

ESA Microprocessor Development

Status and Roadmap

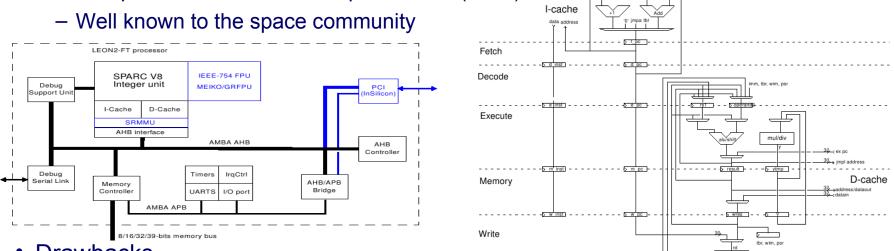
Roland Weigand European Space Agency Microelectronics Section DASIA 2011

Microelectronics Section

1 18-May-2011

Outline

- Microcontrollers
 - Basic requirements
 - Candidate CPU architectures
 - Semiconductor Technology
 - Development activities
- LEON2 based standard components
 - AT7913E status
 - AT697 status
- LEON3 based SCOC3
 - Status
 - SW development
- LEON4 based NGMP development
 - Architecture, features
 - First Silicon Implementation
 - History and Roadmap
 - Related activities

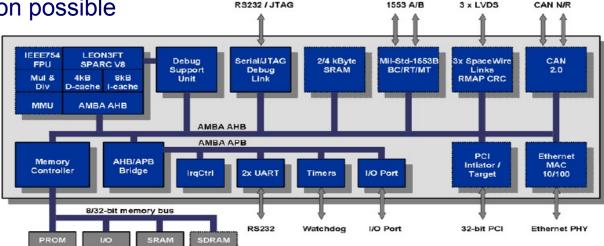

Microcontroller General Requirements

- MESA Roundtable 11/2010: http://microelectronics.esa.int/cgi-bin/mesa.cgi
- Key requirement is to limit the overall system cost
 - Affordable component price, low pin-count (<= 100) and easy-to-assemble package
 - No external RAM (~ 64 kByte on-chip) and if possible on-chip NV memory
 - Digital peripherals: I2C, SPI, SPW, CAN, 1553 (?)...
 - Analog peripherals: ADC, DAC, PWM / AWG, oscillator / PLL, voltage regulator
- CPU Core selection (e.g. LEONs, AVR, XAP, ARM, PIC, Opencores...)
 - Predictable CPU, caches are often not desired
 - Availability (and cost) of SW development tools
 - Adequate size of data path: 16 bit (preferred) or 32 bit (code density!)
 - Good code density to operate from embedded memory
 - Source code availability at ESA for support and inspection required
 - Availability as an IP-core for other implementations desired
- Environmental requirements
 - TID (>= 50 krad), SEE tolerance fully user transparent (no SW scrubbing)
 - Low power consumption, single rail supply
 - Space qualified component (flow TBD: QML-Q/V, ESCC, MIL-883)

Cesa LESA Microprocessor Development

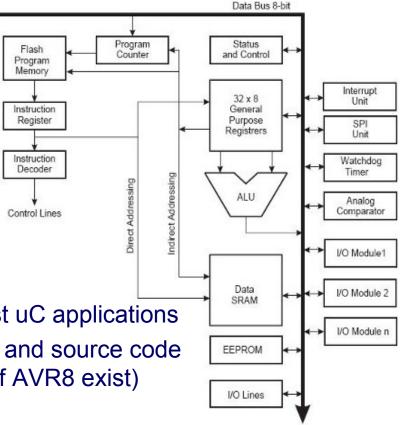
Microcontroller Core Candidates (LEON2-FT)

- Advantages
 - Available from ESA in full VHDL source code
 - No more licensing restrictions with respect to ASIC technology
 - Amba internal bus ready to connect existing peripheral IP cores
 - V8uC" activity with Sitael to remove caches (separate conference paper)
 - Compiler chain available in open source (GCC)



