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1 INTRODUCTION 

1.1 Background and motivation for Digital Autocorrelation Spectrometers 
Microwave Spectrometers have been used in radio astronomy for many years. In the beginning on 
earth-based telescopes, they are now implemented on board of spacecraft.  

During the last years, aeronomy has become an important discipline within the space-based earth 
observation activities. We encounter therefore an increasing need of space-borne microwave 
spectrometers, such as they are planned in different projects of the European Space Agency (ESA). 

Compared to other technologies (acousto-optical spectrometers), digital autocorrelation spectrometers 
(ACS) promise a higher mechanical and thermal stability, and a lower mass. Their reconfigurable 
design (bandwidth and resolution) allows the use of one instrument for different applications, which 
would be a considerable advantage on a satellite. Due to their high power consumption, they have 
been rejected for the use in space until today. 

With the recent advances in digital technology, the power consumption of ACS can be considerably 
reduced. This increased performance incites to investigate the feasibility of space borne digital ACS, 
which was the subject of this work. 

1.2 Current state-of-the-art 
The use of coarse quantisation in digital correlators has been studied theoretically by [1, 2, 3]. One- 
and two-bit representations of the signal provide simple signal processing and therefore high operation 
speeds. Autocorrelation spectrometers using coarse quantisation have been designed and built for 
earth-based radio observatories [4, 5, 6]. Coarse quantisation is also the key technique to reduce the 
power consumption of instruments in space. 

Studies about space borne spectrometers have been executed between 1992 and 1994 by different 
European companies (Matra Marconi Space, GB; Edge/Omnisys, Sweden; DASA, Germany) under 
ESA contract. Estimates for performance, complexity and power consumption disagree by orders of 
magnitude and the analog part of hybrid spectrometers is not included. 

1.3 Description of the work 
This project aims to work out detailed information about the power consumption, complexity and 
performance of ACS and to show their feasibility, particularly of the digital ASIC. The results could be 
an input to further contracts about studies and industrial realisations of earth observation payloads. 

The following steps have been carried out: 

1. Literature browse and selection of the design guidelines (architecture, coding schemes). 

2. Development of a spread-sheet to evaluate power consumption and complexity of ACS. A 
trade-off has been performed between different design variants, based on SOPRANO and 
MASTER specifications. 

3. Evaluation of the performance/sensitivity of different variants by matlab simulations. 

4. VHDL-Design of an ASIC, performing the autocorrelation function. This model can be set to 
different design variants and specifications by the means of parameters. Simulation and 
synthesis based on a 0.6 µm CMOS technology (Matra MHS) have been carried out. The 
results of the functional simulations have been reported to the spread-sheet. 
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2  ARCHITECTURES OF ACS 

2.1 The hybrid and multiplexed approach 
In many cases, it is impossible to sample and calculate the autocorrelation function over the total 
bandwidth, because the involved digital circuits can not acheive the required speed. Even when this is 
theoretically possible, the power consumption would be, in many cases, very high. Hybrid and 
multiplexed architectures are used to fix this problem. 

A hybrid spectrometer consists of a filterbank, dividing the total frequency band into J subbands, each 
of which is then separately sampled and auto-correlated. The subbands can be, in post-processing, 
recomposed to form the total band. Each of the autocorrelators has 1/J of the total lags, running at 1/J 
times the original sampling frequency (without subbanding). The power consumption for the digital part, 
being (in CMOS) proportional to the lag number times their clock frequency is reduced by a factor J. 
On the other hand, additional power is required for the analog circuitry. For the whole system (digital 
and analog part), we can determine a minimum as afunction of J. A hybrid architecture is described in 
[4]. 

In some cases, the number of subbands J may be limited, due to mass and stability constraints. The 
sampling frequency can then be too high for the digital technology. A multiplexing correlator can be 
used in this case. This means, the sampled data stream of Fs-frequency can be time-multiplexed to M 
streams of Fs/M frequency. Using a matrix of correlators, as described in [6], requires a M times more 
complex digital circuit. Thus, the power balance is not reduced by this technique and its use will be 
restricted to the cases mentioned here. 

2.2 The correlator 
The autocorrelator is a DSP - Chip, designed to compute the discrete autocorrelation function: 

C n x i x i nT
i

( ) ( ) ( )= −∑ ,      where T is the clock period. 

This means, we need a delay function, a multiplier, and an adder/integrator. 

One lag calculates one coefficient c(n). The chip consists of a large number of identical lags, shown in 
Figure 2.1. Each lag implements a delay of one clock period. When all lags are cascaded, the n-th lag 
has nT - delayed data at its input (numbering starting at 0). The integrator is divided into 2 parts: 1 
accumulator (adder + registers) running at high speed, 1 asynchronous counter running at the (lower) 
carry-out frequency of the accumulator. The bits of the accumulator are not skewed, because we are 
interested only in its highest carry bit, integrated over many samples. For speed reasons, the chip is 
pipelined after the multiplier and after the accumulator. 

 

delay

X
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undelayed data

accumulator
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Figure 2.1 Block diagram of one autocorrelator lag 
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2.3 The multiplication methods 
The autocorrelator uses coarse quantisation (1 or 2 bit). Before any estimation or implementation, the 
coding schemes of multiplicands and product must be fixed in order to obtain simple logic equations. 
Coarse quantisation and coding tricks require in many cases the use of correcting transforms to 
calculate the true data from the spectrometer readout. Corrections for the influence of coarse 
quantisations are given in [1] and [7]. In our application (earth observation), we measure a noise, 
whose autocorrelation function is some orders of magnitude below 1, except for the zero lag. The 
correction can therefore be reduced to a linear function. Corrections for the coding effects are given in 
this text. The following multiplication methods have been considered in this project (a short name is 
given for each of them in parentheses, this name appears throughout this document and the data 
files): 

 

2.3.1 The 1x1-bit multiplication (bit_1) 
Data is 1-bit quantized, this means that only the sign information of the signal is considered. A negative 
value is quantized to -1 (logic level 0), a positive value to +1 (logic level 1). The two different product 
values (-1 and +1) are also coded into 0 resp. 1. Two multiplication tables can be set up, where P is the 
true product and P' is the coded product: 

 
P -1 +1 

-1 +1 -1 

+1 -1 +1 

Table 2.1

 

P' 0 1 

0 1 0 

1 0 1 

Table 2.2

The transform P→P' requires a correction of the readout. If the product P' is accumulated over N 
samples, the true readout is: P P N==== −−−−∑∑∑∑∑∑∑∑ 2 '  

P' is realised by a XNOR function: (((( ))))P XNOR X Y X Y' ,==== ==== ⊕⊕⊕⊕  

 

2.3.2 The 3-level multiplication (level_3) 
Data is 3-level quantized and coded into 2-complement numbers. The product P (-1, 0, +1) is offset to 
positive numbers P' (0, 1, 2). The two multiplication tables are Table  for the true product and Table  for 
the coded product: 

 
P -1 0 +1 

-1 +1 0 -1 

0 0 0 0 

+1 -1 0 +1 

Table 2.3

 

P' 11 00 01 

11 10 01 00 

00 01 01 01 

01 00 01 10 

Table 2.4

The transform P→P' requires a correction of the readout. If the product P' is accumulated over N 
samples, the true readout is: P P N==== −−−−∑∑∑∑∑∑∑∑ '  

The multiplication is performed by the following logic equations: 

P X Y X Y P0 0 0 1 1 1 0
' ' '==== ==== ⊕⊕⊕⊕ ++++   and   P  
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2.3.3 The reduced two-bit four-level multiplication (level_4_rn and level_4_r0) 
Multiplication tables 
A common way to simplify a 4 x 4 - level ( = 16 values) multiplication is to assign 0 to the low-level 
products, as described in [1]. The efficiency of this correlator is 0.87 instead of 0.88 for a full 2-bit 
multiplication. The multiplication outputs a 5 state system which requires 3 bits (see Table ).  

Another method consists in assigning n to the low-level products, as shown in Table . This 
multiplication scheme has at its output only 4 different values. In some cases, these 4 states may be 
coded by two bit numbers. The multiplier and the accumulator are considerably simplified, the 
efficiency is 0.84, between the reduced (to 0) method and the three level correlation. 

 

Full 2 bit multiplication 
level_4 

x -n -1 1 n 

-n n2 n -n -n2 

-1 n 1 -1 -n 

1 -n -1 1 n 

n -n2 -n n n2 

Table 2.5 

Low-level set to 0 
level_4_r0 

x -n -1 1 n 

-n n2 n -n -n2

-1 n 0 0 -n 

1 -n 0 0 n 

n -n2 -n n n2 

Table 2.6 

Low-level set to n 
level_4_rn 

x -n -1 1 n 

-n n2 n -n -n2

-1 n n -n -n 

1 -n -n n n 

n -n2 -n n n2 

Table 2.7

 

Coding and Implementation of level_4_rn (see Table ) 
The quantized values are coded in a sign-magnitude scheme. The MSB represents the sign (0 if ≥ 0, 1 
else), the LSB the absolute value (1 if |x| ≥ v0, 0 else). 

q(x) -3 -1 1 3 

X1;X0 11 10 00 01 

Table 2.8 

If we assign n = 3, the possible products are P = -9, -3, 3, 9. These values are equidistant. The simple 
linear transform P' = (P+9) / 6 leads to P' = 0, 1, 2, 3 and the multiplication Table . 

