ATMEL Available Microprocessors and On going Projects

Guy Mantelet guy.mantelet@.atmel.com

ATMEL microprocessor family

- ATMEL works on processors for space for more than 15 years
- Existing processors for space
 - 80C32E
 - TSC21020 DSP
 - TSC695F and TSC695FL Sparc V7
 - AT7913E LEON2-FT Sparc V8
 - AT697E LEON2-FT Sparc V8
 - AT697F LEON2-FT Sparc V8

80C32E 8-Bit Architecture

- 80C32: 8-bit ROMless microcontroller rad.tolerant
 - Side Brazed 40-pin, MQFPJ 44-pin
 - Total lonizing dose : 30 krads (Si) according to MIL STD 883
 - No Single Event Latch up below 80 MeV/mg/cm2
 - QML Q and V with SMD 5962-00518
- 0.8µm RT CMOS technology
- End of life announcement 2010/11
- No new design based on this product

TSC21020F

Standard 32/40-bit Floating Point from Analog Devices

- Radiation tolerant version of ADSP-21020
- Superscalar IEEE Floating Point Processor
- 20 MHz max; 5V ± 0.5V
- 40 MFlops sustained performance, 60 MFlops peak
- Space qualified MQFPF-256 for flight models
- Total Ionizing dose : 100 Krad
- No Single Event Latch up below 80 MeV/mg/cm2
- 0.6µm RTP CMOS technology
- End of life announcement 2011/12
- No new design based on this product
- Next generation of DSP not yet defined

ATMEL SPARC microprocessor family

TSC695F: SPARC 32bit Space Processor

- MQFPF256, 25 MHz, 20Mips, 5Mflops @ 5V+/-0.5V
- SEU Rate Better than 1.6E-8E/d/d on GEO
- SEU Rate Better than 8E-10E/d/d on LEO
- Latch up immune, 300Krads (RHA=R)
- Fully static design
- 41 mA power down current @ 25 MHz
- 230 mA operating current @ 25 MHz
- ESCC & QML V (5962-005401)

TSC695FL: Low Power SPARC 32bit Space Processor

- MQFPF256, 15 MHz, 12Mips, 3Mflops @ 3.3V+/-0.15V
- SEU Rate Better than 1.2E-7E/d/d on GEO
- SEU Rate Better than 4E-5E/d/d on LEO
- Latch up immune, 300Krads (RHA=R)
- Fully static design
- 10 mA power down current @ 15 MHz
- 100 mA operating current @ 15 MHz
- **70% power saving at only 40% MIPs cost**
- ESCC & QML V (5962-03246)

TSC695F/FL

- Flight heritage more than 1600 flight model
- 0.5µm RTP CMOS Technology
- End of life announcement 2013/14
- Die banking on qualified lot

AT7913E Sparc V8

- Sparc V8 Leon2 FT with Floating Point Unit
- AT7913E RTC (Remote Terminal Controller)
 - Two CAN interface
 - FIFO interface (parity check)
 - ADC/DAC interface
 - 2 UART interfaces
 - 2 bidirectional SPW link 200Mbit/s on chip LVDS
 - 64kB x 32 on chip memory with EDAC
 - ...
- CMOS Technology: ATC18RHA (0,18 µm)
- LGA 349
- MQFPF 352 to be introduce ? Depending on customers need
- Power consumption: ~0.7W@50MHz
- 1.8V core, 3.3V I/O
- More detail in the next presentation

AT697 Sparc V8 32-bit Architecture

- SPARC V8 LEON2-FT with Integer and Floating Point Unit
- On chip Amba Bus
- Embedded Instruction and Data caches
 - 16Kbytes multi-sets Data cache
 - 32Kbytes multi-sets Instruction Cache
- Memories Interface for PROM, SRAM and SDRAM
- PCI 2.2 interface (33 MHz)
- Two Timers, two 8-bit Uarts and interrupt Controller
- User friendly Debug Support Unit
 - Trace buffer 512 lines of 16 bytes

AT697 basics

- ATC18RHA CMOS 0.18 micron; 1.8 V core; 3.3V I/Os
- Fault tolerance by design
 - Triple Modular Redundancy with skew
 - SEU and SET protection
 - EDAC on register file and external memories
 - Parity on the caches
- Available package
 - MCGA 349 last delivery Q2_2011
 - LGA 349
 - MQFPF 256

