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Outline (1)
◆ Introduction on radiation effects

➙ Total Ionising Dose (TID) effects
➙ Single Event Latch-up (SEL)
➙ Single Event Transient (SET) Effects
➙ Single Event Upset (SEU) in user flip-flops and RAM
➙ Single Event Upset (SEU) in FPGA configuration memory
➙ Single Event Functional Interrupts (SEFI)
➙ Quantifying SEE: LET threshold, cross-section, statistical upset rates

◆ SEE mitigation, in general and dedicated to SRAM FPGA
➙ Triple Modular Redundancy (TMR) for flip-flops in ASIC designs
➙ Functional TMR (FTMR) and the Xilinx TMR tool (XTMR) for SRAM FPGA
➙ Configuration memory scrubbing
➙ Reliability Oriented Place & Route algorithm (RoRA)
➙ Block and device level redundancy
➙ Temporal Redundancy
➙ Rad-hard reconfigurable FPGA
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Outline (2)
◆ Analysis of SEE, verification of mitigation methods

➙ Radiation testing: Heavy Ions, Protons, Neutrons
➙ Fault simulation and fault injection
➙ Functional an formal verification
➙ Analysis of circuit topology

◆ Selection of the appropriate mitigation strategy
◆ Actual or planned use of SRAM FPGA in space projects

➙ Example: Mars Explorer

◆ Conclusion
➙ Are Single Event Effects a concern in non-space applications?
➙ Are our SEE mitigation methods suitable for NoC?
➙ What happens in future technology generations?

◆ References
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Radiation effects in space components
◆ Presence of Galactic Cosmic Rays and Solar Flares
◆ Total Ionising Dose (TID)

➙ Defects in the semiconductor lattice, degradation of mobility and Vth  

➙ Reduced speed, increased leakage current at end-of-life
➙ Mitigation: process, cell layout (guardrings), design margins (derating)

◆ Single Event Effects (SEE) 
➙ Electron-hole pair generation by interaction with heavy ions
➙ Glitches when carriers are caught by drain pn-junctions

[1]
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Single Event Effects
◆ Single Event Latchup (SEL)

➙ SEE induced triggering of parasitic thyristors
➙ Mitigation: process and cell layout 

◆ Single Event Transients (SET) in clocks and resets
➙ Glitches on clocks → change of state, functional fault
➙ Asynchronous resets are clock-like signals

◆ Single Event Transients (SET) in combinatorial logic 
➙ SEE glitches in combinatorial logic behave like cross-talk effects
➙ Causes SEU when arriving at flip-flop/memory D-input during clock edge
➙ Sensitivity increases with clock frequency
➙ Synchronous resets are (normal) combinatorial signals

◆ Single Event Upset (SEU) in Flip-Flops and SRAM
➙ SEE glitch inside the bistable feedback loop of storage point
➙ Immediate bit flip →  loss of information, change of state, functional fault
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Single Event Effects in SRAM FPGA
◆ Single Event Upset (SEU) in configuration memory

➙ In SRAM FPGA, the circuit itself is stored in a RAM.
A bit flip can modify the circuit functionality – e.g. 

» modifying a look-up-table (combinatorial function)

» changing IO configuration (revert IO direction)

» causing an open connection
» causing a short circuit

◆ Single Event Functional Interrupts (SEFI)
➙ Defined in [2]: SEFI is an SEE that results in the interference of the 

normal operation of a complex digital circuit. SEFI is typically used to 
indicate a failure in a support circuit, such as:

» a region of configuration memory, or the entire configuration.
» loss of JTAG or configuration capability
» Clock generators
» JTAG functionality

» power on reset
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Quantifying SEE
◆ LET (Linear Energy Transfer) threshold (unit: MeV * cm² / mg)

➙ LET = energy per length unit transferred by an ion travelling through the 
device (MeV/cm) divided by the mass density (Si = 2320 mg/cm3)

➙ LET threshold is the minimum LET to cause an effect (activation energy)