P'1P'0 11 10 00 01 

11 11 10 01 00 

10 10 10 01 01 

00 01 01 10 10 

01 00 01 10 11 

Table 2.9 

The logic equations for P' are  P' = X Y    and   P' P' X Y1 1 1 0 1 0 0⊕ = ⊕ . 

The multiplier contains one XOR, one XNOR and one NAND gate, the accumulator must add 2 bits. 

 

The case n = 5 leads to a more complicated multiplier and needs a 3 bit accumulator. Since efficiency 
and complexity are very similar to level_4_r0, this case is not treated here. 
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Coding and Implementation of level_4_r0 
This correlator has been implemented by  Van Herzen. Considering that the different bits of the result 
must not be obtained at the same clock cycle (since the result is integrated anyway), the following 
multiplier has been implemented here. 

The quantized samples are coded in the sign-magnitude scheme and weighted with n = 3. The product 
(Table ) is transformed to positive values as P' = (P+9) / 3. The resulting values (0, 2, 3, 4, 6) are 
represented (in binary) in the multiplication Table : 

 
P'1P'0 11 10 00 01 

11 110 100 010 000 

10 100 011 011 010 

00 010 011 011 100 

01 000 010 100 110 

Table 2.10 

The logic equations to satisfy this table are: 

P X Y X Y X Y P X Y P0 0 0 1 0 0 1 1 0 2 1 1 0
' ' ' ' '( )] ( )==== ++++ ==== ⊕⊕⊕⊕ ⊕ ⊕⊕⊕ ==== ⊕⊕⊕⊕ ++++   ;    P [   and   P   

 

2.3.4 The full two-bit multiplication (level_4) 
The coding of the samples is again the sign-magnitude system, the values are weighted by n = 3. The 
transform P' = (P+9) / 2 is applied to the product, which gives the output values (0, 3, 4, 5, 6, 9). The 
multiplication table translates therefore into its binary form Table : 

 
P'3P'2P'1P'0 11 10 00 01 

11 1001 0110 0011 0000 

10 0110 0101 0100 0011 

00 0011 0100 0101 0110 

01 0000 0011 0110 1001 

Table 2.11 

The logic equations are: 

P X Y P
P X Y
P X Y X Y X Y

P X Y X Y

0 1 1 1

1 0 0

2 0 0 0 0 1 1

3 0 0 1 1

' '

'

'

'

( )

( )[ ( )]

( )

= ⊕ ⊕

= ⊕

= + + ⊕

= + ⊕
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2.3.5 Summary of multiplication methods 
Table  compares the different multiplication methods. The efficiency ( = 1/sqrt(rel. integration time ) is 
taken or derived from [1] and [7]. The number is valid only for an optimal adjustment of the quantiser 
thresholds. 

 
Method Efficiency Threshold Complexity 

bit_1 0.64 -- 1 XNOR 

level_3 0.81 0.6 1 XOR, 2 NAND/NOR, 2 bit accu 

level_4_rn, n = 3 0.838 0.782 2 X(N)OR, 1 NAND, 2 bit accu 

level_4_rn, n = 5 0.859  (1 XOR, 2 NAND/NOR, 1 Inverter, 3 bit accu) 

level_4_r0 0.872 0.906 2 XOR, 3 NOR/NAND, 1 Inverter, 3 bit accu 

level_4 0.88 0.95 3 X(N)OR, 1NOR, 2 AND/OR, 1 OR-NAND, 4 bit accu 

Table 2.12 Summary of multiplication methods 
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3 PERFORMANCE OF ACS 

3.1 Definitions of  'sensitivity', 'degradation factor' and 'integration time' 
Different measures are used in literature to specify the performance of autocorrelators. The aim of this 
section is to clear the confusions created by these definitions. 

The spectrometer measures spectral lines hidden in noise, thus, we have a very low signal to noise 
ratio (S/N). The ACS allows to concentrate the (supposedly uncorrelated) noise power in the zero-lag 
of the autocorrelation function. After elimination of this 'DC' component, the S/N of the Fourier-
transformed spectrum will be the  higher, the more samples are integrated. 

The coarse quantisation introduces an additional noise to the signal, it therefore degrades the signal to 
noise ratio of the spectrum. This fact can be compensated by integrating more samples. 

Since the output S/N always depends on the properties of the input signal, the performance of coarsely 
quantised ACS must be specified normalised to an ideal (analog, multibit) ACS. We use here the 
definition of the degradation factor D, given in [2]: 

D = =output S / N of analog ACS
output S / N of digital ACS

output of digital ACS
output  of analog ACS

σσσσ
σσσσ

 

Another measure is the efficiency or sensitivity S, as defined in [1]: S = 1 / D. 

To compensate the degradation D, the integration time must be increased by a factor I, which is given 
in [7] by the ratio of the variances ( σ2 ), therefore: I = D2. 

3.2 Degradation as a function of the quantiser thresholds (Vth) 
The degradation D (or sensitivity) of the 2 (and more) bit correlators depends on the right adjustment of 
the decision levels Vth of the quantisers. For 2 bit, one |Vth| is relevant. This voltage is adjusted relative 
to the RMS value of the signal (σ). The parameter is Vth/σ. 

From statistical considerations [1, 2, 3, 5] the function D vs. Vth can be derived. The result is a curve 
presenting a minimum for a certain optimal value of Vth. Often, only this minimum value is given, as for 
example in Table , but one must always know that this is only achieved with a suitable adjustment of 
Vth. 

 
Optimum efficiencies bit_1 level_3 level_4_rn level_4_r0 level_4 
Efficiency (theory) 0.64 0.81 0.838 0.872 0.88 
at Vth / σ (theory)  -- 0.6 0.782 0.906 0.95 
Efficiency (simulated) 0.62 0.81 0.83 0.86 0.87 
at Vth / σ (simulated) -- 0.6 0.65 1 1.025 

Table 3.1 Optimal thresholds and efficiencies, theory and matlab simulations 

Figure 3.1 shows these curves for correlators, simulated in matlab. The simulations show similar 
minima (see Table ), or a constant efficiency for the 1 bit method, which is independent of Vth. 
Nevertheless, the simulations are subject to some unexpected distortions, which can not be eliminated 
by increasing the integration time. After a certain number of samples, the simulation begins even to 
diverge. This effect can be explained by the combination of two facts: 

•  The theoretical approach, as it is shown for example in [2] (see Figure 3.2), assumes, that the 
signal level is very low compared to the noise level ( S/N --> 0 at the input of the spectrometer ). 
Only in this case, signal and noise can be treated indpendently, as assumed in the literature. 

•  To confirm this theory, simulations should be carried out with a low input S/N, which implies that 
the process becomes numerically unstable, is subject to distortions and, finally, may diverge 
towards a totally different output. 

This type of simulation requires high CPU times and is numerically not stable. Nevertheless (see Table 
) we can approximately reproduce the theoretical minima. 
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Figure 3.1 Degradation D vs. Vth. Matlab simulation + polynomial cuve-fit 4th order 

 

Figure 3.2 Degradation D vs. Vth. Theoretical curve, level_4_r0 and level_4. Source: [2], p. 380 
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4 THE SPREADSHEET FOR SYSTEM TRADE-OFF 
To evaluate and trade-off the system design, a spread-sheet in MS-Excel was developed, taking into 
account the global power consumption of digital and analog circuits. Different designs are considered: 
Realisation in GaAs or CMOS, hybrid and multiplexed architectures. Starting from a specification, a 
trade-off can be worked out. Two macros help to optimise the partitioning parameters to minimise the 
power consumption. The spread-sheet is divided into input- model- and output-sections, each of which 
can be separately displayed or hidden by the means of the outlining features (+ and -). 

4.1 The Input Section 
The INPUT section contains fields for the specifications of the ACS, the choice of architecture 
(partitioning) and the properties of the technologies. 

4.1.1 ACS specifications 
The main specifications are the total bandwidth BT and the number of spectrometer channels N, which 
specifies the frequency resolution ∆f = BT/N. The architecture is determined by the number of hybrid 
channels J and the multiplex factor M, according to the explanations in chapter 2. The fully digital and 
not multiplexed spectrometer is then represented by J=M=1. A filter shape S and an oversampling 
factor O are introduced to take into account the eventual use of band overlapping or oversampling 
techniques. The latter method, Fs > Nyquist Rate, can improve the sensitivity of the instrument [7]. 
Nyquist sampling means O=1. The filter shape factor is > 1 for non ideal filters and = 1 for ideal filters. 

4.1.2 Architecture partitioning 
In this second table, some important values for the partitioning of the architecture are computed from 
the specifications. Note: no values are to be inserted by the user into this table.  

 
Frequency resolution ∆f = BT/N 
Bandwidth per correlator (1 hybrid channel) BpCorr = S*(BT/J) 
Sampling frequency fs = 2*O* BpCorr 
Number of lags per channel LpCh = 0.5 fs/∆f 
Number of correlators NbCorr = J*M2 
Number of lags per correlator LpCorr = LpCh/M 
Clock frequency of the correlators fc = fs/M 
Multiplexing indicator MuxUsed = True, if M>1, false if M=1 
Total Lags = NbCorr*LpCorr 
Lags*Clock = LagsTimesClock = TotalLags * fc  (in MHz/Million) 

4.1.3 Technology parameters 
All power parameters are given in µW per Gate per MHz in CMOS and in mW per Gate in GaAs. An 
accurate power modelling requires distinction between gate intrinsic power (A), fan out load (B) and 
wiring load (C), these parameters are multiplied with the activity for each node. Actually, only A is used 
in the spreadsheet, since the parameters B and C of most technologies are not known. 

