
DAC User Track
July 2009

Slide #
(1)

)

Microelectronics Section

Design of a Single Event Effect fault
tolerant microprocessor for space

using commercial EDA tools

Design Automation Conference
DAC 2009

Roland Weigand

European Space Agency

Roland.Weigand[at]esa.int

Jean Edelin

Atmel Aerospace

Jean.Edelin[at]atmel.com

DAC User Track
July 2009

Slide #
(2)

)

Microelectronics Section

Contents
◆ The AT697 SPARC V8 microprocessor
◆ Radiation effects in space components

➙ Total Ionising Dose (TID) and Single Event Effects (SEE)

�

◆ Mitigation of Single Event Effects
➙ Hardened flip-flops, triple modular redundancy (TMR), glitch filtering
➙ RAM protection by parity and EDAC

◆ STMR: 3 voted flip-flops with 3 phase-skewed clock trees
◆ Impact on design flow

➙ Implementation of STMR in HDL or in netlist
➙ Clock tree synthesis (CTS)

C

➙ Verification
➙ Timing issues
➙ Scan path
➙ EDA tool issues

◆ Overheads for STMR fault tolerant design

DAC User Track
July 2009

Slide #
(3)

)

Microelectronics Section

The AT697 Microprocessor [1]
◆ SPARC V8 Architecture

➙ LEON2 IP core [2]
➙ IEEE 754 FPU
➙ Max. 100 MHz

◆ PCI 2.2 32-bit 33 MHz
◆ SRAM/SDRAM interface
◆ Radiation tolerance

➙ Parity/EDAC on internal and
external memories

➙ Up to 300 kRad total dose
➙ SEU <= 10-5 error/device/day
➙ Latch-up free (70 MeV*cm2/mg)

/

◆ Power consumption <= 1W
◆ Atmel 180 nm technology [1]

➙ Packages: MCGA 349, QFP 256

DAC User Track
July 2009

Slide #
(4)

)

Microelectronics Section

Floorplan of the AT697

DAC User Track
July 2009

Slide #
(5)

)

Microelectronics Section

Radiation effects in space components
◆ Total Ionising Dose (TID)

�

➙ Defects in the semiconductor lattice, degradation of mobility and Vth

➙ Reduced speed, increased leakage current at end-of-life
➙ Mitigation: process, cell layout (guardrings), design margins (derating)

�

◆ Single Event Effects (SEE)

�

➙ Electron-hole pair generation by interaction with heavy ions
➙ Glitches when carriers are caught by drain pn-junctions
Drawing from: [3]

DAC User Track
July 2009

Slide #
(6)

)

Microelectronics Section

Single Event Effects
◆ Single Event Latchup (SEL)

S

➙ SEE induced triggering of parasitic thyristors
➙ Mitigation by process and library cell design

◆ Single Event Upset (SEU) in Flip-Flops and SRAM
➙ SEE glitch inside the bistable feedback loop of storage point
➙ Immediate bit flip → loss of information, change of state, functional fault

◆ Single Event Transients (SET) in clocks and resets
➙ Glitches on clocks → change of state, functional fault
➙ Asynchronous resets are clock-like signals

◆ Single Event Transients (SET) in combinatorial logic
➙ SEE glitches in combinatorial logic behave like cross-talk effects
➙ Causes SEU when arriving at flip-flop/memory D-input during clock edge
➙ Sensitivity increases with clock frequency
➙ Synchronous resets are like combinatorial signals

DAC User Track
July 2009

Slide #
(7)

)

Microelectronics Section

◆ Standard synchronous RTL design

◆ SEU hardened flip-flops

◆ Triple Modular Redundancy (TMR) flip-flops

Mitigation of SEU in Flip-Flops

DAC User Track
July 2009

Slide #
(8)

)

Microelectronics Section

Mitigation of combinatorial SET
◆ Triple redundancy of flip-flops and combinatorial logic [4]

◆ Glitch Filtering on all flip-flop inputs [5]
(P. Mongkolkachit, Pitsini; Bharat Bhuva, 2003)

(

◆ STMR: TMR flip-flop with triple skewed clock trees
➙ Selected for the AT697 microprocessor, see next slide...

