
Hardware/Software Co-Design
&

LEON2/3 SystemC Instruction Set Simulator

Luca Fossati
fossati@elet.polimi.it Luca.Fossati@esa.int

Politecnico di Milano European Space Agency

1st, April 2010

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 1 / 25

mailto:fossati@elet.polimi.it
mailto:Luca.Fossati@esa.int


Outline

Outline

1 Hardware/Software Co-Design

2 LEON2/3 IP Model Contract Aim

3 Instruction Set Simulator

4 Results

5 Conclusion

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 2 / 25



Hw/Sw Co-Design Challenges

The Software Role in Todays Hardware

Software is becoming more and more important in payload
processing and on-board control:

Need for flexibility, complex functionalities, more processing power is
available, . . .

Its development must take place concurrently with the Hardware:

Software adapts to hardware as well as hardware to software
Partitioning of functionalities between Hardware and Software not
clearly defined at early design stages

Software complexity often dominates the system development cost
and schedule:

Concurrency issues in Multi-Processor Systems (e.g. NGMP)
Timing measurements necessary to assess real-time properties
. . .

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 3 / 25



Hw/Sw Co-Design Challenges

The Software Role in Todays Hardware

Software is becoming more and more important in payload
processing and on-board control:

Need for flexibility, complex functionalities, more processing power is
available, . . .

Its development must take place concurrently with the Hardware:

Software adapts to hardware as well as hardware to software
Partitioning of functionalities between Hardware and Software not
clearly defined at early design stages

Software complexity often dominates the system development cost
and schedule:

Concurrency issues in Multi-Processor Systems (e.g. NGMP)
Timing measurements necessary to assess real-time properties
. . .

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 3 / 25



Hw/Sw Co-Design Challenges

The Software Role in Todays Hardware

Software is becoming more and more important in payload
processing and on-board control:

Need for flexibility, complex functionalities, more processing power is
available, . . .

Its development must take place concurrently with the Hardware:

Software adapts to hardware as well as hardware to software
Partitioning of functionalities between Hardware and Software not
clearly defined at early design stages

Software complexity often dominates the system development cost
and schedule:

Concurrency issues in Multi-Processor Systems (e.g. NGMP)
Timing measurements necessary to assess real-time properties
. . .

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 3 / 25



Hw/Sw Co-Design Virtual Platform

Virtual Platform:
A Software Model of the Hardware System

Definition

A Virtual Platform is a software based system that can fully mirror the
functionality of a target SoC or board.

Aids solving the software design issues . . .

Early availability of reference hardware
Software development can start before the first hardware prototype is
ready
Full control, observability, etc. of the modeled hardware system

. . . but not only:

Enables tuning the hardware and determining the right tradeoffs early in
the design cycle (i.e. without the need to already have an initial
prototype)
Enables seamless interconnection of IP models written using appropriate
standards (e.g. OSCI SystemC and TLM)

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 4 / 25



Hw/Sw Co-Design Virtual Platform

Virtual Platform:
A Software Model of the Hardware System

Definition

A Virtual Platform is a software based system that can fully mirror the
functionality of a target SoC or board.

Aids solving the software design issues . . .

Early availability of reference hardware
Software development can start before the first hardware prototype is
ready
Full control, observability, etc. of the modeled hardware system

. . . but not only:

Enables tuning the hardware and determining the right tradeoffs early in
the design cycle (i.e. without the need to already have an initial
prototype)
Enables seamless interconnection of IP models written using appropriate
standards (e.g. OSCI SystemC and TLM)

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 4 / 25



Hw/Sw Co-Design Virtual Platform

Virtual Platform: a new simulation paradigm

With respect to standard simulators a VP is:

Configurable:

At system level (different architecture of the SoC)
At IP level (different configuration of each IP)

Enables Design Space Exploration to determine an optimal
architecture

Enables Hardware/Software co-design

. . .

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 5 / 25



Hw/Sw Co-Design Virtual Platform

Virtual Platform: a new simulation paradigm

With respect to standard simulators a VP is:

Configurable:

At system level (different architecture of the SoC)
At IP level (different configuration of each IP)

Enables Design Space Exploration to determine an optimal
architecture

Enables Hardware/Software co-design

. . .