The gate count of different functions (xor, adders etc.) can be defined in the technology part, since 
these values may differ depending on the technology. 

The Clock Tree Size is a factor which defines the number of clock-buffers to be used in function of the 
number of gates contained in the clocked Flip Flops. 

The use of these parameters is explained later in this chapter. 
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4.2 Modelling of the Correlator Chip 
The chip consists in a large number of identical lags, shown in Figure 2.1 on page 4. Within one 
correlator, all lags operate at the same clock frequency. The model is evaluating the power of one lag, 
and the total power dissipation will be given by the value for one lag times the number of lags. The 
node activities of one lag were determined by VHDL simulations. We use these node activities for all 
the lags of the spectrometer. This simplification is accurate for all lags, except the zero lag. 

4.2.1 Power dissipation of one autocorrelator lag 
In first approximation, the power dissipation of CMOS circuits is proportional to a sum over all gates 
times their respective operating frequency. A precise power model is given by: 

   P f activity A B FanOut C Ws i
i j

= + +∑ * ( * * )
,

 (1) 

where fs = sampling/global clock frequency 
activity = duty factor = (operating frequency in block i) / fs 
A = load independent part of the gate losses 
B = fan out load factor 
C = wiring capacitance load factor 
FanOut = fan out of the node 
Wi  = length of the interconnection wires to the following inputs 

A, B, C, are the technology parameters which must be provided in the input table. 

The activities (duty factors) are the data bit commutation rates, i. e., the toggling frequency of a node 
vs. the clock frequency of the whole chip. The activities could be determined from probabilistic 
considerations of the design and the input signal, but the values used here are extracted from simu-
lations of the VHDL model. 

The integration counter, implemented as an asynchronous ripple counter, requires a special 
consideration: the activity of the LSB (i. e., the counter input) is divided by two at each bit. The series 1 
+ 1/2 + 1/4 + 1/8 + ..... converges to 2. Thus, a n-bit counter can be considered as two flip-flops running 
with the duty factor of the LSB. Therefore, the counter has a special formula to compute its power 
consumption : P(per lag and MHz) = A * NbGates * Activity * 2/NbEl. NbGates is the gate count of the 
whole counter (which is a multiple of NbEl, the number of counter flip-flops). Thus, the factor NbEl, 
contained in NbGates, is eliminated and replaced by a 2. 

Tristate buffers (for readout bus): 3 Gates per counter bit, from which only one counts for the power 
consumption. For the same reasons as for the counter FF's, the power is independent of the number of 
counter bits and equivalent to two buffers. Therefore, two buffers, one gate active =>  P = 2 * Activity. 

In the power model presented in [8], the estimation is based on average values of activity, fan out and 
interconnection length, assumed for the whole chip. The average consumption of one gate is multiplied 
with the total gate count. Since one autocorrelator lag is a particularly simple circuit, we can consider 
here a single autocorrelator lag in detail. Thus, the activity of each gate can be determined by 
simulations. The interconnection wiring W still must be estimated globally, because it is impossible to 
know the wire length without having a physical layout. Anyway, at the moment, wiring- and fan out 
loads are included in the main parameter A and are not considered separately. The activities, multiplied 
by the gate counts, of each node, are summed over one lag.  

The global clock driving power must be considered in the case of an autocorrelator chip using a high 
clock frequency and several clock driven cells per lag, especially, when pipelined logic is used. We can 
derive the clock power from the number of clock driven flip-flops (or their gate count) by giving the 
number of gates necessary to perform the clock distribution in a tree (ClockTreeSize = Nb. of clock 
tree gates / Nb. of flip flop gates). The number of gates in the clock tree is added to the power 
consumption (the clock tree has always activity = 1). The total number, multiplied by the technology 
parameters, gives the lag power dissipation in µW per MHz, which appears in the last line of each lag 
model. 

Since the correlator result is integrated in an accumulator and counter system, the readout frequency is 
several orders of magnitude less than the clock frequency (2[nb. of counter bits]). The power 
dissipation of the readout bus and the off chip driving is therefore neglected in first approximation. 
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The lag models also contain a column for GaAs implementation. Each gate type has a specific power 
consumption assigned to it, which is independent of the operating frequency and appears in the 
technological parameters. The power model sums this number over all the gates/blocks of one lag, 
delivering a number in mW / MHz. In the GaAs implementation, the integration counter is divided into a 
fast GaAs part whose length is specified by the parameter GaAsCounter-Bits and a CMOS ripple 
counter (length = NbEl), whose operating frequency is considerably lower than of the rest of the circuit. 

4.2.2 Correlator summary table  
A dedicated table summarises all relevant values per lag for the different quantization methods:  

 
GateNb  = Number of gates 
LagPower  = power in µW per lag per MHz clock frequency (for CMOS) 
  = power in mW per lag (for GaAs). 
CompNb  = number of quantizer comparators 

The power per lag is the quantity LagPower = A * [(NbGates * Activity), summed over the rows of the 
lag model, + the above mentioned exception for the asynchronous counter + the clock tree gates]. The 
gate number GateNb is the sum over the 'NbGate' column. CompNb is a constant. The AD-convertor 
will always contain one less comparators than there are quantization levels. 

4.3 The Analog Circuits 
A table is dedicated to the architecture of the front end, down conversion and digitizer circuit. The 
power dissipation is split into a fixed value Pf, independent from the partitioning of the spectrometer, a 
part depending on the number of hybrid channels (J) Pj, the power dissipation of one comparator Pc 
and the consumption of the multiplexer Pm per multiplexing path1. 

4.3.1 Front end architecture 
The model for the front end is based on  the structure proposed in [9]. The block diagram is 
represented in Figure 4.1 on page 15. A first local oscillator (LO) of around 10 GHz converts the 
frequency in a SSB mixer to two bands between 0.5 and 1 GHz. This second IF is down converted by a 
set of 2 SSB modules into four subbands which are digitized and sampled. 

The structure can be duplicated and allows an entire multiple of 4 subbands to be implemented 
according to different frequencies of the first LO. One set of two 'second' LO's can be used for all 
subbands, this saves power and complexity. The second LO power is therefore split into a fixed part 
and a part depending on J, since at higher J, on LO must drive several mixers. 

4.4 The Output Section 
The output tables combine the information of the different sets of input specifications and parameters 
with the models of correlators and analog circuits. 

4.4.1 Power Consumption 
The formula for the power consumption is ('MUX used' is the Boolean indicator computed in the 
partitioning table): 

P = LagPower*fc + Pf + (Pj + Pc*CompNb + [MuxUsed]*Pm*M)*J 

4.4.2 Efficiency and Performance 
A table summarises the performance of the quantization method. The relative sensitivity σ and the 
corresponding integration time T (T = 1/ σ2) is given for coarse quantisation and Nyquist sampling 
compared to a multibit quantisation. For the higher quantizations, the third column contains the 
required values of comparator thresholds (V0/σ) to obtain these sensitivities.  

                                                      
1The power consumption of the A/D-convertor and the multiplexer depends partly on the sampling 
frequency. This fact is not yet implemented in the spreadsheet, but could be introduced easily. 
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4.4.3 Energy Merit 
The quantity (Integration time) * (Power consumption) is a measure for the energy required to 
compute the power spectrum of the specified frequency band within a specified signal to noise ratio. 
This can be a convenient number to perform the trade-off between different architectures, if there is no 
strict requirement for the efficiency, which imposes a certain quantisation method. 

4.5 Macro functions for optimising the data 
The file ACSMACRO.XLM contains three macros designed to work with the data in the spreadsheet. 
Each of them is called from the active ACS.XLS with a CTRL-hotkey. The data to treat is determined 
by the selections in the worksheet. 

4.5.1 Mux_Min: hotkey CTRL - m 
Prompts for a maximum clock frequency for the correlators (default 300 MHz) and 
computes the multiplexing factor M to achieve this constraint in all the selected specs. Note 
that only one cell per spec (i. e. per column) should be selected. The selection can be in 
multiple, distinct areas. 

4.5.2 J_Min: hotkey CTRL - j 
Optimises the selected values in the power consumption table by changing the number of 
hybrid channels J. Only one value per column may be optimised (and selected) at once. 
Multiple selections (in different columns) are allowed.  

The built-in solver of excel does not converge in this case. Even if it did so, it would be 
much to slow, since it is searching for a solution in the real numbers, whereas this problem 
requires an integer solution. This algorithm is of the bisectional type: the step width, starting 
from a power of 2 value, is successively reduced by a factor 2 to approach the solution. The 
following parameters can be changed in the macro sheet (the letters in (..) appear in the 
listing): 

(a) Initial value for J ("JA"), entire value. 

(b) Initial step width ("Delta"), must be a power of 2. 

(c) Minimum step width where the iteration stops ("Precision"),  >=1, power of 2. 

