SEU Protection Verification

http://microelectronics.esa.int/papers/SimonSchulzInFault.pdf

[20] Static and Dynamic Analysis of SEU effects in SRAM-based FPGAs

L. Sterpone, M. Violante, European Test Symposium ETS2007

[21] Xilinx space flight heritage, NASA GSFC, June 2006

http://nepp.nasa.gov/DocUploads/6466B702-93C3-4E3E-928BBD09A24CF7FA/Xilinx%20Flight %20Heritage_NASA_GSFC.ppt

[22] Cosmic Radiation comes to ASIC and SOC Design, EDN, May 12, 2005

http://www.edn.com/contents/images/529381.pdf

[23] Overview of iRoC Technologies' Report

"Radiation Results of the SER Test of Actel, Xilinx and Altera FPGA Instances"

http://www.actel.com/documents/OverviewRadResultsIROC.pdf

[24] Actel Core generator

http://www.actel.com/documents/EDAC_AN.pdf

