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Contents
◆ The AT697 SPARC V8 microprocessor
◆ Radiation effects in space components

➙ Total Ionising Dose (TID) and Single Event Effects (SEE)

�

◆ Mitigation of Single Event Effects
➙ Hardened flip-flops, triple modular redundancy (TMR), glitch filtering
➙ RAM protection by parity and EDAC

◆ STMR: 3 voted flip-flops with 3 phase-skewed clock trees 
◆ Impact on design flow

➙ Implementation of STMR in HDL or in netlist
➙ Clock tree synthesis (CTS)

C

➙ Verification
➙ Timing issues
➙ Scan path
➙ EDA tool issues

◆ Overheads for STMR fault tolerant design
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The AT697 Microprocessor [1]
◆ SPARC V8 Architecture

➙ LEON2 IP core [2]
➙ IEEE 754 FPU
➙ Max. 100 MHz

◆ PCI 2.2 32-bit 33 MHz
◆ SRAM/SDRAM interface
◆ Radiation tolerance

➙ Parity/EDAC on internal and 
external memories

➙ Up to 300 kRad total dose
➙ SEU <= 10-5 error/device/day
➙ Latch-up free (70 MeV*cm2/mg)

/

◆ Power consumption <= 1W
◆ Atmel 180 nm technology [1]

➙ Packages: MCGA 349, QFP 256
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Floorplan of the AT697
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Radiation effects in space components
◆ Total Ionising Dose (TID)

�

➙ Defects in the semiconductor lattice, degradation of mobility and Vth  

➙ Reduced speed, increased leakage current at end-of-life
➙ Mitigation: process, cell layout (guardrings), design margins (derating)

�

◆ Single Event Effects (SEE)

�

➙ Electron-hole pair generation by interaction with heavy ions
➙ Glitches when carriers are caught by drain pn-junctions
Drawing from: [3]
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Single Event Effects
◆ Single Event Latchup (SEL)

S

➙ SEE induced triggering of parasitic thyristors
➙ Mitigation by process and library cell design

◆ Single Event Upset (SEU) in Flip-Flops and SRAM
➙ SEE glitch inside the bistable feedback loop of storage point
➙ Immediate bit flip →  loss of information, change of state, functional fault

◆ Single Event Transients (SET) in clocks and resets
➙ Glitches on clocks → change of state, functional fault
➙ Asynchronous resets are clock-like signals

◆ Single Event Transients (SET) in combinatorial logic 
➙ SEE glitches in combinatorial logic behave like cross-talk effects
➙ Causes SEU when arriving at flip-flop/memory D-input during clock edge
➙ Sensitivity increases with clock frequency
➙ Synchronous resets are like combinatorial signals
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◆ Standard synchronous RTL design

◆ SEU hardened flip-flops

◆ Triple Modular Redundancy (TMR) flip-flops

Mitigation of SEU in Flip-Flops
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Mitigation of combinatorial SET
◆ Triple redundancy of flip-flops and combinatorial logic [4]

◆ Glitch Filtering on all flip-flop inputs [5]
(P. Mongkolkachit, Pitsini; Bharat Bhuva, 2003)

(

◆ STMR: TMR flip-flop with triple skewed clock trees 
➙ Selected for the AT697 microprocessor, see next slide...
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δ

FF1 FF2 FF3
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Q3

clock tree 3

clock
tree 2

clock
tree 1

D1 D2

D3

clk

D

Q

δ

clk2

clk1

clk3

SET pulse

SET latched into
FF1 only

Q remains at correct value

STMR: TMR with triple skewed clock

Triplicated clock tree

and skewed clocks

δ  ~ SET pulse length

By skewing the clocks, a glitch at D can be latched at most in one of the 3 FF

Q = (Q1 and Q2) or (Q2 and Q3) or (Q1 and Q3) 
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◆ Insertion of STMR into the design
➙ Create TMR flip-flops in RTL or post-synthesis
➙ Generation of triple skewed clock trees

◆ Increased complexity affects the design flow and –results
➙ Increased cell and node count → higher tool runtime (or crashes)

�

➙ Optimisation is less efficient, higher interconnect delay

◆ Synthesis tools are designed to remove redundancy
➙ Don't use sequential optimisation (register merging, pipelining, retiming)

�

◆ Timing issues
➙ TMR voters and clock skewing reduces maximum speed
➙ Clock skewing can be removed by hold-time fix

◆ Verification and test issues
➙ TMR and formal verification (1 FF in RTL   3 FF at gate level)

 

➙ TMR (= redundancy) affects testability in scan testing
➙ Implementation of protection has to be verified at netlist level