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 5 / 25



Hw/Sw Co-Design Virtual Platform

Virtual Platform: a new simulation paradigm

With respect to standard simulators a VP is:

Configurable:

At system level (different architecture of the SoC)
At IP level (different configuration of each IP)

Enables Design Space Exploration to determine an optimal
architecture

Enables Hardware/Software co-design

. . .

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 5 / 25



Hw/Sw Co-Design Virtual Platform

On Going Activities

A VP is mainly composed of three elements:
a Models of the hardware components

b Embedded Software

c Glue, connecting everything together and providing facilities for
inspection, debugging, performance tuning, etc.

Three parallel ongoing activities pose the foundations for the VP which
will drive the development of future payload processing and on-board
control systems:

1 Development of models of the main IPs used in most of the LEON
based architectures and of the VP infrastructure to manage them

2 Development of the models of the communication IPs (SpaceWire
and, possibly, CAN)

3 Development of the models of the LEON2 and LEON3 processors

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 6 / 25



Hw/Sw Co-Design Virtual Platform

Virtual Platform

Processor

(e.g. LEON3)

Interconnection Network or Bus (e.g. AMBA AXI)

Embedded

Memory

Memory

Controller

Interrupt

Controller

SpaceWire

Interface

Cache

Hardware Model

Application

OS

Compiler Binary Image

Software Development

Runs on

Controller,

Monitor,

Performance 

Analyzer

Virtual 
Platform 

Infrastructure 
(VPI)

Virtual Platform

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 7 / 25



Hw/Sw Co-Design On-Going Activities

On Going Activities

A VP is mainly composed of three elements:
a Models of the hardware components

b Embedded Software

c Glue, connecting everything together and providing facilities for
inspection, debugging, performance tuning, etc.

Three parallel ongoing activities pose the foundations for the VP which
will drive the development of future payload processing and on-board
control systems:

1 Development of models of the main IPs used in most of the LEON
based architectures and of the VP infrastructure to manage them

2 Development of the models of the communication IPs (SpaceWire
and, possibly, CAN)

3 Development of the models of the LEON2 and LEON3 processors

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 8 / 25



Hw/Sw Co-Design SystemC and TLM

SystemC and TLM libraries

All activities are based on the OSCI SystemC and TLM standards

SystemC: System-Level Specification Standard

Implemented as a set of C++ classes
Uses a C++ compiler to generate an executable simulator
The idea is to use the same language during high-level and low-level
design

Transaction Level Modeling (TLM)

Well-established methodology for modeling complex systems (like
MPSOCs)
It separates communication from computation
Modules communicate with the rest of the world by performing
transactions

A transaction is the operation with which two modules exchange data
Data is transferred as a data structure

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 9 / 25



Hw/Sw Co-Design SystemC and TLM

SystemC and TLM libraries

All activities are based on the OSCI SystemC and TLM standards

SystemC: System-Level Specification Standard

Implemented as a set of C++ classes
Uses a C++ compiler to generate an executable simulator
The idea is to use the same language during high-level and low-level
design

Transaction Level Modeling (TLM)

Well-established methodology for modeling complex systems (like
MPSOCs)
It separates communication from computation
Modules communicate with the rest of the world by performing
transactions

A transaction is the operation with which two modules exchange data
Data is transferred as a data structure

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 9 / 25



Hw/Sw Co-Design SystemC and TLM

SystemC and TLM libraries

All activities are based on the OSCI SystemC and TLM standards

SystemC: System-Level Specification Standard

Implemented as a set of C++ classes
Uses a C++ compiler to generate an executable simulator
The idea is to use the same language during high-level and low-level
design

Transaction Level Modeling (TLM)

Well-established methodology for modeling complex systems (like
MPSOCs)
It separates communication from computation
Modules communicate with the rest of the world by performing
transactions

A transaction is the operation with which two modules exchange data
Data is transferred as a data structure

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 9 / 25



ISS Contract Overview

Outline

1 Hardware/Software Co-Design

2 LEON2/3 IP Model Contract Aim
Goals
Current Status

3 Instruction Set Simulator

4 Results

5 Conclusion

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 10 / 25



ISS Contract Overview Goals

Overview

Aim of the contract is:

