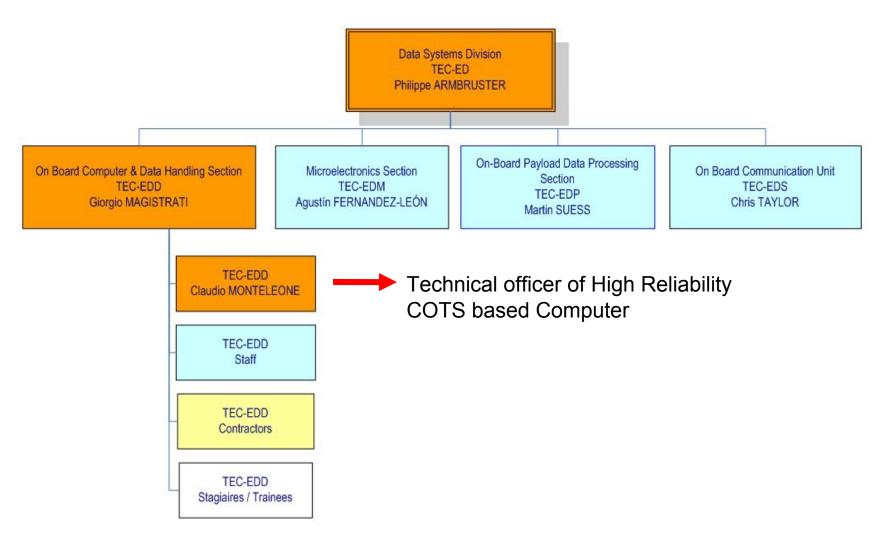


USE OF COTS PROCESSORS IN SPACE


ADCSS09, ESTEC

MPSA - Micro-Processors for Space Applications round table

C. Monteleone
On Board Computer & Data Handling Section (TEC-EDD)
ESA ESTEC

TEC-ED Sections

List of contents

- Definition of COTS
- Concerns using COTS processors in space systems
- Motivations for using COTS processors in space systems
- ESA project "COTS based computer for On Board systems"

What we mean with COTS components

A common definition for COTS:

Commercial off-the-shelf (COTS) is a term identifying software or hardware products that are ready-made and available for sale or license

- Manufacturer's standard products
- Can be found in data books
- Usually fast procurement

There are COTS products also for Rad-Hard processors e.g. TSC695, AT697, AT791

Additional definition for COTS components for space:

- Components with no pre-requisite specification respect to space environment (thermal, mechanical, radiation aspects)
- Lower cost respect to similar rad-hard components

Concerns using COTS processors

Radiation effects

Availability of Radiation Tests results are often missing

Variability

- A COTS manufacturers do not control the technology parameters that condition the radiation hardness
- Process is likely to be modified at anytime, tracing the origin and manufacturing process is difficult
- Processor memories COTS devices has a variability from one manufacturer to another and for a single manufacturer

Obsolescence

- COTS suppliers constantly introduce new products while
- hardened OBC have a long development time and a long life cycle

Power consumption

- Higher power consumption than High Rel devices
- Power consumption stability vs aging effects

Reliability

Reliability data often missing or incomplete

No access to the intimate design

Difficulty to fully characterize the design and to develop models

Motivations for using COTS processors

- High computing performance
- Reduced procurement cost
- Large availability of support tools for SW development and tests
- Large availability of existing software libraries
- Compatibility with ground processors allows developing of low cost test environments and simulators
- Many COTS developed processors technology using sub-100 nm silicon techniques include internal error detection and correction features that can make easier the implementation in computers for space applications of architectural solutions for FDIR.