4.5.3 Display_chart: hotkey CTRL - d 
Displays the selected data in a power consumption chart (3D bar diagram). The selection 
must always have 5 rows. Multiple areas are accepted, but only the first selection will be 
displayed. Only the data area should be selected, without any labels, which are added by 
the macro automatically. 

This macro can be used for CMOS or GaAs data, partial (front end, digital part) or total 
power consumption. The title of the chart must then be adapted by hand. The spec no. in 
the chart always starts counting by 1, whatever columns have been selected. 

The program is convenient to present the results obtained with the worksheet. Designed for 
power consumption of 5 different data series (e. g., the 5 multiplication methods considered 
in this work), it can also be adapted to other data by some minor modifications in the macro 
sheet. 
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Figure 4.1 Outline of the front end architecture [9] 
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5 SOPRANO AND MASTER SPECTROMETER TRADE-OFF 
The trade-off has been performed with the spread-sheet presented in the previous chapter. According 
to different studies conducted by ESA, the specifications for Soprano and Master - Spectrometers, 
given in Table , have been analysed. 

5.1 Specifications: 
 

Spectrometer type Total bandwidth Bt (MHz) Frequency resolution (MHz)
Soprano high bandwidth/low resolution 5300 3 
Soprano low bandwidth/high resolution 20 0.3 
Master high bandwidth / low resolution 10000 50 
Master low bandwidth / high resolution 600 3 

Table 5.1 Specifications 

5.2 Trade-Off guidelines 

5.2.1 Objectives 
The main objective is the minimisation of the power consumption. 

Other objectives concern the complexity and mass of the system. In order to avoid very high gate 
counts for the digital circuits, we must exclude highly multiplexed systems, since the complexity is 
increasing with M. 

For reasons of high mass and to ensure a satisfying stability of the analog part, a too high number of 
subbands (J) must be avoided as well. 

 

5.2.2 Constraints 
1. Sampling frequency. Fs depends on the AD convertor chosen. We assume a two bit 

convertor, working at max. 2.5 GHz or alternatively a 1 GHz convertor. 

2. Clock frequency. Fc is limited by the path delays of the digital circuits. For CMOS 
correlators, 150 MHz is the upper limit. 

3. The number of hybrid channels. If the filter bank is implemented as 2 stage SSB converters 
(see previous chapter), the number of channels J is most efficiently a multiple of 4.  

 

5.2.3 Procedure 
The main variables of the trade-off are the number of subbands/hybrid channels (J) and the multi-
plexing factor (M).  

Constraint (1) imposes a minimum value on J: Jmin = 2 Bt / Fsmax. 

Constraint (2) imposes a minimum value on the product J*M: (JM)min = 2 Bt / Fcmax. 

Practically, we try different values of M (1, 2, 3, ...) and find a value for J which minimises the power 
consumption while respecting the constraints. J is then rounded to the next multiple of 4 still respecting 
the constraints. 
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5.3 The Soprano Spectrometer 
 

INPUT   
    

Spectrometer Specifications     

Specification Soprano high bandwidth low bandwidth 
Bandwidth Bt (MHz) 5300 5300 5300 5300 20 20 
Nb. of channels N 1767 1767 1767 1767 67 67 
Hybrid channels J 20 24 28 36 2 1 
Multiplex factor M 4 3 3 2 1 1 

    
Partitioning Parameters     

Parameter Spec1 Spec2 Spec3 Spec4 Spec5 Spec6 
Freq. resolution (MHz) 2,99943 2,99943 2,99943 2,99943 0,29851 0,29851 
Bandw./correlator (MHz) 265 220,833 189,286 147,222 10 20 
Sampling freq. (MHz) 530 441,667 378,571 294,444 20 40 
Lags/Hybrid-channel 89 74 64 50 34 67 
Nb. of corr. 320 216 252 144 2 1 
Lags/corr. 23 25 22 25 34 67 
Clock freq. (MHz) 132,5 147,222 126,19 147,222 20 40 
Multiplexing used TRUE TRUE TRUE TRUE FALSE FALSE 
Total Lag Number 7360 5400 5544 3600 68 67 

   
OUTPUT   

      
Chip Complexity (total gate count)    

Specification Soprano low resolution low bandwidth 
1x1 bit 191154

0 
140248

8 
143988

8 
934992 17661 17402 

3x3 level 217031
7 

159235
2 

163481
5 

106156
8 

20052 19757 

2x2 bit (Level 4 R0) 235490
6 

172778
4 

177385
9 

115185
6 

21758 21438 

2x2 bit (Level 4 RN) 218503
7 

160315
2 

164590
3 

106876
8 

20188 19891 

2x2 bit (Level 4 full) 251741
5 

184701
6 

189627
0 

123134
4 

23259 22917 

   
Power consumption (Watt), Front End    
1x1 bit 23,575 25,08 29,085 32,595 2,3025 1,67625 
3x3 level 26,075 28,08 32,585 37,095 2,5525 1,80125 
Level 4 28,575 31,08 36,085 41,595 2,8025 1,92625 

   
      
Power consumption (Watt), Total CMOS   
1x1 bit 31,5092 31,5481 34,7769 36,9071 2,31356 1,69805 

Table 5.2  The Soprano Spectrometer Trade-Off 
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3x3 level 43,2073 42,0466 44,8756 46,406 2,57639 1,84833 
2x2 bit (Level 4 R0) 53,8506 51,6851 54,2175 55,3318 2,83775 1,99571 
2x2 bit (Level 4 RN) 48,3536 47,2039 50,274 52,3442 2,83008 1,9806 
2x2 bit (Level 4 full) 60,3041 56,9461 58,8472 58,8391 2,84675 2,01345 
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Wide band / low resolution specification 

This spectrometer is determined by its high number of channels (1767). It tends therefore to have a 
high complexity and power consumption. The minimum values for J are 8 (for the 2.5 GHz convertor) 
resp. 12 (using a 1 GHz convertor). Both lead to high gate counts and power (see Table  and Figure ). 

Specs 3 and 4 are based on low (2) or no multiplexing, the power consumption can then be optimised 
with J = 28 resp. 36. Spec. 3 leads to very similar results with J = 24. 

Thus, the power consumption achieved for the two bit correlation is ~ 50 - 70 W. 

 

1
2

3
4

1x1 bit
3x3 level

2x2 bit (Level 4 RN)
2x2 bit (Level 4 R0)

2x2 bit (Level 4 full)

0
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20
30
40
50
60
70

W att

Spec Nb.

Quantiza tion 
Method

CMOS total power consumption, Soprano high 
bandwidth

 
 

Figure 5.1  Soprano wide band trade-off 
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5.3.1 Narrow band / high resolution specification 
This spectrometer does not present a major difficulty. It can be implemented as a single correlator, 
without subbanding, and leads to small ASICs and a power consumption of ~ 2 W. See Table and 
Figure . 
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Figure 5.2  Soprano narrow band trade-off 
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5.4 The Master Spectrometer 
 

Table 5.3  The Master Spectrometer Trade-Off 
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Wide band / low resolution specification 

The difficulty here is the high bandwidth, which requires a high product J*M. A solution without 
multiplexing seems to be impossible, it would in fact require 68 subbands. Specs 1 and 2 (see Table  
and Figure ) lead to a slightly higher, but not excessive power consumption. Specs 3, 4 and 5 optimise 
the power to values ~ 30 - 40 W. Spec. 5 requires an AD convertor faster than 1 GHz, but ensure the 
lowest number of subbands. 

 

  

Figure 5.3  Master wide band trade-off 

 



Part I - page 23 

5.4.1 Narrow band / high resolution specification 
This specification is optimised by a hybrid spectrometer with 4 subbands, which satisfies the constraint 
Fc < 300 MHz (see Table and Figure ). The power consumption is ~ 5 - 8 W. 

 

 

Figure 5.4  Master narrow band trade-off 

5.4.2 Summary for Level_4_R0 
 

Spectrometer type J M  P gates/subband 

Soprano High BW / Low Res. 24 2 68.74 94708 

Soprano Low BW / High Res. 1 1 2.07 42875 

Master High BW / Low Res. 20 4 38.94 25597 

Master Low BW / High Res. 4 1 7.67 31996 

Table 5.4 Summary of trade-offs 

Table lists a convenient trade-off for each type of spectrometer with the corresponding number of 
subbands J, multiplexing factor M, power consumption for the Level_4_R0 correlator and the number 
of gates per subband. This means, the complexity of the ASICs will be, in any case, max. 100000 
gates. Each subband being equipped with its own correlator, the system will need J chips of the above 
mentioned complexity. 
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6 THE VHDL MODEL 

6.1 Outline of the model 
This section gives a short outline of the model and describes briefly the files, located in the 
'/home/rweigand/acs'  directory at the XR - Sun cluster. More detailed comments can be found in the 
source files themselves. 

The whole model is parametrisable (multiplication method, word lengths, number of lags) by changing 
parameters in the package 'constants'. 

According to Figure 2.1 on page 4, the model is divided in lags, and each lag is subdivided in a delay, 
multiplier, accu and counter. These components contain their sequential part in a process with edge 
construct. The design uses leading edge triggered flip-flops without or with asynchronous reset. Clock 
and Clear_N are distributed to each component. 