DAC User Track
July 2009

Slide #
(9)

)

Microelectronics Section

δ

FF1 FF2 FF3

Majority
Voter

Q1

Q2

Q3

clock tree 3

clock
tree 2

clock
tree 1

D1 D2

D3

clk

D

Q

δ

clk2

clk1

clk3

SET pulse

SET latched into
FF1 only

Q remains at correct value

STMR: TMR with triple skewed clock

Triplicated clock tree

and skewed clocks

δ ~ SET pulse length

By skewing the clocks, a glitch at D can be latched at most in one of the 3 FF

Q = (Q1 and Q2) or (Q2 and Q3) or (Q1 and Q3)

DAC User Track
July 2009

Slide #
(10)

)

Microelectronics Section

◆ Insertion of STMR into the design
➙ Create TMR flip-flops in RTL or post-synthesis
➙ Generation of triple skewed clock trees

◆ Increased complexity affects the design flow and –results
➙ Increased cell and node count → higher tool runtime (or crashes)

�

➙ Optimisation is less efficient, higher interconnect delay

◆ Synthesis tools are designed to remove redundancy
➙ Don't use sequential optimisation (register merging, pipelining, retiming)

�

◆ Timing issues
➙ TMR voters and clock skewing reduces maximum speed
➙ Clock skewing can be removed by hold-time fix

◆ Verification and test issues
➙ TMR and formal verification (1 FF in RTL  3 FF at gate level)

➙ TMR (= redundancy) affects testability in scan testing
➙ Implementation of protection has to be verified at netlist level

Impacts on the RTL-GDS design flow

DAC User Track
July 2009

Slide #
(11)

)

Microelectronics Section

STMR insertion at RTL or gate level
STMR in VHDL
➙ Clock nets/ports are a vector of 3 bit
➙ Use the “two-process” method [6]

-- One process per TMR domain:
rx0 : process(clk) begin

 if rising_edge(clk(0)) then r0 <= d;

end if; end process;

rx1 : process(clk) begin

 if rising_edge(clk(1)) then r1 <= d;

end if; end process;

rx2 : process(clk) begin

 if rising_edge(clk(2)) then r2 <= d;

end if; end process;

-- Vote outputs
r <= (r0 and r1) or (r0 and r2) or (r1 and r2);

➙ Synthesis with TMR in one go
➙ Disallow register merging
➙ Structural verification required

STMR at gate level
➙ Used mainly for third party IP
➙ Library and tool dependent
➙ Synthesise netlist without TMR
➙ Create HDL package with TMR

equivalent macro-cells
➙ Edit netlist to triplicate clocks and

asynchronous resets

sed -e 's/CLK\(.*\) std_logic/CLK\1
std_logic_vector(2 downto 0) /'

➙ Edit netlist replacing every flip-flop by
its TMR equivalent

sed -e 's/DFF1/DFF1_TMR/'

sed -e 's/DFF2/DFF2_TMR/'

➙ Resynthesise the edited netlist, linking
with the TMR macro-cell package

➙ Disallow register merging
➙ Structural verification required

DAC User Track
July 2009

Slide #
(12)

)

Microelectronics Section

Inserting triple skewed clock/reset trees

◆ Clock Tree Synthesis (CTS) optimises skew inside a clock tree
➙ Need control over the insertion delay (δ1 = δ2)

2

➙ Synthesis of several coherent trees not provided by CTS
➙ Compromise: insert three distinct trees with well adjusted CTS parameters

◆ Delay δ inserted at the origin of the clock trees
➙ Instantiate delay buffers in the VHDL source code for simulation

➙ Model δ at synthesis by set_ideal_latency and set_propagated_clock

➙ Initial value for δ is speculative → control/adjustment in backend process

◆ Combinatorial logic on clock/asynchronous reset
➙ Needs to be triplicated as well

