ESA IP Cores Present status and future plans

Kostas Marinis TEC-EDM, ESTEC/ESA Kostas.Marinis@esa.int

Introduction

- History and background
- List of available IP cores
- Overview of ESA IP Cores service
- ASIC/SoC developments (re)using ESA IP cores
- Space missions using ESA IP Cores
- ESA activities on IP cores and System-Level Modeling
 Conclusions

Introduction

■ What is an Intellectual Property (IP) core?

- A reusable design in HDL format (VHDL, Verilog, etc).
- ESA IP cores are "soft cores", i.e. technology independent.
 - Can be synthesized and targeted to any ASIC or FPGA technology.

■ Why an IP Cores service by ESA?

- Promote and consolidate the use of functions, protocols and/or architectures for space use (e.g. SpaceWire, CAN, TMTC, etc)
- Counteract obsolescence and discontinuity of existing space standard ASICs
- Facilitate the reuse of results from TRP/GSTP programs, thus reducing costs of large IC developments (e.g. Systems-on-Chip)
- Centralize IP users' feedback to improve quality of existing IPs and identify future needs
- Not a profit-oriented service

History and background

ESA IP cores service originates from internal & external developments

 Designs with high-reuse potential developed internally at ESTEC during late 90s – early 00s

■ CAN, LEON1/2, PTME, EDAC, etc

- IPRs granted to ESA for reuse and sublicensing externally developed VHDL designs (eg. SpWb, OBDH, etc)
- ESA contractors & non-ESA customers started requesting these designs for reuse in ESA contracts or private developments
- ESA Microelectronics Section, along with the Electrical Engineering Contracts Service, established the service in 2003, after a growing number of requests

Aim was to regulate & normalize the reuse of these designs

List of available IP Cores

■ 14 IP Cores available

SpW-b	SpaceWire CODEC	PTCD	CCSDS Packet Telecommand Decoder. VHDL model of MA28140 chip by GEC-Plessey Semiconductors
SpW-RMAP	SpaceWire CODEC with RMAP support	RT53EUR	MIL-BUS-1553B Remote Terminal
SpW-AMBA	SpaceWire CODEC with AMBA interface	OBDH	On-Board Data Handling bus
LEON2-FT	32-bit microprocessor (SPARC- compliant)	CUC-CTM	CCSDS Unsegmented Code (CUC) & CCSDS Time Manager (CTM)
PTME	Packet Telemetry Encoder	EDAC	Error Detection And Correction Encoder/Decoder
CAN	Controller Area Network	EVI32	32-bit VMEbus interface for the ERC32 processor chip set
PDEC	CCSDS Packet Telecommand Decoder	WIC	Wavelet

Deliverables with each IP core distribution

• Documentation

• Testbenches

• VHDL source code

• Simulation and synthesis scripts

New IP cores

- Ready for release (in 2Q10) :
 - RT53EUR
 - MIL-BUS-1553B Remote Terminal (Astrium Elancourt)
 - OCP-based IPs
 - LEON2-OCP (Magillem)
 - LEON2-FT model with OCP socket interfaces for the caches
 - SpW-OCP (Astrium SAS)
 - SpaceWire CODEC with OCP sockets
 - Based on SpW-AMBA from Astrium SAS
 - OCP-AMBA bridges (Magillem)
 - OCP-AHB and OCP-APB
 - Protocol translators between AMBA and OCP
 - IP-XACT XML wrappers for ESA IP Cores
 - Available for :
 - LEON2-FT (both AMBA and OCP versions)
 - SpW-AMBA / SpW-OCP
 - OCP-AMBA bridges
- Under development:
 - CANOpen (CAEN Aurelia)
 - Mass Memory Controller (Syderal)

Overview of ESA IP Cores service

How to obtain an ESA IP core:

- Get details about available IP cores (from ESA IP cores website)
- Fill in and submit an IP request form
- IP request screening and license preparation by ESTEC/ESA
 - Each IP core has different licensing conditions / restrictions!
- Delivery of requested IP Core(s) to customer
- Pre-compiled simulation models available upon request (for evaluation purposes; no license required!)
- Details and information on ESA IP Cores webpage
 - <u>http://www.esa.int/TEC/Microelectronics/SEMVWLV74TE_0.html</u> Documents can be downloaded directly from the IP cores website

Licensing

General licensing terms & conditions

- Non-transferable
- Non-exclusive (except after explicit agreement)
- Issued only within ESA member/participant states territory
- R & D and/or commercial application
- Peaceful, non-military application
- Specific terms and conditions
 - For ESA-funded activities => License appended to the contract (Contract Change Notice, CCN)
 - Limited to objectives, scope and duration of activity
 - Free of charge
 - For company-funded activities => Stand-alone license
 - Issued for licensee's "own purposes"
 - 5 years duration
 - Nominal fee