All lags are placed in a top level entity 'acs'. The lag and top-level entities do not implement registers. 
Two test benches are provided, 'tb_lag' to evaluate the functionality of a single lag (test the multipliers), 
and 'tb_acs', to simulate multiple lags, starting from previously matlab-created data samples and 
writing output (autocorrelation function) into a text file. Several auxiliary files (scripts) are provided as 
described in the following lists. 

6.1.1 VHDL files 
•  constants: package of global parameters for the configuration of the system and  data 

types.  

•  tb_acs: instantiates L lags, applies data samples to the ACS (entity getsignal)  and 
writes the result to file (entity result). 

•  getsignal: read (quantised) samples from 'noise.txt', used in tb_acs 

•  result: writes autocorrelation function to file 'correlation.txt', usable in matlab. 

•  tb_lag: instantiates 1 lag, applies all combinations of input samples to this lag.  

•  acs: top level entity, instantiates L lags, implements address demultiplexer  for 
the readout bus. 

•  lag:  one lag, instantiates delay, multiplier, accu and C times counter1 . 

•  delay: implements one bit of a shift register for N bit data words. 

•  multiplier: implements different multipliers, according to the equations given in 
 chapter 2, selected by the METHOD parameter in the constants  package. 

•  accu: implements the function SUM := SUM + PRODUCT with adders and 
 registers, word length of SUM is parametrisable in constants. The carry  of 
the MSB is fed as counter pulse to the output. 

•  counter1: implements one flip-flop, used for the asynchronous integration counter. 

•  noisegen: model for a generator of aleatoric numbers, using a shift register and 
 XOR-function in the feedback. NOT a part of ACS. 
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6.1.2 Auxiliary files 
•  make_acs: makefile to analyse the hierarchy with make until the acs entity. 

•  make_tb_acs: makefile to analyse the hierarchy with make until tb_acs. 

•  open: unix command procedure to open the VHDL files in textedit. 

•  noise.m:  matlab program, creates Gaussian noise samples, superposes a sine 
 wave, digitises them and saves them in 'noise.txt'; executes 
 autocorrelation in matlab (for comparison with VHDL-results). 

•  setup_sim: vhdlsim script to initialise the simulation. 

6.1.3 Files in sub directory 'synthesis' 
•  *.db: examples of synthesis results, can be loaded into design analyzer. 

•  *.script script files for synthesis at the different levels of hierarchy. 

 

Results of simulations and some matlab programs to process those data are located in other 
subdirectories of acs. Simulations and the synthesised circuit will be presented in the following sections 
of this chapter. 

a) after 4096 samples     b) after 262100 samples 

 

 

 

    c) S/N ratio vs. sample number 

Figure 6.1  Autocorrelation function and power spectrum after different integration times.  
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6.2 Simulations in VHDL and Matlab 
Simulations have been performed for two reasons: 

•  to confirm the correct functioning of the VHDL-Design in two steps: 

1. VHDL - simulation at single lag level to test that the multipliers satisfy the equations given in 
chapter 2. This is not reported here. 

2. VHDL - simulation of an autocorrelator with several lags, stimulated with a typical signal (weak 
sine wave hidden in a strong Gaussian noise). The same configuration was simulated by 
matlab and compared to the VHDL results. 

•  to evaluate the performance (sensitivity, efficiency) of different multiplication methods. 

All matlab files are situated in the directory '/home/rweigand/matlab'. 

6.2.1 VHDL simulations 
Figure 6.1 shows the (full 2 bit) correlator output to an input signal with a S/N of -18 dB. The signal 
peak is hidden in noise after a few samples (a), but comes out clearly after a high sample number (b). 
The general trend of S/N vs. sample number can be seen in (c). This confirms the statement made 
above, that the signal degradation can be compensated by an increase of the integration time. 

6.2.2 Cross-check with matlab simulations 
The curve shown above (Figure 6.2-c) has been simulated in VHDL and in matlab for all multipliers and 
is represented in Figure 6.2-a and -b. Figure 6.2-c shows the difference between the two simulations. 
The difference is not zero, as one could expect. In fact, the accumulator implemented in VHDL is not 
skewed at its input. This means, that different bits of the product are not added at the same time, the 
integration counter can run a few pulses behind the true result. 

This limited offset has an impact only at low sample numbers, but can be negliged after ~ 104 
samples. In a practical use, the sample number will be several orders of magnitude higher than 104. 
Therefore, the model can be considered as working correctly. 
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a) VHDL model simulations, S/N in dB     b) Matlab simulations, S/N in dB 

c) Difference S/N(Matlab) - S/N(VHDL) in dB 

Figure 6.2  S/N  ratio vs. number of samples 
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6.3 Synthesis: schematics, speed and complexity 
All synthesis files are located in the directory 'home/rweigand/acs/synthesis'. 

The VHDL model of a single lag was completed by the top design acs.vhd. This file describes an 
address decoder for the readout logic and instantiates L lags in the spectrometer. Synthesis has been 
verified for a low lag number (4, 16). For a high lag number, the address decoder is to be validated and 
the distribution of global signals such as CLK, CLK_N, CLEAR_N, UNDELAYED must be buffered.This 
may add some complexity to the circuit. 

Synthesis of the model has been done in MG_MHSLIB. The synthesis procedure of this repetitive 
design is straightforward. Three different script files (mult.script, lag.script and acs.script) achieve a 
hierarchical synthesis step by step. The file lag.script contains mult.script and acs.script contains 
lag.script. The created schematics are shown in appendix A. Table 6.1 summarises complexity and 
speed of the different correlators (for 1 lag), obtained under ‘worst case commercial’ conditions 

: 

 

 

Method max. delay counter bits comb. gates seq. gates total gates 

bit_1 1.85 ns 24 31 228 259 

level_3 2.73 ns (A) 22 46 246 292 

level_4_rn 2.91 ns 22 48 246 294 

level_4_r0 3.11 ns 21 61 255 316 

level_4 3.00 ns 20 73 264 337 

(A) max. delay path is situated in the accumulator (2 x XNOR), for all other methods, the slowest path is in the multiplier. 

Table 6.1Summary of the synthesis results, speed and complexity 

 

The Tri State Buffers for the readout bus are considered by Synopsys as a sequential element and 
therefore listed with the flip-flops. 

The above total gate number does not include the clock tree and matches the gate number which is 
given in the last row of each lag model in the spreadsheet. 

The delays (worst case commercial) allow a clock speed of >= 300 MHz for two bit and >= 500 MHz for 
one bit quantization. 
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7 CONCLUSION 
 

7.1 Achievements 
In the present work, the concept of digital Autocorrelation Spectrometers (ACS) has been investigated 
for the use in spacecraft, such as Earth Observation payloads. Different architectures have been 
studied, such as hybrid spectrometers (using analog subbanding), multiplexing and pure digital 
spectrometers; the digital autocorrelator has been studied with different coarse multipliers (1 and 2 bit), 
which allows to vary the sensitivity and the cost of the instrument according to the specifications. 

The power consumption and the complexity of all combinations of architectures and multipliers can be 
estimated in a spread-sheet which was developed in MS-Excel. Trade-offs have been elaborated with 
this spread-sheet for several specifications of spectrometers, taken out of ESA projects (SOPRANO 
and MASTER).  

The estimations are based on a design of the digital autocorrelator, which was elaborated in VHDL and 
synthesised in a cell based ASIC library (Matra MHS). This design was validated by different series of 
simulations, on an elementary level checking the outputs of the multipliers, as well as on a higher level, 
using real-like input signals and measuring the output spectra. The latter type of simulations was cross-
checked by simulations in matlab, which were in a good correlation to the VHDL simulations. 

 

7.2 Results 
It has been shown in this work, that ACS are expected to fulfil the  requirements for power 
consumption and complexity, using the following concepts: 

- Coarse quantisation (1 or 2 bit) 
- Hybrid architecture (analog filter bank + digital ACS) 
- Cell based ASIC design in space qualified/qualifiable technologies 

A new multiplication scheme was developed, where the low level products are not cancelled (set to 0), 
but set to the next non zero value (+/- n). The complexity, power consumption and the performance 
(sensitivity) of this method were shown to be situated in between level_4_r0 (low level cancelled) and 
the full level_4 method. 

Simulations about the dependence of the efficiency on the quantiser decision thresholds have been 
performed. The results show similar minima, but they are affected by numerical noise. 
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7.3 Prospects and suggestions 
With increasing sampling frequencies, errors in the analog-digital converters become more important. 
The investigation of their impact on the sensitivity of the spectrometer is therefore of a big interest for 
wide band spectrometers. 

Some theoretical studies on quantisation errors are given in [3, 5]. Simulations have been proven to be 
insufficient to improve our knowledge about these phenomena. Therefore, an ACS should be executed 
as a hardware prototype: 

1. Implementation of the digital autocorrelator in a FPGA. 
2. Sampling and quantisation circuit with a multibit (e. g. 8 bit) converter. 

The FPGA will contain correlators using different coarse quantisation concepts. A multibit converter 
allows then to simulate converter errors (variations of the comparator thresholds, offset and gain) in the 
test runs. 

Detailed knowledge about the impact of quantisation errors is a condition to evaluate the total 
sensitivity of ACS. It is then possible to select a trade-off between the complexity (and cost) of the 
system and the minimal sensitivity required in the specifications for earth observation payloads. 