On-going ESA activity related to COTS processors in space

Title:

COTS based Computer for On board Systems (CoCs)

Main objective:

Study and design for on-board computing systems based on "Commercial Off The-Shelf" components

Activity phases:

1. The design phase

Defining the COTS computers as well as the methods for their manufacturing and qualification

2. The implementation and qualification phase

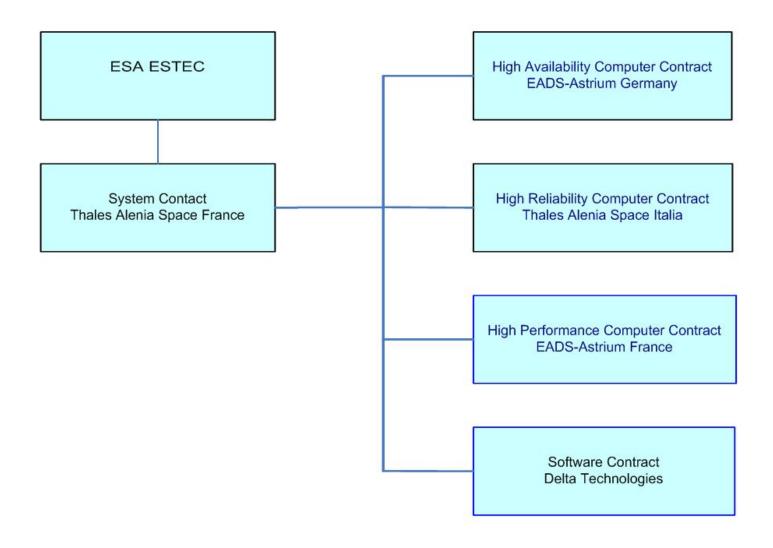
Manufacturing of EM/EQM breadboards that target real missions.

3. The transfer phase

Bridging the gap between R&D and operational use within projects.

CoCs Activity design phase

Main objectives:


- The selection of the COTS components
- The detailed specification
- Models for the CoCs and its building blocks.
- Methods for the prediction and evaluation of the performances.
- The specification of the CoCs Software

Goal is prototyping 3 COTS based computer architectures:

- The Highly Reliable CoCs (Hi-R)
- The Highly Available CoCs (Hi-V)
- The High Computing Power Payload CoCs (Hi-P)

CoCs Activity Contracts

Hi-R Computer requirements

Highly reliable computers are used to run functions over a quite long period of time while they can be interrupted from time to time without putting the mission in danger.

- Lifetime: 15 years
- A permanent failure: must not lead to mission loss.
- A survival mode is used as ultimate barrier ensuring satellite safety.
- Tolerated outage: 10 seconds maximum.
- Rate of outage: one outage every 30 days.
- Reliability > 0.95 over 15 years.
- Performance: > 200 MIPS.
- Communication services shall be able to manage at the same time up to:
 - 3 high speed bus (> 300 Mbit/s)
 - 3 low speed bus (of the class 1 Mbit/s)
 - 100 low speed I/O's (few Kbit/s)

Hi-V Computer requirements

Highly available computer shall provide dependable services never interrupted during a limited period of availability

- Lifetime: 15 years.
- A permanent failure must not lead to mission loss.
- Duration of the availability period: 30 consecutive days.
- No outage is allowed during the availability period.
- No survival mode is possible.
- Probability of failure during availability period is 10⁻⁷ per hour.
- Number of availability periods during lifetime: 50.
- Reliability outside the availability period > 0.95 over 15 years.
- Performance: > 200 MIPS.
- Communication services shall be able to manage at the same time up to:
 - 3 high speed bus (> 300 Mbit/s)
 - 3 low speed bus (of the class 1 Mbit/s)