Impacts on the RTL-GDS design flow 
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STMR insertion at RTL or gate level 
STMR in VHDL
➙ Clock nets/ports are a vector of 3 bit
➙ Use the “two-process” method [6]

-- One process per TMR domain:
rx0 : process(clk) begin

      if rising_edge(clk(0)) then r0 <= d;

end if; end process;

rx1 : process(clk) begin

      if rising_edge(clk(1)) then r1 <= d;

end if; end process;

rx2 : process(clk) begin

      if rising_edge(clk(2)) then r2 <= d; 

end if; end process;

-- Vote outputs
r <= (r0 and r1) or (r0 and r2) or (r1 and r2);

➙ Synthesis with TMR in one go
➙ Disallow register merging
➙ Structural verification required

STMR at gate level
➙ Used mainly for third party IP
➙ Library and tool dependent
➙ Synthesise netlist without TMR
➙ Create HDL package with TMR 

equivalent macro-cells
➙ Edit netlist to triplicate clocks and 

asynchronous resets 

sed -e 's/CLK\(.*\) std_logic/CLK\1 
std_logic_vector(2 downto 0) /'

➙ Edit netlist replacing every flip-flop by 
its TMR equivalent 

sed -e 's/DFF1/DFF1_TMR/'

sed -e 's/DFF2/DFF2_TMR/'

➙ Resynthesise the edited netlist, linking 
with the TMR macro-cell package

➙ Disallow register merging
➙ Structural verification required
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Inserting triple skewed clock/reset trees

◆ Clock Tree Synthesis (CTS) optimises skew inside a clock tree
➙ Need control over the insertion delay ( δ1 = δ2 )

2

➙ Synthesis of several coherent trees not provided by CTS
➙ Compromise: insert three distinct trees with well adjusted CTS parameters 

◆ Delay δ inserted at the origin of the clock trees
➙ Instantiate delay buffers in the VHDL source code for simulation

➙ Model δ at synthesis by set_ideal_latency and set_propagated_clock 

➙ Initial value for δ is speculative →  control/adjustment in backend process

◆ Combinatorial logic on clock/asynchronous reset
➙ Needs to be triplicated as well
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Coherent clock trees
We need to control the

relative clock latency:

X

X+δ
X+2*δ

CTS did not achieve goal

→  

Manual adjustment of 
delay elements required
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Mastering skew inside each clock tree

Above: 

 δ ~ 800 ps

high variance

Below:

 δ ~ 600 ps

low variance
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Verification of STMR
➙TMR is larger and slower than normal flip-flops

» Redundancy removed by logic optimisation (synthesis and back-end)

�

» TMR modified by timing optimisation

➙Defects in redundant structures do not appear at simulation
» TMR simulation “works” even if only two of the three FF are correct

???????????
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Verification of STMR
➙TMR is larger and slower than normal flip-flops

» Redundancy removed by logic optimisation (synthesis and back-end)

�

» TMR modified by timing optimisation

➙Defects in redundant structures do not appear at simulation
» TMR simulation “works” even if only two of the three FF are correct

⇒⇒⇒⇒⇒⇒⇒

➙Structural and formal verification required
» Presence of triple FF, correct wiring of the three clock/reset domains

» Parsing the netlist with scripts (grep)

�

» Increasing complexity requires formal verification tools

➙Timing analysis of clock trees
» Measure insertion delay from clock root (PLL) to every flip-flop

» Difference between clock arrival and data arrival
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Structural and Formal Verification
◆ COTS formal verification tools get confused

➙ Netlist contains three FF for one described in RTL
➙ Workarounds: declare equivalence of flip-flops
➙ Script/constraint was provided by tool vendor

◆ Structural verification of TMR
➙ Netlist parsing was used in our project
➙ Formal verification, custom tool developed at ESA [7]
➙ NASA/Mentor: Formal verification for TMR designs [3]

◆ Fault injection
➙ Fault injection by simulation

» Example: SST, an SEU simulation tool developed at ESA [8]
➙ Fault emulation by FPGA emulation

» Example: FT-Unshades [9]

◆ Radiation Testing
➙ Expensive, and only after manufacturing
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TMR Timing Issues

TMR voters and clock skewing reduce operating frequency

q2a

q1aFF1

FF2

FF3
tsetup
tprop Voter

δvoter

q3a
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d2a
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d1a

d2a

d3a

clk3
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clk1clk

δ

δ

combinat.
logic
δlogic

Cycle Time T >= tprop + δ logic + tsetup + δvoter + 2δ
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Hold violations with skewed clocks

When propagation delays  (tprop, voter) < (2 δ)   clock skew 

  hold violation FFA1   FFB3

clk3

clk2

clk1clk

δ

FFA1

FFA2

FFA3
tsetup
tprop

Voter

FFB1

FFB2

FFB3
tsetup
tprop

Voter

δ
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Wrong hold fix by EDA tool