On the other hand, concepts to compensate the mentioned errors are expected from a hardware  
study. This compensation should be obtained by a suitable design of the spectrometer (particularly the 
sampling and quantising circuit), and by special algorithms in post processing. 
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9 APPENDIX: SCHEMATICS OF THE SYNTHESISED AUTOCORRELATOR 
 
Figure 9.1  ACS Top level (4 lags) 
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Figure 9.2  One lag (4 bit accumulator, 8 bit counter). Flattened except the multiplier. 
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Figure 9.3  The level_4 multiplier. 
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Figure 9.4  The level_4_r0 multiplier. 
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Figure 9.5  The level_4_rn multiplier. 
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Figure 9.6  The level_3 multiplier. 
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10 APPENDIX: LISTINGS OF THE VHDL MODEL 
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1 INTRODUCTION 
The Fourier transform, particularly the FFT algorithm, is used frequently in many applications of digital 
signal processing (DSP), in communications as well as the Synthetic Aperture Radar (SAR). 

The market provides us with dedicated FFT chips, computing usually in floating point arithmetic [2], but 
using serial processing, which leads to low computing speeds (spectra/second). Besides these 
performance considerations, off-the-shelf components always impose certain specifications, such as 
number of points, precision etc. 

Two reasons lead to this work: 

1. Increasing the speed of the FFT by using parallel processing. 

2. Having a parametrisable design (number. of points, precision) for custom IC - 
 development. 

 

Therefore, the following approach was followed for the design: 

1. Designing a parallel radix 4 FFT algorithm for 16, 64, 256 and 1024 points. 

2. Using a Canonic Signed Digit (CSD) representation for the multiplication coefficients. 

3. Pipelining after each butterfly of the FFT algorithm. 

4. Fixed point arithmetic with a variable precision, set by design parameters. A floating point 
arithmetic was sacrificed for reasons of speed and complexity.  

 

The main questions were (for different configurations): 

1. Complexity of the chip 

2. Speed of the chip. 

3. Noise introduced by truncation errors in the fixed-point arithmetic. 
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2 ALGORITHM 

2.1 FFT Radix 4 
A detailed description of algorithms can be found in [1]. On page 715 and further, the radix 4 algorithm 
is explained, only the main ideas are given here. 

Radix 4 can be applied, if the number of data points N is a power of 4. This can always be obtained by 
filling the data series with zeros, to complete N = 4s, where S is the number of stages. Using the 
symmetry of complex numbers, the number of multiplications is significantly reduced. One stage in 
radix 4 applies the following algorithm: 
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X(p,q) is an element of the discrete Fourier transform of x(n): 

X(p,q) = X( Np/4 + q ) 

F(p,q) is the discrete Fourier transform of the of the data points x(p,m). Here, p is a parameter and m is 
the summation variable. The data points x(p,m) are mapped to the FFT input as follows: 

x(p,m) = x( 4m + p ) 

The variables have the following intervals: 

p = ( 0, 1, 2, 3 )  ;  m, q = ( 0, 1, 2, ... , N/4 - 1 ) 

The phase coefficient WNk is defined as: 

W eN
k j k N= − 2ππππ /  

Thus, through equation (1), the N point transform is split into 4 ( p = 0, 1, 2, 3 ) transforms of N/4 
points. This operation can be applied recursively, as long as the length of the partial transforms is 
again a multiple of 4. Thus, in the next stage, each of the 4 transforms of N/4 points can be split, by 
applying equation (1), into 4 transforms of N/16 points. In this way, with 4 series of N/16 points, we 
must, at the end, compute the matrix (1) 4*N/16 = N/4 times. This can be shown the same for all 
stages. The recursion stops, if a data 'series' F(p,q) is just a single point. Thus, we need S stages, if N 
= 4S.  

Equation (1) involves three multiplications with the complex W-coefficients, called phase factors (WN0 
is always 1). The matrix multiplies with unitary elements 1, -1, j, -j, which translate into simple additions 
of complex numbers in rectangular representation. Each line of the matrix requires 3 complex 
additions, 12 in total. But the matrix can be split into 2 matrices, as it is shown in equation (2). This 
technique requires only 8 complex additions (one per each line of each matrix): 
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In a similar way to the radix 2 algorithm, the radix 4 can be drawn in the typical 'butterfly' structure 
shown in Figure 2.1. One of the big points represents the matrix multiplication of equation (1), involving 
4 data points. This is called one butterfly. The numbers indicate the complex multiplications executed 
in the last vector of equation (1). They correspond to the index k in the coefficient WNk.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1  A 16 point radix 4 algorithm. Source: [1] p. 717 

 

2.2 Complexity of the algorithm 
The computation needs 8 complex additions and 3 complex multiplications per butterfly. One stage 
needs N/4 butterflies and the complete FFT needs S = ld(N)/2 stages. The complexity of the FFT radix 
4 is therefore: 

( 3 / 8 ) N ld(N) complex multiplications 

N ld(N)  complex additions 

Some simplifications apply to these numbers: 

•   The first stage after the data input has no multiplications (q = 0). 

•   If the FFT of pure real data is calculated, half of the operations of the first stage is 
eliminated. Since, in this case, also the output spectrum is symmetrical, the last stage is 
also reduced to half complexity. 
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2.3 Canonic Signed Digit Multiplication 
The Canonic Signed Digit (CSD) representation uses a ternary, or signed-digits code. The possible 
digits are -1, 0, 1. This concept has been presented in [3]. 

A binary number, having a high number of consecutive non zero digits, can be represented with a 
lower number of non zero digits in CSD code. This shall be illustrated by an example:  

31d = ( 11111 )b = 24 + 23 + 22 + 21 + 20 = 25 - 20 = ( 1 0 0 0 0 -1 )CSD. 

The multiplication X * 31d can be executed in binary or CSD :  

X * ( 11111 )b = (24 * X) + (23 * X) + (22 * X) + (21 * X) + (20 * X) ==> 4 additions. 

X * ( 1 0 0 0 0 -1 )CSD = ( 25 * X ) - ( 20 * X )    ==> 1 subtraction. 

The multiplication with a power of 2 is a straightforward bit-shifting operation. The binary number has 5 
non zero bits, the CSD number only 2. A multiplication with this number implies therefore 4 additions in 
binary and only one subtraction (or one change-sign operation and one addition) in CSD.  

In our case, a parallel implementation of an FFT, numerous multiplications must be implemented, 
where the multiplier is a constant, the phase coefficient WNk. The complexity can be considerably 
reduced, when CSD code is used for the phase factors. The first step of this project was therefore the 
development of a tool to compute the optimised CSD code. 

This task was accomplished in form of a matlab routine. The program ter.m in the directory 
/home/rweigand/fft/matlab, and its subprogram ter_sub.m compute the code in a recursive way. 
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3 ESTIMATION OF THE COMPLEXITY 
The complexity depends on the number of single bit adders and the number of flip flops in the chip. 
Therefore, we must know, how many complex additions and multiplications are performed, the ratio 
between complex operation and one real addition and how many non zero bits are contained in CSD 
code.  

3.1 Adders 
As it has been shown in the last chapter, the FFT algorithm needs (3/8) N ld(N) complex multiplications 
and N ld (N) complex additions. In rectangular representation, one complex multiplication requires 4 
real multiplications and 2 real additions, one complex addition requires 2 real additions. 

It has been shown empirically, that in CSD code, the average number of non zero bits in numbers from 
-2c to +2c (thus being max. C+1 bits long) is: 

Nc = 1.75 + ( C - 4 ) / 3  (valid for C>= 4). 

Compare to binary, two-complement code, where NB = ( C + 1 ) / 2.  

A real CSD multiplication with a C+1 bit coefficient requires therefore Nc - 1 real additions. 

Finally, the first stage does not have multipliers. Therefore, the number of complex multipliers must be 
multiplied by ( 1 - 1/S ). If we use real data, the complexity of the butterflies in the first and the last 
stage is reduced by 50 %. This is equivalent to saying, that one stage has no butterflies and the 
number of complex adders is reduced by the same factor ( 1 - 1/S ). Thus, the total complexity will be 
multiplied by ( 1 - 1/S ). 

With this information, we can determine a first estimation ( N ld(N) is common factor ): 

 

Nb. / N ld (N) Nb. of cpx op's real / cpx op's Nb. of real op's Nb. of real add's 

Mult 3/8 4 Mult + 2 Add 3/2 3/2 [3/4 + (C-4)/3] 

Add 1 2 Add 2 + 3/4 11/4 

Table 3.1 

Adding up the last column of Table  gives the number of additions = N ld(N) ( 1.875 + C/2 ). We round 
up (1.875 to 2), correct by the factor ( 1 - 1/S ) mentioned above and substitute S = log4(N) = ld(N) / 2: 

Nadd = N ( S-1 ) ( C + 4 ) 

Most operations carry over the internal word length ( I + 1 bits ). If a one bit adder needs 10 gates, then 
we can estimate the number of gates for the adders (combinational area): 

The size of the adders might be a bit smaller in the first stage, where only D + 1 bit words are added, 
but there is also some additional complexity for inverters (sign change inverters) and clock tree. 
Therefore, we keep this equation, independent of D. This was justified empirically by several trials of 
synthesis. 