DAC User Track
July 2009

Slide #
(13)

)

Microelectronics Section

Coherent clock trees
We need to control the

relative clock latency:

X

X+δ
X+2*δ

CTS did not achieve goal

→

Manual adjustment of
delay elements required

DAC User Track
July 2009

Slide #
(14)

)

Microelectronics Section

Mastering skew inside each clock tree

Above:

 δ ~ 800 ps

high variance

Below:

 δ ~ 600 ps

low variance

DAC User Track
July 2009

Slide #
(15)

)

Microelectronics Section

Verification of STMR
➙TMR is larger and slower than normal flip-flops

» Redundancy removed by logic optimisation (synthesis and back-end)

�

» TMR modified by timing optimisation

➙Defects in redundant structures do not appear at simulation
» TMR simulation “works” even if only two of the three FF are correct

???????????

DAC User Track
July 2009

Slide #
(16)

)

Microelectronics Section

Verification of STMR
➙TMR is larger and slower than normal flip-flops

» Redundancy removed by logic optimisation (synthesis and back-end)

�

» TMR modified by timing optimisation

➙Defects in redundant structures do not appear at simulation
» TMR simulation “works” even if only two of the three FF are correct

⇒⇒⇒⇒⇒⇒⇒

➙Structural and formal verification required
» Presence of triple FF, correct wiring of the three clock/reset domains

» Parsing the netlist with scripts (grep)

�

» Increasing complexity requires formal verification tools

➙Timing analysis of clock trees
» Measure insertion delay from clock root (PLL) to every flip-flop

» Difference between clock arrival and data arrival

DAC User Track
July 2009

Slide #
(17)

)

Microelectronics Section

Structural and Formal Verification
◆ COTS formal verification tools get confused

➙ Netlist contains three FF for one described in RTL
➙ Workarounds: declare equivalence of flip-flops
➙ Script/constraint was provided by tool vendor

◆ Structural verification of TMR
➙ Netlist parsing was used in our project
➙ Formal verification, custom tool developed at ESA [7]
➙ NASA/Mentor: Formal verification for TMR designs [3]

◆ Fault injection
➙ Fault injection by simulation

» Example: SST, an SEU simulation tool developed at ESA [8]
➙ Fault emulation by FPGA emulation

» Example: FT-Unshades [9]

◆ Radiation Testing
➙ Expensive, and only after manufacturing

DAC User Track
July 2009

Slide #
(18)

)

Microelectronics Section

TMR Timing Issues

TMR voters and clock skewing reduce operating frequency

q2a

q1aFF1

FF2

FF3
tsetup
tprop Voter

δvoter

q3a

d1a

d2a

d3a

q2a

q1aFF1

FF2

FF3
Voter
δvoter

q3a

d1a

d2a

d3a

clk3

clk2

clk1clk

δ

δ

combinat.
logic
δlogic

Cycle Time T >= tprop + δ logic + tsetup + δvoter + 2δ

DAC User Track
July 2009

Slide #
(19)

)

Microelectronics Section

Hold violations with skewed clocks

When propagation delays (tprop, voter) < (2 δ) clock skew

 hold violation FFA1  FFB3

clk3

clk2

clk1clk

δ

FFA1

FFA2

FFA3
tsetup
tprop

Voter

FFB1

FFB2

FFB3
tsetup
tprop

Voter

δ

DAC User Track
July 2009

Slide #
(20)

)

Microelectronics Section

Wrong hold fix by EDA tool

Automatic buffer insertion by fix-hold of backend tool
compensates clock skew  and spoils SET protection

clk3

clk2

clk1clk

δ

δ

FFA1

FFA2

FFA3
tsetup
tprop

Voter

FFB1

FFB2

FFB3
tsetup
tprop

Voter

γ

DAC User Track
July 2009

Slide #
(21)

)