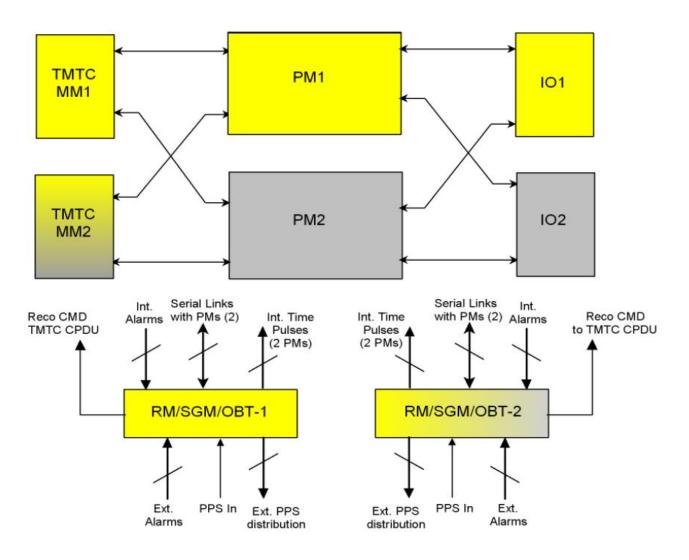
Hi-P Computer requirements

High Processing Power Payload Computer performance figures shall be the following:

- Lifetime: 15 years.
- Duration of availability period: 10 days.
- Outage allowed during availability period: 10 second.
- Number of outage allowed during availability period: 5.
- Failed computer must go automatically in a safe state.
- Number of availability periods during lifetime: 100.
- Performance: > 500 MIPS or > 500 MFLOPS.
- Communication services shall be able to manage at the same time up to:
 - 3 high speed bus (> 300 Mbit/s)
 - 3 low speed bus (of the class 1 Mbit/s)

COTS processor selection criteria

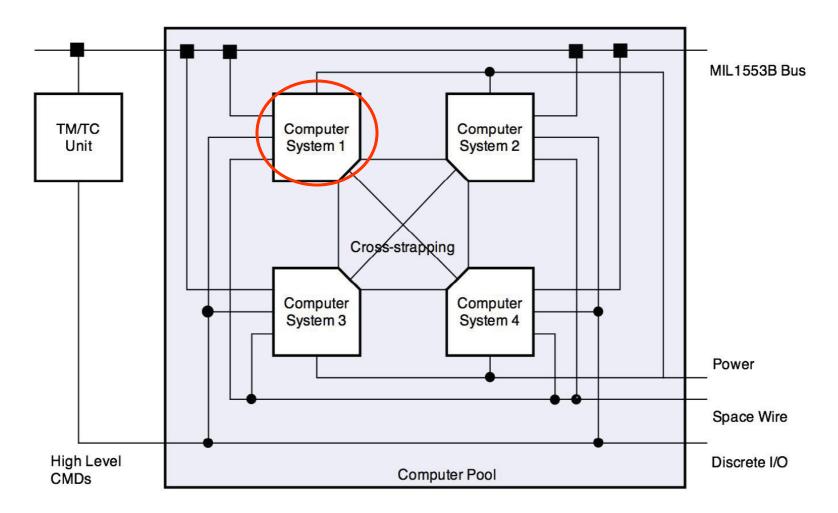
- Maturity and Stability of the design and manufacturing process
- Rapid Obsolescence / long term availability
- Diffusion in commercial and embedded markets
- Availability and maturity of development tools and SW
- Availability of up-screened versions
- Access to manufacturers data
- No ITAR or other export restrictions
- Use of silicon technologies having intrinsic radiation tolerance capabilities and availability of Radiation tests results
- Internal error detection and correction features
- Power consumption
- Packaging