◆ (Saturated) Cross-Section (unit: cm²/device or cm²/bit)
➙ X-section = Number of errors / Ion fluence 
➙ Saturated value is the horizontal part of the curve

◆ During radiation test
➙ Measure LET vs. X-section
➙ LET depends on ion energy

and on the test setup (tilt)

◆ But how does my chip
behave in orbit, in real
application?
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Device/Bit Error Rates
◆ Error rate in space is related to the energy spectrum

➙ Depending on the orbit (low earth orbit, geostationary etc.)
➙ Depending on solar conditions (11 years min/max cycle, flares)
➙ Influence of the magnetic field
➙ Radiation belts 

◆ Different Error Rates
➙ Bit error rate: # errors/bit/day
➙ # errors/device/day
➙ FIT = # failures in 10  hours⁹

◆ CREME96 [3]
➙ Numerical models of the ionising radiation environment
➙ Calculate error rates from LET vs. X-section curve and orbit parameters
➙ Developed by the US Naval Research Laboratory
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◆ Standard synchronous RTL design

◆ TMR and single voters for flip-flops for hard-wired logic (ASIC)

◆ Functional TMR (FTMR) [4] for SRAM (reprogrammable) FPGA

Mitigation of SEU in User Logic
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◆ FTMR is based on full triplication of the design and majority 
voting at all flip-flop inputs and/or outputs
➙ Tolerates single bit flips anywhere in user or configuration memory

» Bit flips are 'voted' out in the next clock cycle
➙ Mitigates SET effects (glitches in clocks and combinatorial logic)
➙ The VHDL approach presented in [4] requires a special coding style, it is 

synthesis and P&R tool dependent and therefore difficult to use

◆ XTMR developed by Xilinx has a very similar topology
➙ Voters only in the feedback paths (counters, state machines)

» Bit flips are voted out within N clock cycles
(N = number of stages of linear data path)

» less area and routing overhead
➙ Implemented automatically by the TMRTool [5]
➙ Independent of HDL coding style and synthesis tool
➙ Well integrated with the ISE tool chain
➙ Also triples primary IO signals

FTMR – XTMR
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◆ Multiple bit flips can be
➙ Single bit flips (SEU), accumulated over time
➙ A single particle flipping several bits (Multiple Bit Upset – MBU)

◆ Neither XTMR nor FTMR tolerate multiple bit flips
➙ Refresh of configuration memory at regular intervals required
➙ Background configuration scrubbing by partial reconfiguration [6]

→ without stopping operation of the user design function
➙ Scrubbing protects against accumulated single bit flips, provided the 

scrubbing rate is several times faster than the statistical bit upset rate
➙ Requires an external rad-hard scrubbing controller

◆ Scrubbing does not protect against MBU 
➙ MBU are rare in current technology
➙ MBU could become an issue in future technology generations
➙ MBU usually affects physically adjacent memory cells 
➙ MBU mitigation requires in-depth knowledge of the chip topology

Multiple SEU – Configuration Scrubbing
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◆ In spite of (X)TMR, single point failures (SPF) still exist
➙ Optimisation during layout leads to close-proximity implementation

» Flipping one bit may create a short between two voter domains

» Flipping one bit may change a constant (0 or 1) used in two domains
➙ Malfunction in two domains at a time can not be voted out any more

◆ The Reliability oriented place & Route Algorithm (RoRA) [7]
➙ Disentangles the three voter domains
➙ Reduces the number of SPF (bits affecting several resources)
➙ Besides giving additional fault tolerance to (X)TMR designs,

RoRA is applicable also to non- or partial-TMR designs

RoRA: Mitigation at Place and Route
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Protection of SRAM blocks (1)
◆ EDAC = Error Detection And Correction

➙ Usually corrects single and detects multiple bit flips per memory word
➙ Regular access required to preventing error accumulation (scrubbing)
➙ Control state machine required to rewrite corrected data
➙ Impact on max. clock frequency (XOR tree)