Microelectronics Section

Clock spread dilution by wrong hold fix

◆ Difference between clock and data arrival in each TMR triplet

δ

FF1 FF2 FF3

Majority
Voter

Q1

Q2

Q3

clock tree 3

clock
tree 2

clock
tree 1

D1 D2

D3

clk

D

Q

δ

clk2

clk1

clk3

SET pulse

SET latched into
FF1 only

Q remains at correct value

DAC User Track
July 2009

Slide #
(22)

)

Microelectronics Section

Clock spread dilution by wrong hold fix

[T(clk2) – T(d2)] – [T(clk1) – T(d1)]
◆ Difference between clock and data arrival in each TMR triplet

➙ Before hold-fix: well pronounced peak δeff = δnominal

➙ Clock skew creates many hold violations
➙ After wrong hold-fix: two maxima (with and without delay insertion)

A

δ

FF1 FF2 FF3

Majority
Voter

Q1

Q2

Q3

clock tree 3

clock
tree 2

clock
tree 1

D1 D2

D3

clk

D

Q

δ

clk2

clk1

clk3

SET pulse

SET latched into
FF1 only

Q remains at correct value

DAC User Track
July 2009

Slide #
(23)

)

Microelectronics Section

Correct hold fix

Group FF belonging to the same triplet and dont_touch

 SET protection through clock skew conserved

clk3

clk2

clk1clk

δ

δ

FFA1

FFA2

FFA3
tsetup
tprop

Voter

FFB1

FFB2

FFB3
tsetup
tprop

Voterγ

DAC User Track
July 2009

Slide #
(24)

)

Microelectronics Section

Scan Path Insertion (wrong)

S

Scan path routing across sub-clock domains  hold violations

clk3

clk2

clk1clk

δ

δ

FFA1

FFA2

FFA3
tsetup
tprop

si2
qa1

si3
qa2

qa3

si1 FFB1

FFB2

FFB3
tsetup
tprop

si2
qb1

si3
qb2

qb3

si1

DAC User Track
July 2009

Slide #
(25)

)

Microelectronics Section

Scan Path Insertion (right)

S

Better: one scan path per sub-clock domain

clk3

clk2

clk1clk

δ

δ

FFA1

FFA2

FFA3
tsetup
tprop

si2

si3 qa3 --> sib3

si1 FFB1

FFB2

FFB3
tsetup
tprop

qa2 --> sib2 qb2

qb3

qa1 --> sib1 qb3

DAC User Track
July 2009

Slide #
(26)

)

Microelectronics Section

Overheads: area, power, performance
◆ TMR flip-flops

➙ Area overhead >~ factor 3
➙ Power consumption ~ factor 3

◆ Performance impact
➙ (δvoter + 2δ) /period(10 ns) → ~ 10-20%

➙ Secondary effect: larger design, higher interconnect

◆ Area overhead is mainly on flip-flops
➙ Cost for fault tolerance (FT) depends on sequential/combinatorial ratio
➙ Design with 50% flip-flops (non-FT) gets twice as big (3*seq + 1*comb)

�

◆ Additional overhead for hold-fix buffer insertion
➙ δ >~ 600 ps → hold violation in feedback path of enable flip-flops
➙ Many enable flip-flops implemented in the processor (pipeline freeze function)

�

➙ Instance count in netlist increased from 160000 to 260000 after hold fix
➙ Remedy: reduce the deliberate clock skew δ

• trade-off SET protection (value of δ) and hold margin (guard band)

�

2.575%

250%

1.525%

Area overheadShare of flip-flops

DAC User Track
July 2009

Slide #
(27)

)

Microelectronics Section

Protection of SRAM blocks
◆ EDAC (Error Detection And Correction) for register files

➙ Usually corrects single and detects multiple bit flips per memory word
➙ Regular access required to preventing error accumulation (scrubbing)

�

➙ Control state machine required to rewrite corrected data
➙ Impact on max. clock frequency (XOR tree)