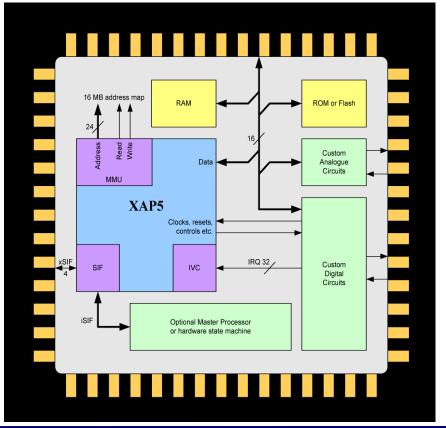
- Drawbacks
 - 32-bit architecture might be oversized for most uC applications
 - Poor code density (register windows, 32-bit addresses)
 - Debug monitor (GRMON) not a free tool

regfile

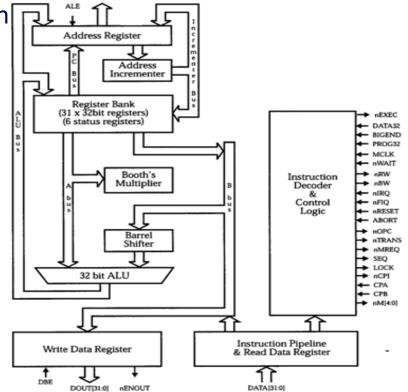

- Advantages
 - European source (Aeroflex Gaisler), excellent support
 - Amba internal bus ready to connect existing peripheral IP cores
 - Compiler chain available in open source (GCC)
 - Cache-less operation possible
 - Well known to the space community
 - Flying on RTAX
 FPGA devices

- Drawbacks
 - Proprietary IP core, licence conditions, cost, source code availability TBD
 - 32-bit architecture might be oversized for most uC applications
 - Poor code density (register windows, 32-bit addresses)
 - Debug monitor (GRMON) not a free tool

Microcontroller Core Candidates (AVR)

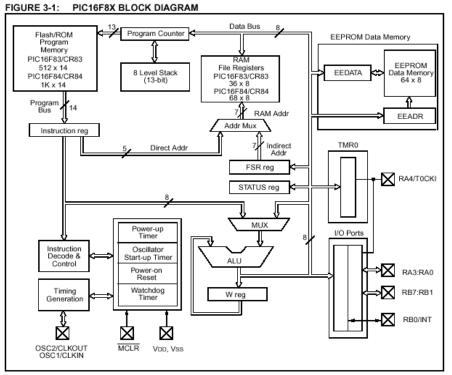

- Advantages
 - One of the leading microcontroller architectures worldwide
 - European source IP core (Atmel Norway)
 - Better code density than LEON2
 - Many tools available from different vendors or open source http://www.bdmicro.com/devtools/

- Drawbacks
 - 8-bit AVR not sufficient
 - 32-bit AVR might be oversized for most uC applications
 - Proprietary IP, licence conditions, cost and source code availability TBD (open source clones of AVR8 exist)
 - On-chip peripheral interface TBD


Microcontroller Core Candidates (XAP)

- Advantages
 - XAP4 16-bit architecture most suitable to requirements
 - 64 kByte addressable memory fits requirements
 - European source IP core (Cambridge Consultants, UK)
 - Very good code density
 - Supplier has shown interest in space activities
 - Evaluated in an ESA study
- Drawbacks
 - Closed source Verilog IP core
 - licence conditions and cost TBD
 - Proprietary SW tools
 - On-chip peripheral interface TBD

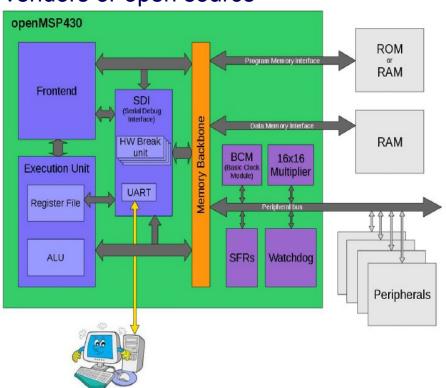
Microcontroller Core Candidates (ARM)


- Advantages
 - One of the leading embedded microcontroller architectures worldwide
 - European source IP core
 - Amba internal bus ready to connect existing peripheral IP cores
 - ARM has shown interest in radiation hardening activities
 - SW tool chains widely available, commercial and open source
- Drawbacks
 - Code density of 32-bit ARM (Thumb is better)
 - Proprietary IP core Source code usually not disclosed