◆ Parity protection allows detection but no hardware correction
➙ When redundant data is available elsewhere in the system

» Embedded cache memories (duplicates of external memory)  LEON2-FT
» Duplicated memories (reload correct data from replica)  LEON3-FT

➙ On error: reload in by hardware state machine or software (reboot)

◆ Proprietary solutions from FPGA vendors
➙ ACTEL core generator [24]

» EDAC and scrubbing
➙ XILINX XTMR [5]

» Triplication, voting and scrubbing
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Protection of SRAM blocks (2)
◆ EDAC protected memory (Actel)

➙ Scrubbing takes place only in idle 
mode (we, re = inactive)

➙ Required memory width

» 18-bit for data bits <= 12
» 36-bit for 12 < data bits <= 29
» 54-bit for 20 < data bits <= 47

◆ Triplicated memory (Xilinx)
➙ Scrubbing in background using spare 

port of dual-port memory
➙ Triplication against configuration 

upset
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◆ Block and device level redundancy [6]
➙ Implementation of each design is plain (non-voted)
➙ Design/verification of plain blocks/devices does not require special tools
➙ 2x1 implementation (→ error detection and restart)
➙ 3x1 or 2x2 implementation (→ continue operation in case of fault)

Other Mitigation Techniques (1)
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◆ ... Block and device level redundancy 
➙ Redundant blocks or devices must be re-synchronised

» Context copying when error in one instance is detected

» Reset system or restore context from snapshot stored at regular intervals
➙ Device TMR overcomes shortage of gate resources and IO pins
➙ Device TMR also protects against SEFI
➙ Device TMR requires separate rad-hard voting and reconfiguration unit
➙ Also applied for non-FPGA COTS devices [11]

◆ Temporal redundancy
➙ Repeat processing two or more times and vote result
➙ Employed for embedded microprocessors

◆ Partial (Selective) TMR [12]
➙ Triple only the most sensitive parts of a system
➙ Trade fault tolerance against complexity, but difficult to validate

◆ Single instance and watchdog

Other Mitigation Techniques (2)



24th April 2009 Slide #
(17)

Microelectronics Section

Rad-Hard Reconfigurable FPGA (1)
◆ The Atmel ATF280E [8]

➙ The ATF280E is a radiation hardened SRAM-based reprogrammable FPGA
➙ It has SEE hardened

» Configuration memory

» User flip-flops 
» User memory

➙ It offers 280K equivalent ASIC gates and 115Kb of RAM
➙ Packages MQFP256 / MCGA 472 with 150 / 308 user I/O
➙ Implemented in 180 nm technology
➙ Development of larger devices is planned in cooperation between

» Atmel Aerospace
» Abound Logic http://www.aboundlogic.com

» CNES (French Space Agency)

» JAXXA (Japanese Space Agency)
» ESA (European Space Agency)
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Rad-Hard Reconfigurable FPGA (2)
◆ The Xilinx SIRF Project [9]

➙ SIRF = Single-event effects Immune Reconfigurable FPGA 
➙ Based on the Virtex5 architecture, implemented in 65 nm technology
➙ Developed under US air force funding
➙ Subject to export regulations (ITAR)
➙ Packages FF665/1136/1738 (TBC)

◆ Flash based FPGA 
➙ Actel Pro-ASIC [10]
➙ Radiation evaluation is ongoing
➙ ASIC-like SEE mitigation required
➙ Flash is reconfigurable

» A limited number of reconfiguration cycles

» No on-line reconfiguration (while circuit is operating)
➙ Packages CCGA/LGA-484, 896



24th April 2009 Slide #
(19)

Microelectronics Section

Rad-Hard FPGA Overview
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Verification of fault-tolerant designs
◆ Verification has to answer three main questions

➙ Does the mitigation strategy provide adequate fault tolerance?
» Radiation testing, fault simulation and fault emulation

➙ Was the planned mitigation strategy properly implemented?

