

AUTHENTICATION

in the Telecommand Link to Improve Security

Calum B. Smith, Agustín Fernández León

Outline

- THREATS TO THE TC UPLINK
- IMPERSONATION ATTACK
- AUTHENTICATION: THE CONCEPT
- ESA AUTHENTICATION
- ENCRYPTION vs. AUTHENTICATION
- AUTHENTICATION OVERHEADS
- CONCLUSIONS

TC Uplink Security

- End-to-end security: very broad subject
- Many, diverse threats
 - Accidental / Intentional
 - Environmental / Human induced
- Wide range of security measures
 - various disciplines: RF, radiation, cryptology, etc
 - Several Communication Layers and Subsystems involved

A few threat examples ...

IMPERSONATION ATTACKS

Inserting illicit TCs
Replay attack

- Cases already openly reported
- CCSDS/ESA TC formats are public domain
- Ground equipment to send TCs is relatively cheap, easy to assemble and run
- Any near Earth S/C is a potential target

Severe consequences: Satellites can be hijacked or destroyed.

AUTHENTICATION: the concept

Mechanism to detect and discard illicit TCs

On ground: A binary "signature" is generated and inserted in the TC frame.

On board: The incoming TC's signature is compared to a signature generated on-board. If signatures match, the TC will be accepted as valid (coming from an *authentic* source) and, otherwise, it will be rejected.

The signature of each TC being sent must be virtually impossible to guess or reproduce by a non authorised party

ESA Authentication

1993 ESA PSS-04-151 "TC Decoder Specification" describes in detail ESA AU

1999 CCSDS 350.0-G-1 "The Application of CCSDS Protocols to Secure Systems"

Application data

Packetisation Packet

Segmentation Segment

Authentication Authenticated Segment

ESA Authentication

1993 ESA PSS-04-151 "TC Decoder Specification" describes in detail ESA AU

1999 CCSDS 350.0-G-1 "The Application of CCSDS Protocols to Secure Systems"

ESA Authentication Tail (1): The LAC

LAC (Logical Authentication Channel)

LAC Count

+ LA

LAC ID

LAC count: • 30-bit count incremented with every new TC.

- Input to the signature generation.
- Identical TC Segments have different LACs -> no replay attacks
- 3 independent LAC Counts are maintained on-board, and ground:
 - 1 Principal: nominal use, in-flight programmable
 - 2 Auxiliary: nominal use, in-flight programmable
 - 3 Recovery: emergencies, non-volatile, in-flight programmable

LAC ID:

2 bits indicating which LAC count is used

ESA AU Operational Aspects

In-flight Programmability & Test:

- 6 PSS defined AU Control Commands + 1 "Dummy" test command
- 2 types of Authentication Key:

FIXED KEY: start-up/emergency phases, mission specific

PROGRAMMABLE KEY: normal operation

- The 3 on-board LAC Counters can be set to any value
- AU can be switched on and off by "pulse commands"

AU Telemetry:

- FRAME ANALYSIS REPORT (FAR): type of TC Segment (data,command,test) or rejection reasons.
- AU STATUS REPORT: actual value of the 3 LAC Counts on-board + Type of AU Key in use.

AUTHENTICATION

R O D O T A N X S

Ensure intruder access denial

vs. **ENCRYPTION**

Ensure data confidentiality

Transformation Algorithms are public, Keys are secret, without the key, no acceptable TC can be generated

Data is visible, signature encrypted	Data is hidden (encrypted)	
One-way transformation: different Keys, data fields, can yield same signature	Two-way transformation: only one pair (Key,Plain text) can yield given cypher text	
Key robustness to hackers is not dependent on TC data contents	Guessable data can help hackers break Key	
Replay attack is not possible	Replay attack is possible	
Key can be changed, large (2940 bits)	Key is fixed (3DES is 168 bits)	
Between Segmentation and Transfer L.	Should be done At Application Layer	

AUTHENTICATION OVERHEADS

Space Segment

Ground Segment

ASIC: TC Decoder with built-in ESA compliant AU units are available since mid 90's (Dynex, Saab, Alenia)

Processor Board + SW: Key generation, AU Control, Signature generation and attachment

ROM: Fixed Key & Recovery LAC Count

RAM: Programmable Key + Principal and Auxiliary LAC Count

A sealed "black-box" automated system should insert AU sublayer ensuring safe and transparent Secret Keys' management by Ground Control Center

Conclusions

- "Space Terrorism" exists and cases could rise with the growing number of, not only military, but commercial and scientific S/C of high economical, social and/or political value.
- Any near Earth S/C is a relatively easy target of impersonation attacks, unless specifically protected.
- Plain encryption, often confused with authentication, does not eliminate the risk of impersonation attacks. It should be managed by individual end users at Application Layer
- ESA Authentication provides effective, proven, low overhead protection against intruders' TCs in the uplink.