DASIA 2011

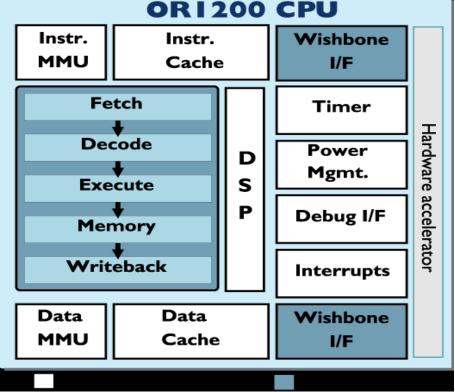
Microcontroller Core Candidates (PIC)

- Advantages
 - Open source IP: http://opencores.org/project,16f84
 - Popular microcontroller
 - Used by ÅAC Microtec in its Nano-RTU
 - Development tools from various sources (free, open, commercial)
 - Used by CNES (Myriade)
- Drawbacks
 - Limited performance (8-bit)
 - Open-source IP maturity is questionable
 - Legal implications of using open-source IP
 - On-chip peripheral interface TBD

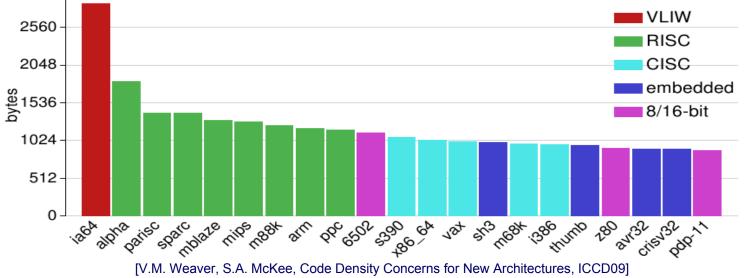


CONTRACTOR LESA Microprocessor Development

Microcontroller Core Candidates (OpenMSP430)


- Advantages
 - Open source Verilog IP (LGPL licence) http://opencores.org/project,openmsp430
 - Compatible with TI MSP430 (follow-up of PDP-11)
 - Many tools available from different vendors or open source
 - 16-bit processor fits requirements
 - 64 kB memory fits requirements

- Drawbacks
 - Maturity of open-source IP TBD
 - Legal implications of using open-source IP TBD
 - On-chip peripheral interface TBD



- Advantages
 - Open source IP: http://opencores.org/openrisc,or1200
 - Fault tolerant version exists and due to fly on an US satellite http://opencores.org/newsletter,2010,09,#n5
 - Proposed in an ESA activity by ÅAC Microtec
- Drawbacks
 - Targeting higher performance:
 32-bit CPU with 5-stage pipeline,
 caches, MMU...
 - On-chip peripheral interface TBD
 - Maturity of open-source IP TBD
 - Legal implications of using open-source IP TBD

Microcontroller Core Code Density Comparison

Code size of a given set of applications compiled for various architectures

- No extreme differences of code size, but
 - PDP-11 (= OpenMSP430?) and AVR32 have higher code density
 - SPARC, ARM are less optimal
- To be re-done with candidate CPU's and space-specific applications
- Comparison in an ESA study for power-control applications
 - Identified XAP4 and OpenMSP430 (both 16-bit) as optimal
 - LEON2 (32-bit) and 8032 (8-bit) have much higher code size

Microcontroller Core Candidates (Summary)

- Some candidates are more likely to be discarded
 - ARM (cost of source code access, hardening to be done)
 - PIC, AVR8 (lack of performance)
 - OpenRISC (overdimensioned, questionable maturity)
 - LEON3-FT (code density, cost of source code access TBD)
 - LEON2-FT (code density, no cache-less operation possible)
- Remaining candidates need additional clarification / assessment
 - AVR32, XAP4: Licensing conditions, source code availability and cost
 - LEON2-V8uC: Maturity of the IP core, code density remains a problem
 - OpenMSP430: IPR associated to the architecture
- Additional investigation required on all candidates
 - Performance versus power consumption
 - Code density, gate count
 - Integration with peripheral IP cores
 - SW tool chains (availability, quality, cost)
 - Non-technical (licensing, cost, support)

Semiconductor Technologies for Microcontrollers (1)