Ngates_comb. = 10 N ( S-1 ) ( C + 4 ) ( I + 1 ) 
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3.2 Flip Flops and total area 
The number of flip flops can be determined easily for the three levels of pipelining, input registers, 
intermediate (between stages) registers and output registers. Table 3.2 is valid for a FFT with real-data 
input:  

 

 Input Registers Inter-stages Reg. Output Registers 

Number of FF's ( D + 1 ) N 2 ( I+1 ) N ( S - 1 )  ( I + 1 ) N 

Table 3.2 

The number of gates in sequential area is therefore (1 register = 6 gates):  

Ngates_seq. = 6 N [ ( D + 1 ) + ( I + 1 ) ( 2 S - 1 ) ] 

The total complexity is given by: 

The formula will be used in the tables of the next chapter. 

Ngates =  N [  6 (  D + 1 ) + ( I + 1 ) {  6 (  2 S - 1 ) + 10 ( C + 4 ) ( S - 1 ) } ] 
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4 PERFORMANCE AS A FUNCTION OF THE COMPUTING PRECISION 

4.1 Simulation procedure and definition of the performance 
The FFT-Model has been simulated in different configurations, in order to evaluate the degradation of 
the spectrum due to the truncation errors during calculation. 

All simulations are based on a N=1024 points FFT. The simulation procedure (unix-batch files, matlab- 
and simulator command scripts) are stored in directory 'home/rweigand/fft/sim_results'. 

The design is fed with a sine wave of frequency 5 (5 periods in 1024 points). The computed complex 
spectrum is converted in matlab into a power spectrum, from which the Signal to Noise Ratio (SNR) 
and the Spurious Free Dynamic Range (SFDR) are computed. If X6 is the value of the 6. bin (for 
frequency 5), these values are defined as follows: 

SNR X
X

SFDR X
Xi

i
i i

= =

≠
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10 1010
6

6

10
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6

* log ( ); * log (
max ( )

)        

 

Series of simulations have been carried out with different numbers of internal bits I = 7, 9, 11, 13, 15 
(all bit numbers are given without sign bit, as in the constants-file of the model, thus,   I = 7 means, the 
output is an 8 bit two's complement number, -127 to 127). 

These series carry over different values of D (input data bits) and C (bits of W-coefficients). 

The results are summarised in the tables and plots below. 

 

4.2 Results and explanations 
When Inf (infinite) appears in the tables, all other bins, except X6 are 0. We have an ideal FFT engine 
and we achieve maximum performance. This max. performance, of course, is not infinite, but limited by 
the quantisation noise and is < 20 log10 ( 2I ). In the case of a sine wave, we obtain 6 dB (factor 2 in 
absolute value) below this value, since the Fourier-transformed sine function never uses the output 
dynamic range at its full extent. 

The infinite values should therefore be replaced by the max. not inf. value in each curve. Thus, the 
curve finishes into a horizontal pane (dashed line in the plots). 

SFDR and SNR show slightly different values (SFDR > SNR), but their basic behaviour is the same. It 
is therefore sufficient to know one of both values, to trade off a configuration.  

All curves for D >= I - S are identical. We obtain no gain of precision for a higher input word length than 
I - S, in some cases, there is even a degradation ( I = 7 ). 

Depending on D, the increase of C over a certain value does not improve the performance either. 

The tables also show the complexity, obtained with the formula from the last chapter. 
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C = 2 4 6 8 10 12 14 

        
 Results in dB for I=15  

SNR (Signal to Noise Ratio)  
D = 5 13.38 28.76 35.48 36.26 36.39 36.42 36.45 
D = 7 13.36 29.34 40.69 48.55 50.06 50.33 50.49 
D = 9 13.35 29.36 41.13 53.19 63.63 71.97 70.66 
D = 11 13.35 29.37 41.19 53.68 64.28 84.28 Inf 
D = 13 13.35 29.37 41.11 53.70 64.03 84.29 Inf 

   
SFDR (Spurious Free Dynamic Range)  

D = 5 16.91 36.33 45.37 44.35 44.45 44.45 44.45 
D = 7 16.87 36.30 47.09 57.79 57.80 57.80 58.22 
D = 9 16.87 36.33 47.24 59.89 67.37 74.73 72.23 
D = 11 16.87 36.31 47.25 59.90 67.38 84.28 Inf 
D = 13 16.87 36.31 47.09 60.39 67.38 84.29 Inf 

        
D Complexity      
11 4.89E+06 6.20E+06 7.51E+06 8.82E+06 1.01E+07 1.14E+07 1.28E+07

Table 4.1  Performance and complexity of the 1024 point FFT with I = 15 

 

Figure 4.1  Performance of the 1024 point FFT with I = 15 
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C = 2 4 6 8 10 12 14 

SNR Results in dB for I=13     
D = 5 13.45 29.30 37.06 37.99 38.05 38.06 38.05 
D = 7 13.43 29.77 42.29 53.68 57.01 57.57 58.97 
D = 9 13.43 29.78 42.69 57.45 72.23 Inf Inf 
D = 11 13.42 29.80 42.78 57.76 69.23 Inf Inf 

        
SFDR   

D = 5 16.93 36.43 46.46 45.19 45.20 45.20 45.19 
D = 7 16.89 36.43 47.59 62.19 62.65 62.65 62.65 
D = 9 16.91 36.47 48.34 62.22 72.23 Inf Inf 
D = 11 16.89 36.48 48.35 62.23 72.24 Inf Inf 

        
D Complexity      
9 4.28E+06 5.42E+06 6.57E+06 7.72E+06 8.86E+06 1.00E+07 1.12E+07

Table 4.2  Performance and complexity of the 1024 point FFT with I = 13 

 

Figure 4.2  Performance of the 1024 point FFT with I = 13 



Part II - page 11 

 
C = 2 4 6 8 10 12 14 

SNR Results in dB for I=11  
D = 5 13.75 31.27 44.30 46.95 46.75 47.42 47.42 
D = 7 13.74 31.37 48.37 Inf Inf Inf Inf 
D = 9 13.71 31.20 48.40 Inf Inf Inf Inf 
D = 11 13.74 31.19 48.41 Inf Inf Inf Inf 

        
SFDR        

D = 5 17.05 37.15 50.44 50.42 50.43 50.43 50.43 
D = 7 17.01 36.69 53.14 Inf Inf Inf Inf 
D = 9 17.04 36.73 53.17 Inf Inf Inf Inf 
D = 11 17.05 37.33 53.18 Inf Inf Inf Inf 

        
D Complexity      
7 3.66E+06 4.64E+06 5.63E+06 6.61E+06 7.59E+06 8.58E+06 9.56E+06

Table 4.3  Performance and complexity of the 1024 point FFT with I = 11 

 

Figure 4.3  Performance of the 1024 point FFT with I = 11 
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C = 2 4 6 8 10 12 14 

SNR Results in dB for I=9  
D = 5 14.94 36.50 Inf Inf Inf Inf Inf 
D = 7 14.73 35.79 Inf Inf Inf Inf Inf 

        
SFDR   

D = 5 17.74 38.42 Inf Inf Inf Inf Inf 
D = 7 17.49 38.55 Inf Inf Inf Inf Inf 

   
D Complexity  
5 3.05E+06 3.87E+06 4.69E+06 5.51E+06 6.32E+06 7.14E+06 7.96E+06
7 3.06E+06 3.88E+06 4.70E+06 5.52E+06 6.34E+06 7.16E+06 7.97E+06

Table 4.4  Performance and complexity of the 1024 point FFT with I = 9 

 
 Results in dB for I=7 

D SNR SFDR N_gates 
3 19.42 20.36 2.43E+06
5 17.98 19.82 2.45E+06
7 17.30 19.16 2.46E+06

Table 4.5  Performance and complexity of the 1024 point FFT with I = 7 

Figure 4.4  Performance of the 1024 point FFT with I = 9 
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5 VHDL DESIGN 
A parallel hardware design can not use the recursive algorithm, shown in chapter 2. The butterfly 
structure must be generated in loops. As one can see in Figure 2.1 on page 4, the design is partitioned 
in stages. Each stage contains N/4 butterflies and (except for the first stage) three multiplications per 
butterfly. But all the stages are wired in a different way, they are not identical. 

5.1 Outline 
Figure 5.1 shows the outline of the FFT processor with its signal and component names. 
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Figure 5.1  Block schematic of the FFT module 

 
 

The first stage (just after the input) is the entity STAGE_S. This stage just infers butterflies, since no 
multipliers are needed. The other stages (STAGE_N for N = 0 to S-2) are instances of the entity 
STAGE, with a generic parameter N. In STAGE, multipliers and butterflies are inferred. The parameter 
N determines the wiring of the butterflies, as well as the W(N,K) coefficients for the multipliers. After 
each stage, MID_PIPE or OUT_PIPE creates the pipelining flip flops.  

