

The World Leader in High Performance Signal Processing Solutions

SHAC Digital Signal Processor Core Technology

Abhijit Giri Satya Simha November 4th 2009

Outline

- Introduction to SHARC DSP ADSP21469
- ADSP2146x Core
 - Compute unit
 - ISA
 - Memory Architecture
 - Connectivity
- Implementation Methodology
- ADSP 2146x Core as an IP

SHARC DSP & I/Os – ADSP21469

SHARC ADSP2146x Core

SHARC® Architecture

- High Performance IEEE-754 32-bit/40-bit Floating Point Processor
- Upward compatibility with the ADSP-21020 (SISD)
- Very deterministic architecture
- 5 instruction pipeline stages (Protected)
- 450 MHz (2.25ns) core instruction rate
 - Performs 2.7 GFLOPS / 900 MMACS
- Single-Instruction multiple-data (SIMD) computational architecture provides:
 - Two 32-bit floating point/ 32-bit fixed point/40-bit extended precision floating point computational units
 - Each of two units has:
 - Multiplier
 - Arithmetic Logic Unit
 - Shifter
 - Register file
 - Concurrent code execution
 - Single cycle execution of a Multiply or ALU operation
 - A dual memory read or write, and an instruction fetch
 - Transfers data between core & memory at a sustained 5.4GB/s bandwidth

SHARC Instruction Set

- Multiple parallel operations packed in compact instructions
 - <u>Variable length (16/32/48-bit long) instruction-encoding</u> achieves compact code
- Almost all the instructions can be conditional; many also take ELSE clause
 - If..then..else constructs are compiled into compact and efficient code

Branches can have delay slot

- Minimizes wastage of cycles
- Hardware looping instructions
 - Zero-overhead looping
- Most instructions have a compute part
 - Compute can be single function or multi-function
- Algebric style instructions
 - Makes hand-coding easier

SHARC Instruction Set – contd..

Multi-function compute packs multiply, add and subtract operations
Example: inner loop of a butterfly computation of FFT

f13 = f1*f4, f12 = f8+f12, f14 = f8-f12, f4 = dm(i2,m0), f1 = pm(i15,m9);

Peak performance: 6*f MFLOPS (operation in SIMD)

<u>2.7 GFLOPS for 450MHz processor</u>.

Sustained peak MFLOPs is realizable due to

- Single cycle multifunction compute
- Parallel data load/store aided by DAGs from fast on-chip (L1) memory
- Zero-overhead hardware looping
- Shallow pipeline

Performance Benchmarks at 400 MHz

Benchmark Algorithm	Speed at 400 MHz
1024-Point Complex FFT (Radix 4, with Reversal)	23.25 us
FIR Filter (per Tap)	1.50 ns
IIR Filter (per Biquad)	5.00 ns
Matrix Multiply (Pipelined) [3 × 3] × [3 × 1] [4 × 4] × [4 × 1]	11.25 ns 20.00 ns
Divide (y/x)	8.75 ns
Inverse Square Root	13.50 ns

Memory System

System Bus Interfaces

- Core interfaces with IOP system over 4 AHB busses through appropriate bridges
 - pAHB for MMR accesses
 - eAHB for MMR accesses in ext. mem i/f, as well as direct off-chip access
 - edAHB for DMA to/from ext. mem
 - dAHB for DMA to/from all other peripherals

M: Unit can master the bus S: Unit is slave on the bus

Implementation Methodology

11

SHARC Core

- 5 stage pipeline core (SIMD SHARC-V)
- Standard memory interface for internal memory
- AHB compliant interfaces for peripherals
- Flip-Flop based design with few latches
 - Design in synthesizable Verilog RTL
- Scan-ready
- Frequency depends on choice of technology / implementation
 - 450MHz in a <u>65nm</u> technology (optimized for high performance)

SHARC Core IP collateral

Core in Verilog RTL

- Synthesizable Verilog RTL for simulation as well as synthesis
- Simulation environment standalone core environment
 - Tests for design verification
- Synthesis scripts and guidelines for DCT (Synopsys)
 - Clock descriptions, timing and other constraints, exceptions
- Documentation of interfaces (memory, peripherals)
- C simulator of the core
- Documentation on Clocking guidelines (inside core), DFT, input clocking requirements of the core, power-on and reset.
- Physical design guidelines

Design support as required

Amplifiers Power Management Processor

ADSP 21469 I/O Peripherals

Serial Ports

□ SPDIF

- □ I2C®-compatible 2-wire interface
- UART

SPI

- Timers
 - Pulse with count
 - PWM waveform generation

Link Ports – 8-bit bi-directional port
with Clock and ACK for fast link
External memory interface

DDR2 and AMI

□ All are RTL based designs and are implemented in standard ASIC flow in one hierarchy.

ADI VDSP++ Development Tools

- VisualDSP++ provides an IDDE, which provides easy access to
 - Editor
 - Compilers C/C++
 - VDK RTOS/Kernel
 - Assembler
 - Linker
 - Simulator including MP
 - Emulator/debugger
- Plug-ins for easy programming of some of the peripherals

Summary

- ADSP 21469 is a modern 32-bit floating point DSP
- Delivers 2.7GFLOPS at 450MHz
- DSP Core can easily be integrated into any SoC
 - Synthesis-P&R-ready
 - Includes standard interfaces

Thank You

SHARC ADSP2146x Core - Summary

- 32-bit architecture
- Code compatibility with other SHARC family members at the assembly level
- Single instruction multiple data (SIMD) architecture provides
 - Two computational processing elements
 - Concurrent execution
- Compute units support
 - IEEE Single precision floating point (32-bit)
 - 40-bit extended precision floating point for 32-bit resolution in floating point computations
 - Also 32-bit fixed point
- Dual data address generators (DAGs)
 - modulo (for circular buffers) and bit-reverse (FFT) addressing
- Sequencer supports
 - Zero-overhead looping with single-cycle loop setup
 - Low-overhead branching
 - VISA (variable instruction set) execution support
- Parallelism in buses and computational units allows
 - Single cycle executions (with or without SIMD) of a multiply operation, an ALU operation, a dual memory read or write, and an instruction fetch
- 5-deep pipeline fully interlocked