COTS Processor selected

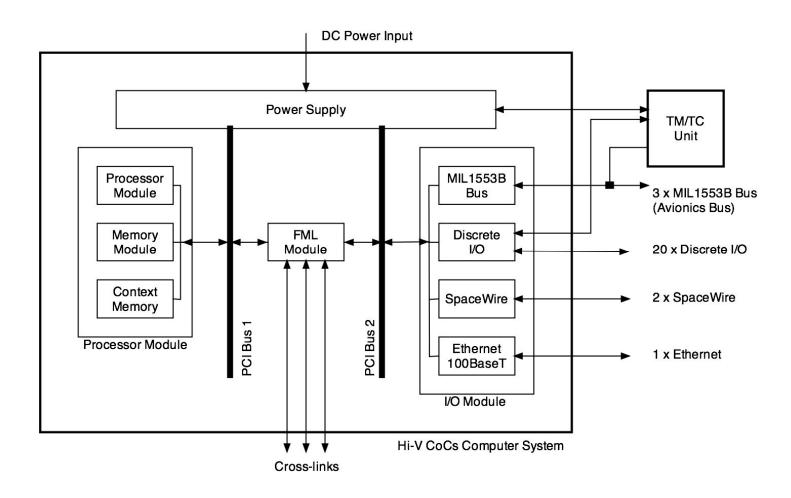
Features	PPC7448 (Freescale)	AT697 (ATMEL)
Clock frequency	1.3 Ghz	100 MHz
Dhrystone 2.1 MIPS	3000	86
Manufacturing process	90 nm CMOS SOI	180 nm ATC18RHA
On-chip L1 cache	32 Kbyte Icache with parity 32 Kbyte Dcache with parity	32 Kbyte Icache with parity 16 Kbyte Dcache with parity
On-chip L2 cache	1 Mbyte with tag parity and ECC on data	-
Core	e600 core (PowerPC G4)	LEON2-FT (Sparc V8)
Package	CLGA 360	MCGA 349
SEU (cm²/device)	3.0x10 ⁻⁴	1.0x10 ⁻⁵
Power (mW/MHz)	9.2	10

Hi-R Computer Architecture



Hi-R FDIR strategy

- Approach is to maintain to a large extent the architecture, redundancy concept and partitioning of functions in use within typical Platform Control computers.
- All the countermeasures needed to minimize occurrence and to solve transients faults are implemented internally to each module
- In particular in the Processor Module this is achieved by a combination of hardware and software features:
 - Volatile memory protected by ECC code
 - Each volatile memory device powered independently to recover from SEFI
 - Protected volatile memory areas
 - Smart watch-dogs
 - HW scrubbing
 - Time redundancy: tasks are computed twice
- The Reconfiguration Module intervenes only in case of locally unrecoverable situations.



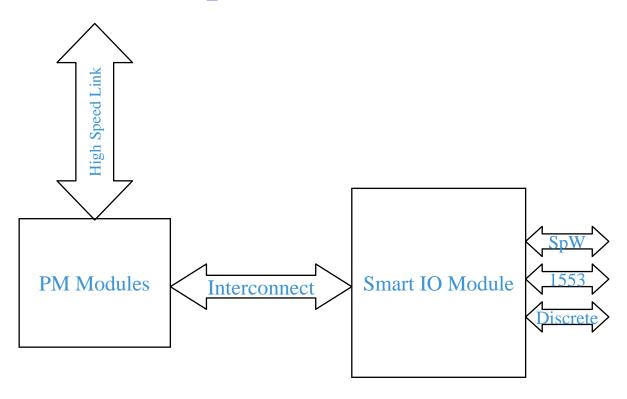
Hi-V Computer Architecture

Hi-V Computer System

Hi-P COTS based Computer

The architecture is based on two main modules: Processor module and Smart-I/O module

Processor Module:


- It is based on PowerPC-7448
- In case of specific higher performance or lower power consumption needs a DSP based design is used

Smart I/O module:

- It is SEU immune and based on a Rad-Hard but lower performance processor (e.g. AT697)
- Can control multiple Processor Modules
- It is in charge to ensures safe instrument control and to format the data before the distribution in the system
- Can perform low performance phases when PM boards are off.

Hi-P System Interfaces

PM Module - Smart I/O Interconnection candidates:

- cPCI@33MHz allows 1 Gb/s data rate
- SpaceFiber allows 1- 10 Gb/s data rate
- The Wizard Link (Texas Instrument)