�

◆ Parity protection for cache memories
➙ Simple parity allows detection but no hardware correction
➙ When redundant data is available elsewhere in the system

» Embedded cache memories (duplicates of external memory)  LEON2-FT
» Duplicated memories (reload correct data from replica)  LEON3-FT

➙ On error: reload in by hardware state machine or software (reboot)

�

◆ EDAC for external RAM

DAC User Track
July 2009

Slide #
(28)

)

Microelectronics Section

EDA tool issues
◆ Increasing SEE awareness also in non-space designs

➙ High availability products
» Networking
» Medical

» Aircraft
◆ ASIC EDA tools have little support for SEE-tolerant design

➙ Hotlines may help to find workarounds
➙ Built-in support in some FPGA tools, pushed by FPGA vendors
➙ Dedicated tool development difficult to reach same performance

◆ Our wish list for tools
➙ Controlling optimisation of redundancy
➙ Generation (CTS) of triple coherent clock trees
➙ Formal verification for TMR designs

◆ Alternative: SEU and SET protected flip-flop as library cells
➙ DICE cells + glitch filtering at inputs

DAC User Track
July 2009

Slide #
(29)

)

Microelectronics Section

Conclusion
◆ SEU and SET protection possible with standard flip-flops

➙ STMR: TMR flip-flops with three phase-skewed clock trees
➙ Protection of memories by parity and EDAC schemes
➙ About 100% area and power overhead (design dependent)

�

➙ About 10-20% speed performance reduction

◆ STMR requires tricks and workarounds in the design flow
➙ Mastering clock skew and hold fix
➙ Prevent optimising away the desired redundancy

◆ Thorough verification required
➙ Classical verification methods may fail or do not detect the errors
➙ Scripts or special tools required

◆ Our activities
➙ http://www.esa.int/TEC/Microelectronics

Questions?

DAC User Track
July 2009

Slide #
(30)

)

Microelectronics Section

References/Links (1)

�

[1] AT697E, AT697F and ATC18RHA page at Atmel

http://www.atmel.com/dyn/products/product_card.asp?part_id=3178

http://www.atmel.com/dyn/products/product_card.asp?part_id=4599

http://www.atmel.com/dyn/products/product_card.asp?part_id=2318

[2] The LEON2-FT IP core

http://www.esa.int/TEC/Microelectronics/SEMUD70CYTE_0.html

[3] Melanie Berg: Design for Radiation Effects

http://nepp.nasa.gov/mapld_2008/presentations/i/01%20-
%20Berg_Melanie_mapld08_pres_1.pdf

[4] Sandi Habinc: Functional Triple Modular Redundancy (FTMR)

http://microelectronics.esa.int/techno/fpga_003_01-0-2.pdf

[5] Mongkolkachit, P.; Bhuva, B.: Design technique for mitigation of alpha-
particle-induced single-event transients in combinational logic

IEEE Transactions on Device and Materials Reliability, Sept. 2003

[6] Jiri Gaisler: A structured VHDL design method

http://www.gaisler.com/doc/vhdl2proc.pdf

DAC User Track
July 2009

Slide #
(31)

)

Microelectronics Section

References/Links (2)

�

[7] Simon Schulz, Giovanni Beltrame, David Merodio Codinachs:
 Smart Behavioural Netlist Simulation for SEU Protection Verification

http://microelectronics.esa.int/papers/SimonSchulzInFault.pdf

[8] SST: The SEU Simulation Tool

http://microelectronics.esa.int/asic/SST-FunctionalDescription1-3.pdf

http://www.nebrija.es/~jmaestro/esa/sst.htm

[9] FT-Unshades, a Xilinx-based SEU emulator

http://microelectronics.esa.int/mpd2004/FT-UNSHADES_presentation_v2.pdf

[10] Actel Core generator

http://www.actel.com/documents/EDAC_AN.pdf

[11] The Xilinx XTMR tool

http://klabs.org/mapld05/presento/238_rezgui_p.ppt

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