Development and Implementation of a SystemC executable model
of the LEON2 and LEON3 processors

Various accuracy levels are required:

Standalone Instruction-Accurate simulator
Standalone Cycle-Accurate simulator
Loosely/Approximate -timed Instruction Accurate
Loosely/Approximate -timed Cycle Accurate

Following Tools shall be provided:

Debugger
Operating-System Emulator
Profiler

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 11 / 25



ISS Contract Overview Goals

Overview

Aim of the contract is:

Development and Implementation of a SystemC executable model
of the LEON2 and LEON3 processors

Various accuracy levels are required:

Standalone Instruction-Accurate simulator
Standalone Cycle-Accurate simulator
Loosely/Approximate -timed Instruction Accurate
Loosely/Approximate -timed Cycle Accurate

Following Tools shall be provided:

Debugger
Operating-System Emulator
Profiler

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 11 / 25



ISS Contract Overview Goals

Overview

Aim of the contract is:

Development and Implementation of a SystemC executable model
of the LEON2 and LEON3 processors

Various accuracy levels are required:

Standalone Instruction-Accurate simulator
Standalone Cycle-Accurate simulator
Loosely/Approximate -timed Instruction Accurate
Loosely/Approximate -timed Cycle Accurate

Following Tools shall be provided:

Debugger
Operating-System Emulator
Profiler

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 11 / 25



ISS Contract Overview Goals

Overview

Models shall be carefully verified for what concerns:

Correctness of the Instruction-Set behavior:

Tests on individual instructions
Tests on the overall model using synthetic tests and real-world
benchmarks

Timing accuracy:

Reference model: simulation with TSIM/HW (LEON2) and TSIM
(LEON3).

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 12 / 25



ISS Contract Overview Current Status

Current Status

Functionally correct Instruction-/Cycle- Accurate models

Behavioral testing performed with:

1424 test over the 145 identified ISA instructions
160 synthetic benchmarks for checking the correctness of single
instruction patterns (memory access, shift, etc.)
104 real-life applications (MiBench, PowerStone, JPEG, etc.) for
checking the overall processor model

Average Execution speed of 7.7 MIPS

Cycle-Accurate model:

Carefully analyzed the VHDL code, since scarce documentation on the
pipeline exists
Average Execution speed of 80 KIPS

Timing validation in progress

Testing of the interfaces by integration with external IP models into a
Virtual Platform

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 13 / 25



ISS Contract Overview Current Status

Current Status

Functionally correct Instruction-/Cycle- Accurate models

Behavioral testing performed with:

1424 test over the 145 identified ISA instructions
160 synthetic benchmarks for checking the correctness of single
instruction patterns (memory access, shift, etc.)
104 real-life applications (MiBench, PowerStone, JPEG, etc.) for
checking the overall processor model

Average Execution speed of 7.7 MIPS

Cycle-Accurate model:

Carefully analyzed the VHDL code, since scarce documentation on the
pipeline exists
Average Execution speed of 80 KIPS

Timing validation in progress

Testing of the interfaces by integration with external IP models into a
Virtual Platform

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 13 / 25



ISS Contract Overview Current Status

Current Status

Functionally correct Instruction-/Cycle- Accurate models

Behavioral testing performed with:

1424 test over the 145 identified ISA instructions
160 synthetic benchmarks for checking the correctness of single
instruction patterns (memory access, shift, etc.)
104 real-life applications (MiBench, PowerStone, JPEG, etc.) for
checking the overall processor model

Average Execution speed of 7.7 MIPS

Cycle-Accurate model:

Carefully analyzed the VHDL code, since scarce documentation on the
pipeline exists
Average Execution speed of 80 KIPS

Timing validation in progress

Testing of the interfaces by integration with external IP models into a
Virtual Platform

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 13 / 25



ISS Contract Overview Current Status

Current Status

Functionally correct Instruction-/Cycle- Accurate models

Behavioral testing performed with:

