

High Resolution DAC for Space Applications

Microelectronics Presentation Days 2010 Integrated Systems Development 30 March – 1 April 2010, ESA, ESTEC

Product highlights

Features

- \Box Architecture: multi-bit $\Sigma\Delta$ modulator
- Output stage: differential current steering
- □ Digital input interface: Synchronous serial data format
- Bandwidth: 0.1mHz 1kHz
- □ Sampling frequency: selectable 6kHz or 12 kHz
- Oversampling ratio: selectable x256 or x128
- □ Configuration via I²C interface
- □ 1.2V digital power supply
- □ 3.3V analog power supply
- Radiation hardened design

Applications

High accuracy instrumentation and actuator drive for systems operating in space

Target Performance

Parameter	Value			
ENOB	22 bit at 1kHz			
Dynamic range	130 dB (0.1mHz - 1kHz)			
SNR	130 dB (0.1mHz - 1kHz)			
Power dissipation	< 70mW			
Temperature range (functional)	-55°C < T < 125°C			
Temperature range (full-performance)	0°C < T < 50°C			
TID tolerance	≥ 100 krad			
LET for SEL immunity	≥ 70 MeV /mg/cm²			
SEU immunity	Protection of critical memory cells			

System Overview

Architecture: Digital Part

Integrated Systems Development S.A.

Multistage Interpolator

Purpose

- □ increase the sampling rate \rightarrow OSR selectable via I2C either x 128 or x 256
- □ Filter unwanted spectral replicas \rightarrow suppresses all signals over 3kHz to less than -136dB
- Multistage architecture leads to reduced computational complexity
- FIR filters exhibit linear phase and symmetric coefficients → minimal distortion of the input waveform
- Programmable SINC filter for OSR selection

Filter type	Upsampling factor	Fs	Pass-band frequency	Stop-band frequency	Pass-band ripple	Stop-band attenuation	Filter order
FIR equiripple	2	12 kHz	1.01 kHz	3 kHz	0.0001 dB	-130 dB	44
Half Band Filter	2	24 kHz	3 kHz	9 kHz	0.00001 dB	-130 dB	30
Half Band Filter	2	48 kHz	3 kHz	21 kHz	0.00001 dB	-130 dB	18

ΣΔ Modulator – design

- 3rd order feed-forward ΣΔ modulator
- 5-bit quantizer
- Sampling frequency 6kHz when OSR X256 and 12kHz when OSR X128
- Ideal SNR 179dB (OSR X256) or 158dB (OSR X128)
- Noise Transfer Function (NTF) : $H(z) = (1 z^{-1})^3$
- Idle Tone avoidance by introduction of dither (d)
- Dither signal generation using a 35-bit LFSR \rightarrow pseudorandom signal generation every 2³⁵-1 instances.

Frequency response of 3rd order modulator 100 X: 755.9 Y: 98.33 80 60 MAgnitude response in dB X: 4.726e+004 40 Y: 26.39 20 0 -20 -40 -60 0 0.5 1.5 2 2.5 3 3.5 4 Frequency axis in Hz x 10⁶

Frequency response of the modulator for sinusoidal input of 750Hz

Dynamic Element Matching (DEM)

Time	Input	Index	1	2	3	4	5	6	7
1	3	1							
2	2	4							
3	5	6							
4	6	4							
5	2	3							
6	7	5							

- The output element mismatch error is minimized by the use of a DEM algorithm.
- Data Weighted Averaging (DWA) as an efficient DEM algorithm.
- Algorithm's objective → achieve an equal use of elements in long-term by rotating the output elements (current sources) in a cyclic fashion.
- DWA uses only one index, which is updated with the addition of the input every clock cycle.

Architecture: Analog Part

- Bandgap cell provides an accurate reference voltage (1.2V) with a low temperature coefficient.
- First order RC filter reduces any noise from the bandgap block.
- Low noise Op-Amp along with M1 and current setting resistor (R_{ref} or R_{ext}) implements the reference current source for generating the reference current I_{ref}.
- I_{Ref} can be set by selecting the internal resistor R_{Ref} or connecting an external resistor R_{ext.}
- Differential elementary current sources build around the regulated cascode topology.
- Use of PMOS transistors for lower flicker noise(1/f) and high linearity.

Radiation Hardening

Radiation hardening techniques

- TMR at architecture level for the digital blocks (FSMs and counters)
- Use of robust design cells during synthesis of the digital core
- Techniques at layout level

Layout

Deep N-Well isolation (NISO)

Minimizes the digital feed-through to the sensitive analog nodes

□ Improves the latch-up immunity

Layout and polarization scheme (ST's rules)

Testability-1

Digital Part

□ Full scan set of patterns

Analog part.

When in ANALOG test mode, the digital blocks are fully bypassed and the current sources can be controlled directly through the input pads (e.g. from an FPGA)

Exhaustive test mode (BYPASS)

- Serial transmission of a known test pattern via the input interface
- Only the serial to // block remains active
- Same clock frequency as in the input data latching

Constant value test mode

- Predefined constant values applied using the dedicated test pins TEST [2:0]
- No need for external support or additional I²C configuration

Testability-2

Normal operating mode

Integrated Systems Development S.A.

Floorplan and fabrication

Validation plan

- Currently in progress
- Functional and performance validation charachterization
- Static performance tests
 - 🗆 INL, DNL
 - Offset and gain errors
 - Power consumption, PSRR

Dynamic performance tests

- □ THD+N
- □ SNR, ENOB
- Dynamic range

Radiation sensitivity tests

- $\Box \text{ SEE} \rightarrow \text{SEU}, \text{ SEL} \rightarrow \text{Cf-252}$
- \Box TID under bias \rightarrow Co60

Validation board

System block diagram

Modular architecture --> Motherboard + DUT daughterboard

FPGA based design

Memories

Preliminary validation results

Analog output differential ramp signal

- Measurement conditions: VDIg=1.2V, VAna=3.3V, R_{ref} =219 Ω , R_{L} = 100 Ω , Ta=25°C
- VBGOUT = 1.2V
- Analog supply current normal mode: $I_A = 19.5 \text{mA} => P_A(\text{normal}) = 64.4 \text{mW}$

 \rightarrow It is possible to reduce the analog power consumption by using a higher external current setting resistor R_{ext}.

- Analog supply current analog power down mode: $I_A = 270\mu A \Rightarrow P_A(pdn) = 890\mu W$
- Maximum differential output current per DAC cell: $I_0(max) \approx 5.75 mA$
- LSB step current (current steered by a single CS): $I_{cs} \approx 180 \mu A$
- SNR ≈ 120 dB
- The device will be part of ST Microelectronics aerospace offer

Integrated Systems Development S.A.