AT697 block diagram

AT697 Die View

AT697E performance

- Performance at 100MHz
 - 86 MIPS (Dhrystone 2.1)
 - 23 MFLOPs (Whetstone)
 - SDRAM interface speed impacted by the bus load
 - On AT697-EVAB (2 SRAM and 1 SDRAM banks) : 65 MHz maximum
- Power consumption
 - 7 mW / MHz
 - At 100 MHz and for high activity : core at 0.5 W, I/O at 0.2 W

150 MIPs/W

AT697E radiation performance

Total lonizing Dose

- Parts fully functional at 200 krad (Si)
- 3.3V I/O standby current increases after 100 krad (Si), and recovers after high temperature annealing
- These results allow to use these AT697E parts for space mission requiring a maximum of 60 krad (Si)

Single Event Effects

- No Single Event Latchup (SEL) at 95 MeV/mg/cm2 max voltage – 125°C for a fluence of 1 E7 particles/cm2
- Very good Single Event Upset/Transient (SEU/SET) protection

AT697F rationales

- Prototype devices: AT697E and Flight devices: AT697F
- ATC18RHA library
 - To allow successful total dose test up to 300 krad (Si)
 - To ensure appropriate process reliability monitoring (through SEC test vehicle)
- Bug removal
 - All known bugs has been corrected (see AT697E errata sheet)
- Removal of existing functions
 - 16-bit mode PROM/RAM interface (no EDAC support)
 - PCI single transaction mode
- Addition of new functions
 - Addition of Two Memory Block Protection Units (TSC695F compatible)
- Pin out compatible with AT697E

AT697F improvements of existing functions

- Many feedbacks from customers during AT697E validation phase and first designs
- Improvements
 - Asynchronous assertion of BRDYN
 - Use of the BRDYN for PROM area
 - Extending the timers to 32-bits
 - Addition of four external interrupts
 - AHB trace buffer halt
 - New 8-bit memory EDAC scheme
 - Write to 8-bit PROM with EDAC enabled
 - PCI device configuration boot pin made readable
 - PCI configuration registers made AHB readable in satellite mode
 - Higher capacitive load capability.
 - Higher ESD protection 2000V (250V for AT697E)

SDRAM interface speed

AT697F development tasks

- Electrical characterisation and validation
 - Full bias voltages and military temperature ranges
- Application Tests
 - Update of the evaluation board
- ESCC evaluation On going
- Space Qualification
 - QML Q, QML V, ESCC screening on going
- Radiation characterisation
 - Total dose : tested up to 300Krad(si) successfully
 - Single Event Effects (heavy ions and protons) TBD

ATMEL AT697 Compact PCI Evaluation board

- Compact PCI plug-in format
 - 6U format, 32 bit, 33MHz interface
 - Configurable for System and Peripheral slot operation
 - Two mezzanine board MCGA & MQFPF
- Processor
 - Atmel AT697E/F , Rad-Hard 32 bit Sparc V8 Embedded Processor
- On-board memory
 - SRAM 4Mbyte
 - 2 AT60142 SRAM banks
 - FLASH 2Mbyte
 - SDRAM 64Mbyte
- Interfaces
 - Memory/Peripheral expansion connectors
 - Debug Support Unit interface
 - PIO expansion
 - On-board power regulation allows operation from PCI slot, or stand-alone with +5V supply.

AT697 Software Development Tools

- Compiler
 - Bare-C Cross-compiler
 - RTEMS Cross-compiler
- Debugger
 - GRMON debug monitor target debug through serial DSU or PCI interface
- Simulator
 - TSIM simulator
- Real Time Operating Systems
 - RTEMS
 - VxWorks
 - eCOS
 - Snapgear Embedded Linux (uClinux)

Reconfigurable Processor

Processor

- AT697F SPARC V8 LEON2-FT
- Reconfigurable unit
 - ATF280F SRAM based FPGA
- Total dose up to 300Krad(si)
- Available package
 - MQPFP 352

- First application based on CNES space application
 - FPGA predominance, AT697F in limited speed performance
 - 2 LVDS transceivers (out of 8)
 - All Global Clocks and Fast Clocks available
 - 250 FPGA I/Os available

Possible derivative implementation

Links / Documentation

Documentation regularly updated on ATMEL web site

- http://www.atmel.com/products/radhard/
- Datasheet, errata sheet, evaluation board user manual

One dedicated Sparc Hotline

- sparc-applab.hotline@nto.atmel.com
- Radiation report available upon request

Thank You