1424 test over the 145 identified ISA instructions
160 synthetic benchmarks for checking the correctness of single
instruction patterns (memory access, shift, etc.)
104 real-life applications (MiBench, PowerStone, JPEG, etc.) for
checking the overall processor model

Average Execution speed of 7.7 MIPS

Cycle-Accurate model:

Carefully analyzed the VHDL code, since scarce documentation on the
pipeline exists
Average Execution speed of 80 KIPS

Timing validation in progress

Testing of the interfaces by integration with external IP models into a
Virtual Platform

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 13 / 25



Instruction Set Simulator

Outline

1 Hardware/Software Co-Design

2 LEON2/3 IP Model Contract Aim

3 Instruction Set Simulator
Overview
Generated Simulator
Code Structure
Tools

4 Results

5 Conclusion

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 14 / 25



Instruction Set Simulator Overview

Processor Model

Processor modeling performed using automatic code generation starting from
a high level model

5 files used for LEON model (5K lines of Python code), containing:
Architecture Structure:

List of storage elements (registers, memories, etc.)
List of pipeline stages
Detailed hardware structure is ignored

Instructions Encoding:

Specify how the bits of the machine code relate to the instruction parts
which bits are the opcode, which one identify the operands, . . .

Instructions Behavior (split into 2 files):

C++ code implementing the behavior of each instruction
Behavior separated among the different pipeline stages

Instructions Tests:

Enables separate tests for each instruction
We specify the processor status before the execution of the instruction and
the expected status after the execution

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 15 / 25



Instruction Set Simulator Generated Simulator

Instruction Set Simulator

From the model description, TRAP (our code generator) creates:

C++ code implementing the simulator itself

Compilation scripts

Tests of the single instructions

Lines of code:

Functional Model 20K (21 files)
Cycle Accurate Model 90K (23 files)
Instruction Tests 110K

Implementing an average of 300 distinct C++ classes

TRAP libraries (4.5K lines of code)

GDB debugger server

Object file loader

Operating-System emulator

profiler

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 16 / 25



Instruction Set Simulator Generated Simulator

Instruction Set Simulator

From the model description, TRAP (our code generator) creates:

C++ code implementing the simulator itself

Compilation scripts

Tests of the single instructions

Currently working under Unix Operating Systems (Linux, Mac OSX,
Cygwin)

TRAP libraries (4.5K lines of code)

GDB debugger server

Object file loader

Operating-System emulator

profiler

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 16 / 25



Instruction Set Simulator Generated Simulator

Instruction Set Simulator

From the model description, TRAP (our code generator) creates:

C++ code implementing the simulator itself

Compilation scripts

Tests of the single instructions

Each single instruction tested with an average of 9 tests

Tested the correct decoding of randomly-selected instruction patterns

TRAP libraries (4.5K lines of code)

GDB debugger server

Object file loader

Operating-System emulator

profiler

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 16 / 25



Instruction Set Simulator Generated Simulator

Instruction Set Simulator

From the model description, TRAP (our code generator) creates:

C++ code implementing the simulator itself

Compilation scripts

Tests of the single instructions

Each single instruction tested with an average of 9 tests

Tested the correct decoding of randomly-selected instruction patterns

TRAP libraries (4.5K lines of code)

GDB debugger server

Object file loader

Operating-System emulator

profiler

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 16 / 25



Instruction Set Simulator Code Structure

Code Structure

Created code is written in C++ and it makes extensive use of object oriented
features of the language

Most Important Data Structures

Register
Alias ease access to registers,
working like a hardware mux
Instruction with its subclasses,
implements the actual behavior
of the Instruction Set
Processor: the entity which glues
everything together, containing
the registers and calling the
instruction behaviors.
Pipeline Stages: each one is a
separate SystemC thread
concurrent with the others

Decoder, translating the
instruction word into the
appropriate class and the actual
behavior.
External Pins, e.g the interrupt
port for receiving incoming
interrupts
Memory Ports, for
communication with caches,
memories, busses, etc
Tools, such as debugger, profiler,
Operating System emulator, etc.

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 17 / 25



Instruction Set Simulator Tools

Tools

Analysis and Debugging Tools

Without analysis tools, simulators are of limited usefulness

Commonly used tools are debuggers, profilers, etc.