- Requirements
 - Mixed signal capability
 - Integration of a large amount of RAM
 - SEU hardened standard cell library
 - Non-volatile memory (NVM) desirable
 - High-voltage (5 15V) IO's desirable
 - Space qualification (process capability or wafer lot qualification)
- DARE-UMC 180 nm
 - Mixed signal capability available
 - Area and power consuming library, limitiations in memory compiler
 - 90 nm could bring improvement, but funding currently on-hold
- Atmel 180 nm
 - No analog design kits currently available
 - Opening to mixed signal announced (P. Sauvage, ESCCON 2011 https://escies.org/GetFile?rsrcid=49199)

COSA LESA Microprocessor Development

Semiconductor Technologies for Microcontrollers (2)

- LFoundry 150 nm
 - Mixed signal, 5V IO and NVM available
 - ESCC Space process capability study with DLR and Tesat http://www.dlr.de/qp/en/desktopdefault.aspx/tabid-3091/4699_read-6881/
 - Radiation hardened standard cell library currently not available
 - Switch to 150 nm announced by Atmel
- Ramon Chips (Tower 180 nm)
 - SEU hardened library available for 180 nm, 130 nm in preparation
 - Mixed signal capability
 - Device qualification possible (MIL-STD-883)
 - Cooperation agreement between ESA and Israel
 - Embedded NVM TBD
 - Export licence and commercial availability to be clarified
- XFAB 180 nm
 - Mixed signal, 5V IO and NVM available
 - Radiation hardened standard cell library currently not available
 - No space experience so far, but radiation evaluation and the development of a rad-hard library proposed in an ESA activity
 => this is considered as a long term activity

Microcontroller Development Activities at ESA

- V8UC development with Sitael ongoing, to be closed by the end of 2011
 - Cache-less version of LEON2FT separate presentation at this conference
- Microcontroller-2015 (ref. # T701-317ED, TRP workplan 2011 2013)
 - Open competition, to be released after further internal investigation
- Process Portable Mixed-Signal Micro-controller peripherals
 - Network Partnering Initiative (NPI) with University of Seville (proposed, TBC)
- Qualification of Microcontroller planned under ECI3/4 (not yet approved)
- Radiation hardened Digital Power Controller (ETCA)
 - Artes 5.2 with ETCA, feasibility study done, follow-up to be decided http://microelectronics.esa.int/conferences/mesa2010/08_S2_1200_ETCA_Marc_Fossion.pdf
- HBRISC3 Hardened Bi-RISC processor (SABCA)
 - Cacheless, fully deterministic, linear program flow, dual FPU
 - Dedicated to hard real-time motor control
 - HBRISC2 developed in early 2000's, used in Vega
 - HBRISC3 developed for the Ariane 5 ME thrust vector control (TVC) unit
 - Standard component "Control Loop Processor" -- currently no funding http://microelectronics.esa.int/conferences/mesa2010/05_S2_1100_SABCA_Marco_Ruiz.pdf
- Motion Control Chip (Aeroflex Gaisler, ÅAC Microtec, CSEM)
 - TRP activity separate presentation at this conference

Microcontroller – Conclusion (1)

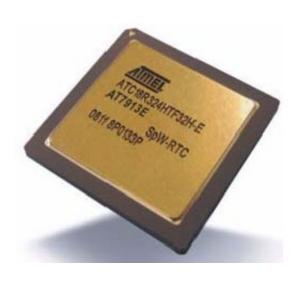
• WHICH Processor IP?

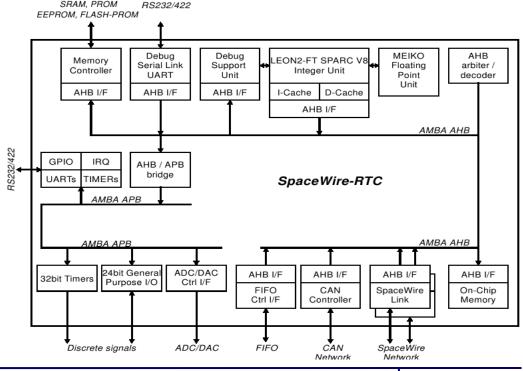
Additional investigation at ESA required

WHICH Semiconductor technology?