Full licensing details and info on the website:

http://www.esa.int/TEC/Microelectronics/SEM6SCV681F_0.html

Technical Support

- Due to limited resources, ESA cannot commit to systematic technical support
 - Limited to announcements of new releases, known and independently verified problems, etc.
 - Technical support mainly subcontracted externally
 - University of Dundee (SpaceWire-b)
 - Aeroflex Gaisler (LEON2-FT)
 - CAEN Aurelia (CAN)
 - Priority given to ESA-funded activities

ESA IP Cores Users' Forum <u>http://tech.groups.yahoo.com/group/ESA_IPCores/</u>

Usage Statistics (April 2002 – March 2010)

Number of IP Core requests

Additional info: SpW-RMAP = Requested + delivered 7 times for use in ESA projects

ESA IP Cores

ASIC/SoC developments (re)using ESA IP cores

- 10-port SpaceWire Router (SpW-10x) Atmel AT7910E
- SpaceWire Remote Terminal Controller (SpW-RTC) Atmel AT7913E
- General purpose SPARC V8 32-bit microprocessor for space (Atmel AT697E/F)
- Spacecraft-Controller-On-a-Chip (SCOC3) FM expected May 2010
- Advanced Galileo/GPS ASIC (AGGA4)
- Multi-DSP/Microprocessor Architecture (MDPA)
- Deep Space Transponder (DST) BepiColombo
- Scalable Multi-channel Communication Subsystem (SMCSs)
- **_** More
 - Further info on "SoC development activities" webpage: <u>http://www.esa.int/TEC/Microelectronics/SEMRWGV681F_0.html</u>

Space missions using ESA IP cores

EC-EDM	29/03/2010	110 IP CORES											
		CAN	CUC-CTM	EDAC	EVI32	LEON2-FT	OBDH	PDEC	PTCD	PTME	SpaceWire-AMBA	SpaceWire-b	TOTALS
	GAIA					ASIC					X	X	3
	Geo MS	X	×	X	×		×	×	X	X	X	×	10
	Spanish Space Observation												
	Satellite (CRISA 2003) - PAZ	X	×				X						3
	Foton M3	X						X	X				3
	BepiColombo	X	×	X		X, ASIC		ASIC		ASIC	X	X, ASIC	6
	Exomars	X				ASIC					X	×	3
	Sentinel-1	X									X	X,ASIC	3
	Sentinel-2			X									1
	Sentinel-3										X	ASIC	2
	EML	X										X	2
	ERB-2												
	(Erasmus Recording Binocular 2)	X										X	2
	WatSen											x	1
SNOISSIM	Proba-2		×			X, ASIC				X			3
	Proba-3		×	х		ASIC		X	X	X	х	x	7
	Maser-10		×	X				х	X	X	x	x	7
	MHS-2 (?)											x	1
	NPAL (Mercury)											x	1
	AlphaSat			x		ASIC						X, ASIC	3
	Galileo	ASIC						ASIC		X, ASIC			3
	KaTE									×			1
	Smart-1									×			1
	ATV								×	×			2
	LisaPF									ASIC			1
	AlphaBus								X				1
	ADM-Aeolus							ASIC		ASIC			2
	SWARM					ASIC		ASIC		ASIC			3
	EarthCare					ASIC							1
	SmallGEO					ASIC							1
	ASTROsar (France)												
								ASIC		ASIC	ASIC		3
	TOTALS	9	6	6	1	9	3	9	6	8	9	14	

ESA activities on IP cores and System-Level Modeling

- SystemC TLM models of ESA IP cores
 - Already developed:
 - LEON2/3
 - Fully functional. Cycle accurate version being verified
 - Under development
 - SpaceWire (Qualtek)
 - Subset of GRLIB MCTRL, AHB, MMU, GPTIMER, etc. (IDA Braunschweig)
 - Virtual Platform infrastructure (IDA Braunschweig)
 - Planned
 - CAN
 - Others?

Conclusions

- IP cores portfolio updated with new modifications, enhancements and additions (SystemC models, Virtual Platforms, OCP sockets); activities planned to extend ESAs IP cores library
- Many of these IP cores have already been used (or planned to be used) in:
 - Various ESA missions
 - As basis for research and developments in the areas of SoC technology, high level modelling and simulation, on chip interconnect architectures, etc.
- Existence and promotion of the ESA IP cores has greatly contributed to:
 - Shorten IC development times
 - Foster the adoption of new standardized communication protocols (SpW, CAN, CCSDS TM/TC) and LEON-based on-board computer architectures.

THANK YOU!

QUESTIONS ?