» Analysis of netlist and physical implementation (layout)
➙ Are we sure the TMR did not break the circuit function?

» Dedicated formal verification tools are required

◆ Standard verification methods and tools are not sufficient
➙ Simulation of a TMR netlist “works” with a defect in one voter domain
➙ COTS formal verification tools are confused by TMR
➙ Structural verification of TMR ASIC designs: InFault [19]
➙ NASA/Mentor: Formal verification for TMR designs [1]
➙ STAR, the STatic AnalyzeR tool [20]

» Performs static analysis of a TMR circuit layout in SRAM FPGA
» Identifies critical configuration bits (single bit affecting two voter domains)
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Radiation Testing
◆ There is nothing like real data to f' up a great theory

➙ Richard Katz, NASA Office of Logic Design, circa 1995

◆ Heavy Ion Testing
➙ Using fission products (e.g. Californium 252) [13]
➙ Cyclotron, e.g. UCL [14]

◆ Other Radiation Testing
➙ Proton testing e.g. PSI [15]

Protons penetrate silicon → backside irradiation, suitable for flip-chip
➙ Neutron Testing, interesting for ground and aircraft applications



24th April 2009 Slide #
(22)

Microelectronics Section

Fault Simulation and Emulation
◆ Fault injection to user flip-flops (but not configuration memory)

➙ SST, an SEU simulation tool [16]
➙ FT-Unshades for user flip-flops and memory [17]

◆ Fault injection to configuration memory by FPGA emulation
➙ The FLIPPER test system [18]
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Selection of a Mitigation Strategy
◆ SEE mitigation has area and performance overhead
◆ Trade-off between cost and fault tolerance

➙ Same hardening scheme for the complete design is easiest to implement
➙ Selective hardening of critical parts is often the only acceptable solution
➙ Life time requirement of applications can be very different
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SRAM FPGA in Space Projects
◆ FPGA are flying on several, mostly US space missions [21]
◆ Various mitigation schemes are used

➙ Many of them use device level redundancy
➙ Most of them involve configuration readback or scrubbing
➙ Example: Pyro module on the Mars Explorer Rover, launched 2003
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SEE in non-space applications
◆ Increasing SEE awareness also in non-space designs

➙ High reliability products: Avionics, Networking, Medical
➙ Radiation is different (Neutrons and Alpha)
➙ Functional effects are the same as in space

◆ Several companies are affected by SEE effects [22]
➙ Recall of Sun Enterprise servers (late 90's)
➙ CISCO SEU application note for network products

◆ Neutron Testing shows non-negligeable error rates [23]
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SEE Mitigation for NoC
◆ Analysis and trade-off required, as for any other design

➙ Criticality, area and performance overhead

◆ A NoC can also be protected by XTMR
➙ Block memories should be protected by EDAC and scrubbing
➙ The > 3x area overhead may be tolerated if NoC is not too large
➙ But do we really need it?

◆ Alternatives:
➙ Measures at protocol level

» Use acknowledgement, retransmission and timeout mechanism

» “Running TCP instead of UDP”?
» Temporal redundancy: send packets twice and compare

➙ Error detection and recovery
» Parity bits on all registers in the data path

» Reset Network when error detected

» Resend all ongoing packets
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Conclusion
◆ Single Event Effects are real, even on ground

➙ They are serious for high-reliability applications

◆ SEE effects increase in smaller technology (<= 65 nm)
➙ Redundancy remains applicable, but may need enhancement
➙ Upcoming dedicated rad-hard FPGA designs

◆ Mitigation requires careful analysis, trade-off and verification
◆ Use scrubbing on configuration memory
◆ (X)TMR gives good protection and is easy to implement

➙ But it has huge overheads if applied it on complete systems
➙ Alternatives or partial hardening may be preferred

◆ SEU hardening of the NoC infrastructure
➙ A NoC can also be protected by XTMR
➙ Alternatives using smart protocols

Questions?
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