Microcontroller – Conclusion (2)

possible answers...


- WHICH Processor IP?
 - Preferably ESA or open source IP or (LEON2FT, V8UC, OpenMSP)
 - Commercial IP (AVR, LEON3FT, XAP4), provided that source code is delivered and an agreement is reached on conditions and cost (access, maintenance, technical support)
 - WHICH Semiconductor technology?
 - Ramon Chips 180 attractive solution
 - commercial availability to be clarified
 - DARE 180 as a back-up
 - Atmel and XFAB possible long term solutions
 - pending qualification and development of rad-hard library


CORA LESA Microprocessor Development

LEON2FT based Microprocessors - AT7913E

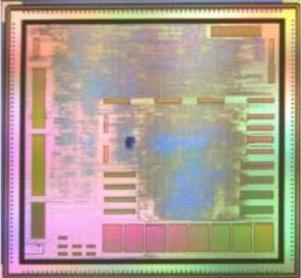
- "Spacewire Remote Terminal Controller"
 - Established on Atmel catalog, brief data sheet and SMD available http://www.atmel.com/dyn/products/product_card.asp?part_id=4595
 - Full user manual not yet available from Atmel, but provided at ESA site: http://microelectronics.esa.int/components/AT7913E_UserManual-2-4.pdf
 - Californium SEU testing performed at ESA Heavy Ion test campaign planned with Atmel SRAM, PROM
 - First missions: BepiColombo, SolarOrbiter

Cesa LESA Microprocessor Development

DASIA 2011

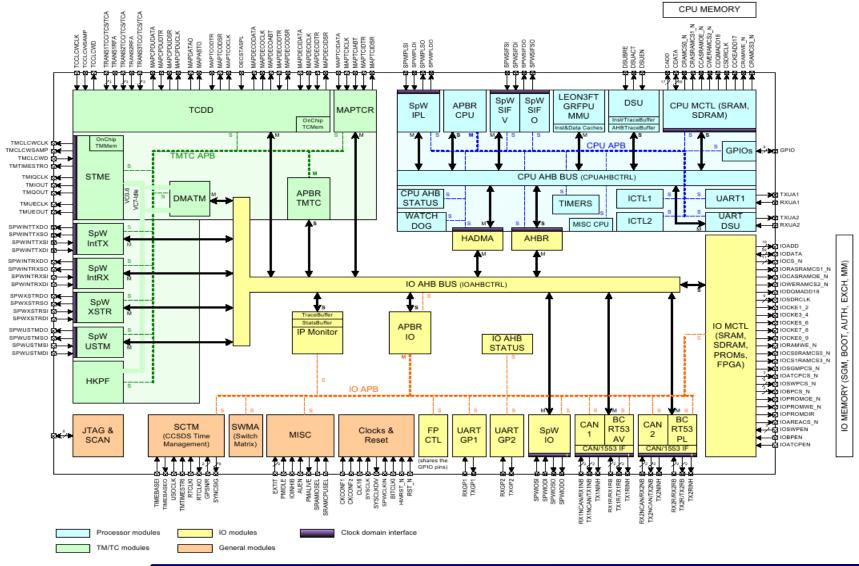
LEON2FT based Microprocessors - AT697

- Standard microprocessor based on LEON2FT with PCI 2.2 interface
 - Established on Atmel catalog: AT697E: http://www.atmel.com/dyn/products/product_card.asp?part_id=3178 AT697F: http://www.atmel.com/dyn/products/product_card.asp?part_id=4599
 - Electrical Characterisation and SEU testing completed
 - Preliminary "Advance Information" data sheets available
 - Final release data sheets at internal review (ESA/Atmel) to be published soon
 - Evaluation boards available
 - ESCC evaluation/qualification: to be completed this summer
 - Selected by numerous projects
 Orders booked since 2009:
 626 EM (TSC695 ~ 1300)
 376 FM (TSC695 ~ 2900)
 - Backlog decreasing
 - Packages LGA349, MQFP256
 MCGA not available any more