Automatic buffer insertion by fix-hold of backend tool 
compensates clock skew   and spoils SET protection

clk3

clk2

clk1clk

δ

δ

FFA1

FFA2

FFA3
tsetup
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Voter

FFB1

FFB2

FFB3
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Clock spread dilution by wrong hold fix

   
◆ Difference between clock and data arrival in each TMR triplet

δ

FF1 FF2 FF3
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clock tree 3

clock
tree 2

clock
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D
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SET latched into
FF1 only
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Clock spread dilution by wrong hold fix

[T(clk2) – T(d2)] – [T(clk1) – T(d1)]    
◆ Difference between clock and data arrival in each TMR triplet

➙ Before hold-fix: well pronounced peak δeff = δnominal

➙ Clock skew creates many hold violations
➙ After wrong hold-fix: two maxima (with and without delay insertion)

A

δ
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clk
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SET pulse

SET latched into
FF1 only

Q remains at correct value
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Correct hold fix

Group FF belonging to the same triplet and dont_touch

 SET protection through clock skew conserved

clk3
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clk1clk

δ

δ
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tsetup
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Voter
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Scan Path Insertion (wrong)

S

Scan path routing across sub-clock domains  hold violations 
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Scan Path Insertion (right)

S

Better: one scan path per sub-clock domain

clk3

clk2

clk1clk

δ

δ

FFA1

FFA2

FFA3
tsetup
tprop

si2

si3 qa3 --> sib3

si1 FFB1

FFB2

FFB3
tsetup
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qa2 --> sib2 qb2

qb3

qa1 --> sib1 qb3
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Overheads: area, power, performance 
◆ TMR flip-flops

➙ Area overhead >~ factor 3
➙ Power consumption ~ factor 3

◆ Performance impact
➙ (δvoter + 2δ) /period(10 ns) → ~ 10-20%

➙ Secondary effect: larger design, higher interconnect 

◆ Area overhead is mainly on flip-flops
➙ Cost for fault tolerance (FT) depends on sequential/combinatorial ratio
➙ Design with 50% flip-flops (non-FT) gets twice as big (3*seq + 1*comb)

�

◆ Additional overhead for hold-fix buffer insertion
➙ δ >~ 600 ps → hold violation in feedback path of enable flip-flops
➙ Many enable flip-flops implemented in the processor (pipeline freeze function)

�

➙ Instance count in netlist increased from 160000 to 260000 after hold fix
➙ Remedy: reduce the deliberate clock skew δ

•  trade-off SET protection (value of δ) and hold margin (guard band)

�

2.575%

250%

1.525%

Area overheadShare of flip-flops
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Protection of SRAM blocks
◆ EDAC (Error Detection And Correction) for register files

➙ Usually corrects single and detects multiple bit flips per memory word
➙ Regular access required to preventing error accumulation (scrubbing)

�

➙ Control state machine required to rewrite corrected data
➙ Impact on max. clock frequency (XOR tree)

�

◆ Parity protection for cache memories
➙ Simple parity allows detection but no hardware correction
➙ When redundant data is available elsewhere in the system

» Embedded cache memories (duplicates of external memory)  LEON2-FT
» Duplicated memories (reload correct data from replica)  LEON3-FT

➙ On error: reload in by hardware state machine or software (reboot)

�

◆ EDAC for external RAM
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EDA tool issues
◆ Increasing SEE awareness also in non-space designs

➙ High availability products
» Networking
» Medical

» Aircraft
◆ ASIC EDA tools have little support for SEE-tolerant design

➙ Hotlines may help to find workarounds
➙ Built-in support in some FPGA tools, pushed by FPGA vendors
➙ Dedicated tool development difficult to reach same performance

◆ Our wish list for tools
➙ Controlling optimisation of redundancy
➙ Generation (CTS) of triple coherent clock trees
➙ Formal verification for TMR designs

◆ Alternative: SEU and SET protected flip-flop as library cells
➙ DICE cells + glitch filtering at inputs
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Conclusion
◆ SEU and SET protection possible with standard flip-flops

➙ STMR: TMR flip-flops with three phase-skewed clock trees
➙ Protection of memories by parity and EDAC schemes
➙ About 100% area and power overhead (design dependent)

�

➙ About 10-20% speed performance reduction

◆ STMR requires tricks and workarounds in the design flow
➙ Mastering clock skew and hold fix
➙ Prevent optimising away the desired redundancy

◆ Thorough verification required
➙ Classical verification methods may fail or do not detect the errors
➙ Scripts or special tools required

◆ Our activities
➙ http://www.esa.int/TEC/Microelectronics

Questions?
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