The design can process fully complex data. But the imaginary input is actually fed with zeros, as well 
as OUT_PIPE reads only half of the output signals (from 0 to N/2-1). This means, that during 
synthesis/optimisation, the operations, corresponding to the not used signals, are eliminated. The 
change  to a fully complex FFT is a relatively straightforward procedure. Definitions of DATA_IN, 
REAL_OUT and IMAG_OUT must be changed to the full set of data (N real and N imag. data points), 
IN_PIPE and OUT_PIPE can be replaced by MID_PIPE. 
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The directory /home/rweigand/fft contains the following VHDL files:  

constants: configuration, global constants and data types, W(N,K) coefficients 
fft:  top level entity 
in_pipe, mid_pipe, out_pipe: pipelining flip flops 
stage_s:  first stage (after the input) 
stage: lower stages (S-2 to 0), generic N: nb. of stage 
mult: multiplier with CSD coefficient, generic K = nb. of coefficient 
mult_csd: same as mult 
mult_bin: multiplier with integer coefficient, generic K = nb. of coefficient 
butterfly: performs the butterfly matrix multiplication 
tb_fft: stimulates fft with input data, writes output data to a text file 
cfg:    configuration of the model, for simulation use 

 

The directory /home/rweigand/fft/matlab contains the following files: 

w_sin.m: computes the W(1024,K) in integer representation and stores them in a text 
file 'sin_data.txt'. 

w_csd.m: computes the W(1024,K) in CSD representation, resolution C=16 bit and 
stores them in the text file csd_coeff.txt'. 

ter.m: main program to convert integer to CSD (ternary code), se chapter 2. 
ter_sub.m: recurrent subprogram to compute the optimal CSD code. 
terbin.m: compares CSD to its binary equivalent, to check ter_sub. 
itobin.m: converts integer to binary. 

 

The directory /home/rweigand/fft/sim_results contains diverse matlab and text files for simulation of the 
performance: 

result.m: computes SNR and SFDR (see chapter 4) of the spectrum obtained with 
VHDL simulations. 

post.m: plots SNR and SFDR graphs. 
result_*: results of simulation (SNR and SFDR values) 
sim.script: VHDL simulation command script. 
simu: unix command file to execute simulations 
simu.prn: print/documentation file for the simulation procedure. 

 

The directory /home/rweigand/fft/synthesis contains synthesis scripts and diverse matlab programs to 
create the synthesis scripts. 

The directories /home/rweigand/fft/fft16, -fft64, -fft256 contain configurations (constants.vhd) and 
results (.db files) of different synthesis runs. 
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5.2 Implementation of the CSD multipliers 
The design MULT (or MULT_CSD) performs the multiplication of a number of I+1 bits by a CSD 
coefficient, which is determined by the generic parameter K. The coefficient is read from the global 
constant CSD_CO, defined in the CONSTANTS package. CI and CR are the real and imaginary part of 
W(N,K), truncated to C+1 bits. 

According to the rules of a complex multiplication (in rectangular representation), 4 products (PR1, 
PR2, PI1, PI2) and two additions must be performed. The products are arrays of integer ranges 
corresponding to the product's word length (I+C+1). Each element of the array corresponds to one bit 
of the coefficient. In the loop PART_PROD, the bit shifted value of one element is assigned to the 
following, adding or subtracting eventually (depending on the value of the coefficient bit -1, 0, or 1) the 
input multiplicand. In this way, an addition or subtraction is created only, when there is a non zero bit in 
the CSD multiplicator. 

The partly products are added in the last two statements. Here, a type conversion applies to avoid 
constraint errors during simulation. In fact an integer addition of two numbers of N bits creates a sum 
of N+1 bits (the carry bit). But in our case, since the complex coefficients are pure phase factors, 
|W(N,K) | = 1. This means, that our sum never uses the carry bit. Nevertheless, the simulator creates it 
during initialisation and requires a corresponding target data type. Therefore, the addition is performed 
between 'signed' data types, where the carry bit is ignored.  

The sum is also divided by 2**C. This truncation applies to come back to the internal word length (I+1) 
in the fixed point arithmetic. 

5.3 Synthesis of the design 
Several runs of synthesis have been performed using the tools (script files) in the directory 
'/home/rweigand/fft/synthesis'. The best way to run the synthesis is compiling all the designs one by 
one, saving and deleting them before the next one is read. Designs with generic parameter must be 
read with the 'elaborate' command. 

Table 5.1 compares the synthesised area of two examples (16 and 64 points) with the complexity 
estimated by the formula of chapter 3. The synthesised and optimised designs are stored in 
'home/rweigand/fft/fft16/fft_16_csd_3.db' and 'home/rweigand/fft/fft64/fft64_opt.db'. 

 

N S C D I Synth. Area Est. Area Max. delay 

16 2 6 7 9 19456 19648 43 ns 

64 3 5 4 7 105116 109440 32.3 ns 

Table 5.1 

The maximum delay is between 32 and 43 ns. This means, that the speed is between 20 and 30 MHz 
(or 20 - 30 M spectra per second). Note that the speed does not depend on the number of points, but 
on the precision of the computations (wordlength, C and I). 

The synthesis of a 256 and 1024 points design did not succeed. The reason is a bug in Synopsys 3.2, 
which is documented in the 'Synthesis Release Note 3.2b', with the ID-Nr. STAR 2291. This defect 
causes the process to run out of memory when arrays of arrays are used in the design, which is the 
case in our FFT model. The problem should be fixed in version 3.3 (Release Note 3.3a). The release 
3.3a was available, but could not be installed successfully at ESTEC until the end of this project. With 
the new release, the synthesis for N = 256 and 1024 is expected to be successful. 
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6 CONCLUSION 
A FFT module has been designed in VHDL. The model is parametrisable to different complexities 
(number of points N = 16, 64, 256, 1024) and a varying precision (input, internal and coefficient word 
length).  

The concept uses a Radix 4 algorithm and a CSD representation for the phase coefficient. The FFT is 
computed in parallel, this means, that at each clock cycle, one complete FFT is coming out of the 
module. The computations are executed in fixed point arithmetic. The latency (the number of clock 
cycles between the input and its corresponding transformed output) depends on the number of stages ( 
S = ld(N) / 2 ). 

The complexity of different configurations has been estimated. As a result, the FFT for N=1024 points 
requires around 107 gates. This is not feasible in current ASIC technology. For N=256 and less, we 
can achieve a complexity <= 106 gates. 

The influence of more or less coarse fixed point arithmetic was studied by VHDL simulations. The 
results show that the most important parameter which decides about the performance is the word 
length of the internal computations. Input- and coefficient word length have optimal values depending 
on the internal word length, but their impact on the overall result (signal to Noise ratio) is small. 

Logic synthesis has been executed in several trials. The model passes for N = 16 and 64 points. The 
synthesised area matches the estimated area with less than 5% difference. The speed of the module 
depends on the precision (computation word length), but not on the number of data points N. In most 
cases, the design is expected to run at a clock frequency around 20 - 30 MHz. 

The synthesis for N = 256 and 1024 did not work due to a bug in the Synopsys software which was 
actually used. This defect has been fixed in the latest release (3.3a) of the software. The model is 
expected to work successfully when release 3.3a. will be installed correctly on the XR Sun cluster. 

 

 

7 REFERENCES 
[1] Preaches, John G., Introduction to digital signal processing, New York (Macmillan Publishing 

Company) 1988, page 698 - 720. 

[2] Report Alcatel Espace, A 16 bit real FFT ASIC, When and Where ? 

[3] something about CSD . 


	ACS6.pdf
	Introduction
	Background and motivation for Digital Autocorrelation Spectrometers
	Current state-of-the-art
	Description of the work

	Architectures of ACS
	The hybrid and multiplexed approach
	The correlator
	The multiplication methods
	The 1x1-bit multiplication (bit_1)
	The 3-level multiplication (level_3)
	The reduced two-bit four-level multiplication (level_4_rn and level_4_r0)
	The full two-bit multiplication (level_4)
	Summary of multiplication methods


	Performance of ACS
	Definitions of  'sensitivity', 'degradation factor' and 'integration time'
	Degradation as a function of the quantiser thresholds (Vth)

	The Spreadsheet for System Trade-Off
	The Input Section
	ACS specifications
	Architecture partitioning
	Technology parameters

	Modelling of the Correlator Chip
	Power dissipation of one autocorrelator lag
	Correlator summary table

	The Analog Circuits
	Front end architecture

	The Output Section
	Power Consumption
	Efficiency and Performance
	Energy Merit

	Macro functions for optimising the data
	Mux_Min: hotkey CTRL - m
	J_Min: hotkey CTRL - j
	Display_chart: hotkey CTRL - d


	Soprano and Master Spectrometer Trade-Off
	Specifications:
	Trade-Off guidelines
	Objectives
	Constraints
	Procedure

	The Soprano Spectrometer
	Narrow band / high resolution specification

	The Master Spectrometer
	Narrow band / high resolution specification
	Summary for Level_4_R0


	The VHDL Model
	Outline of the model
	VHDL files
	Auxiliary files
	Files in sub directory 'synthesis'

	Simulations in VHDL and Matlab
	VHDL simulations
	Cross-check with matlab simulations

	Synthesis: schematics, speed and complexity

	Conclusion
	Achievements
	Results
	Prospects and suggestions

	References
	Appendix: Schematics of the Synthesised Autocorrelator
	Appendix: Listings of the VHDL Model

	REPORT6.pdf
	Introduction
	Algorithm
	FFT Radix 4
	Complexity of the algorithm
	Canonic Signed Digit Multiplication

	Estimation of the Complexity
	Adders
	Flip Flops and total area

	Performance as a Function of the Computing Precision
	Simulation procedure and definition of the performance
	Results and explanations

	VHDL Design
	Outline
	Implementation of the CSD multipliers
	Synthesis of the design

	Conclusion
	References