COSA LESA Microprocessor Development

LEON3FT based Microprocessors - SCOC3

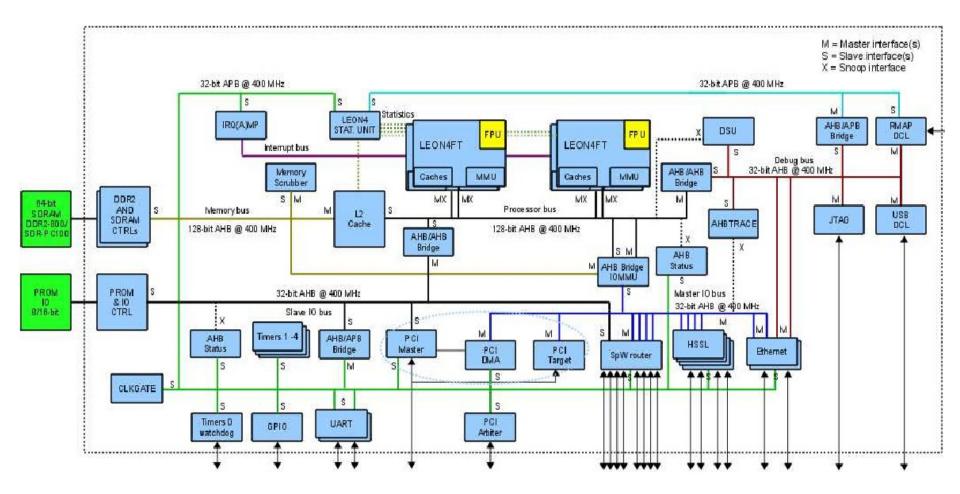
- Spacecraft Controller On-a Chip http://www.astrium.eads.net/node.php?articleid=5360
 - Electrical Characterisation completed
 - Initial SW development by Astrium progressing
 - SEU testing to be performed
 - First missions: SEOSAT and ASTROTERRA (SPOT 6/7)
 - Follow-up activities (ITTs to be released soon)
 - On-board computer for planetary landers (MREP)
 - SCOC3 SW support (BSP/drivers under Edisoft RTEMS 4.8.0 and ECSS software standards (TRP)
 - Comprehensive data-sheet/user manual available
 - To be established as standard component, commercialisation commitment from Astrium, but no EM parts are available from Atmel
 - FPGA-based Evaluation board (STARKIT) developed under CNES contract (separate paper at this conference)
 - Package: LGA472 with 6-sigma columns (currently assembled in the US, to be transferred to Europe)



21 18-May-2011

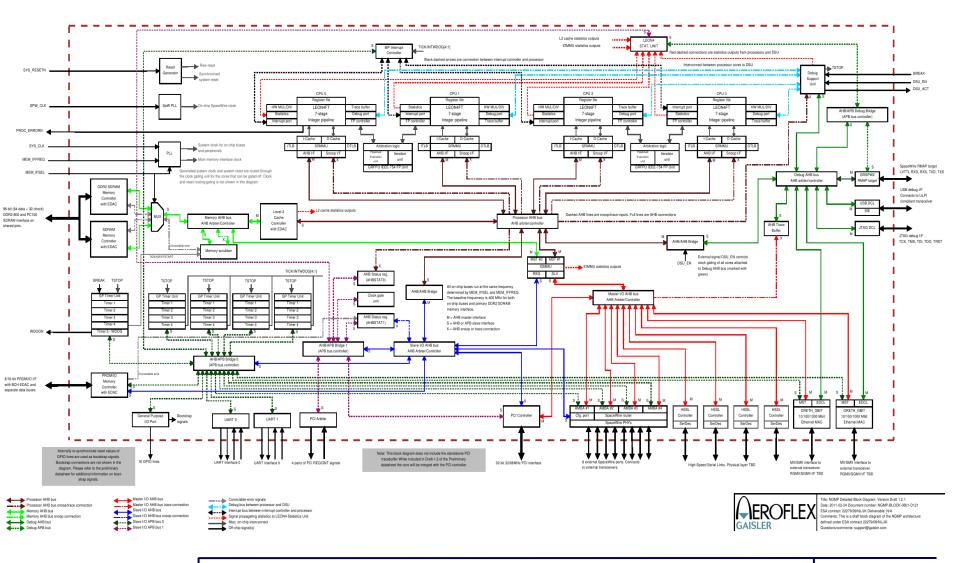
SCOC3 block diagram

Next Generation Microprocessor (history)