Simple means for integrating new tools by decoupling the simulator
from the tool through a well defined interface are provided

Default tools (part of every generated model):

Debugger: connects via network to standard GNU/GDB debugger
Profiler: keeping statistics on the software running in the processor
model
Operating System emulator: enables execution of bare applicative
software by forwarding every supervisor call to the host OS.

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 18 / 25



Instruction Set Simulator Tools

Tools

Analysis and Debugging Tools

Without analysis tools, simulators are of limited usefulness

Commonly used tools are debuggers, profilers, etc.

Simple means for integrating new tools by decoupling the simulator
from the tool through a well defined interface are provided

Default tools (part of every generated model):

Debugger: connects via network to standard GNU/GDB debugger
Profiler: keeping statistics on the software running in the processor
model
Operating System emulator: enables execution of bare applicative
software by forwarding every supervisor call to the host OS.

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 18 / 25



Results

Outline

1 Hardware/Software Co-Design

2 LEON2/3 IP Model Contract Aim

3 Instruction Set Simulator

4 Results
Execution Speed
Comparison with TSIM

5 Conclusion

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 19 / 25



Results Execution Speed

Execution Speed: comparison among different models

0

2.5

5

7.5

E
x
ec
u
ti
on

S
p
ee
d
[M

IP
S
]

st
an

da
lo
ne

fu
nL

T

ti
m
e
w
ar

p
fu
nL

T

fu
nL

T

fu
nA

T

ac
cL
T

ac
cA

T

7
.7
4

4
.9
4

2
.6
6

0
.5
8

0
.0
8
2

0
.0
7
3

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 20 / 25



Results Comparison with TSIM

Comparison with TSIM

TSIM LEON2/3 ISS

scope full system integer unit

interfaces
self-contained IEEE standard

(custom for GRSIM) (OSCI SystemC and TLM)

speed
up to 45 MIPS

up to 12 MIPS
(5 MIPS for GRSIM)

tools full set (debugger, profiler, instruction trace, etc.)

target Software Development
Software Development
Hardware Optimization

Architecture Exploration

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 21 / 25



Conclusion

Outline

1 Hardware/Software Co-Design

2 LEON2/3 IP Model Contract Aim

3 Instruction Set Simulator

4 Results

5 Conclusion
Development Status
Areas to be Improved

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 22 / 25



Conclusion Development Status

Development Status

Functional and Cycle-accurate Simulator behaviorally correct

Including support for Hardware/Software analysis tools (OS emulation,
GDB server, and profiler)

Different versions:

standalone, including an internal memory
using memory ports with different accuracy levels
with or without instruction tracing capabilities

Compiles under unix environments

Cygwin is necessary for the use under Windows

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 23 / 25



Conclusion Areas to be Improved

Areas to be Improved/Future Work

Simulation speed:

concentrating on instruction decoding
cycle-accurate: propagation of registers in the pipeline, stages
synchronization mechanisms
profiler

Integration in a Virtual Platform to carefully test TLM interfaces.

Improvement of the tools

Support of additional GDB commands
Emulation of pthread routines in addition to standard OS ones

Native support for compilation/execution under Microsoft Windows

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 24 / 25



Further Information

Further Information

TRAP development website together with processor models (LEON,
ARM, MicroBlaze, etc.), maintained by Politecnico di Milano:
http://trap-gen.googlecode.com

More information on the IP models, the Virtual Platform, etc., soon
available on the ESA Microelectronics Website
http://www.esa.int/TEC/Microelectronics/

Luca Fossati (PdM - ESA) Hw/Sw co-design & LEON ISS 1st, April 2010 25 / 25

http://trap-gen.googlecode.com
http://www.esa.int/TEC/Microelectronics/

	Outline
	Hardware/Software Co-Design
	Challenges
	Virtual Platform
	On-Going Activities
	SystemC and TLM

	LEON2/3 IP Model Contract Aim
	Goals
	Current Status

	Instruction Set Simulator
	Overview
	Generated Simulator
	Code Structure
	Tools

	Results
	Execution Speed
	Comparison with TSIM

	Conclusion
	Development Status
	Areas to be Improved

	Further Information