- Preliminary study with the GINA project based on LEON3-SMP [DASIA 2006]
 - ALR Pouponnot: "A Giga INstruction Architecture (GINA)" ftp://ftp.estec.esa.nl/pub/wm/wme/Web/Gina2006.pdf
- Microprocessor roundtables 09/2006 and 11/2009
 - http://conferences.esa.int/01C25/Microprocessors (access: cpulink/cpu4space)
 - http://microelectronics.esa.int/cgi-bin/mpsa.cgi
- NGMP development under TRP contract kicked off in June 2009
 - PDR (verified VHDL-RTL) achieved in December 2010
 - Preliminary Datasheet and Verification Report available http://microelectronics.esa.int/ngmp/ngmp.htm
 - FPGA prototypes on various boards available to the user community
 - Activity includes development of SW environment (BSP, compiler, GRMON)
 - Design is ready for synthesis in target technology
 - Currently on hold because ST 65 nm space libraries not available

Next Generation Microprocessor (features)

- Key features of the NGMP architecture
 - Upgrade from LEON3 to LEON4
 - L2 cache, 128-bit AHB processor bus, Branch prediction
 - 4 CPU cores with two shared FPUs (baseline)
 - Multiple AHB bus structure to decouple IO and debug transfer
 - Full MMU protection for processor and DMA IO peripherals
 - Timer and interrupt infrastructure supporting AMP configurations
 - Enhanced debug features
 - DSU, trace buffers on PCI/AHB, performance counters
 - Debug link via Ethernet, JTAG, USB or RMAP
 - 64-bit DDR2 / SDRAM / PROM memory interface with background scrubbing unit
 - High-Speed-Serial link interfaces (based on ST HSSL, details TBD)
 - Spacewire router with 8 external Spacewire ports and 4 internal AHB DMA ports
 - PCI 2.3 32-bit 66 MHz link
 - 2 Ethernet links
 - UARTs
 - GPIOs



Next Generation Microprocessor (block diagram)

Next Generation Microprocessor (detailed block diagram)

26 18-May-2011

Next Generation Microprocessor (roadmap)

- Manufacture and test of prototypes in (non rad-hard) commercial technology
 - TRP contract kicked off in April 2011, planned duration is 1 year
 - Target technology eASIC Nextreme-2 (45 nm structured ASIC)
 - Implementation at target speed (goal 400 MHz)
 - Evaluation boards will be available to the user community
- Next phase: Proto-FM in target technology
 - Budget approved in TRP work-plan 2011 2013 (T701-302ED)
 - Includes radiation and functional validation
 - On-hold: ST 65 nm space library not yet available
- Final phase: FM in target technology
 - Manufacturing of flight models with bugfixes and user feedback
 - Currently no funding (ECI...?)
- Related SW activities (TRP 2011 2013)
 - System Impact of Distributed Multicore Systems (Hypervisor), ongoing
 - Development Environment for Future Leon Multi-core (T702-302SW)
 - Emulators of future NGMP multicore processors (T702-304SW)
 - Schedulability analysis techniques/tools for cached/multicore processors (T702-308SV<u>V)</u>

COBA LESA Microprocessor Development

Conclusion / Outlook

- ERC32 is a successful processor and a mature product
- AT697 is almost ready, and already becoming a success story
 - Atmel has full order books
 - Logistic bottleneck improving, but yet to be fully recovered
 - Documentation and support to be worked on
- SCOC3 in overall a successful development
 - Commercialisation as standard ASIC to be consolidated
 - Radiation testing to be performed
 - Europeanisation of the 6-sigma columns
- NGMP is progressing very well (on schedule)
 - Key challenge is availability of the ST 65 nm space ASIC technology
 - Backup (e.g. DARE 90 or Ramon 130) uncertain (funding!), possible performance degradation
- Microcontroller: 8032 is obsolete, a new microcontroller is key challenge for the coming years
 - Mixed signal ASIC technology ??? Mixed signal peripheral development
 - Selection of processor IP (technical and non-technical criteria)
 - ESA internal consolidation of main baselines before ITT
- Development of companion chips should be undertaken, for example:
 - Spacecraft Management Unit (SMU) Core ASIC as companion chip to NGMP or AT697
 - GSTP activity in preparation with RUAG Sweden