

Bridging Science & Applications From Earth to Space - and back Earth Space & Future

Kayser-Threde GmbH

Space

Industrial Applications

A 12 Bit High Speed Broad Band Low Power Digital to Analog Converter for Satellite Telecommunications

Microelectronics Presentation Days 2010

at ESTEC, Noordwijk

30 March – 1 April 2010

Kayser-Threde GmbH, Munich / Heinz-Volker Heyer IHP Microelectronics GmbH, Frankfurt Oder / Karl Schrödinger

Contents

- Project team
- Major features
- Block diagram / overview
- Current switch and ladder structure
- Calibration mechanism
- Provisions for radiation
- Simulations results
- Chip design
- Test results

Project Partners:

- Kayser-Threde Germany: Project management and radiation tests
- IHP Germany: Analog high speed circuit design and technology support
- Advico Germany: Low speed and digital circuit design
- Maser Netherlands: Reliability
- Ruag Sweden: Radiation support
- Astrium GB / Thales France: Application support, potential customers

Major Features

- 12 Bit segmented DAC with 1.5 GHz sampling rate
- Low power LVDS input receivers and input latch
- Flexible CLK system: Flexible input CLK and system CLK
- 1:1, 1:2 and 4:1 multiplexer operation
- Multiple Built-In Self Test structures (BIST)
- Power on and (hidden) background calibration
- Multiple DAC modes: NRZ, RZ, RF \rightarrow signal in 1st, 2nd and 3rd Nyquist zone
- Programmable high output level up to 1.6Vpk-pk at differential 100Ω load
- Radiation safe design

K A Y S E R - T H R E D E

KAYSER-THRED

8 30 March - 1 April, 2010 A 12 Bit High Speed Broad Band Low Power Digital to Analog Converter for Satellite Telecommunications

- **Calibration Mechanism Overview**
- Power on calibration:
 - Resistor tolerances are compensated with modified currents of current sources
 - Deviation from nominal current is stored in memory
 - Golden reference current is modified with resistor DAC and memory information
 - All currents are calibrated for minimum output distortion
- Background calibration:
 - A background calibration is necessary to compensate for temperature, aging and radiation degradation during operation (satellite is never switched off!)
 - Background calibration needs synchronous switching between current sources (channels) at full speed (1.5GHz CLK) with minor (analog) signal distortion at output (no or minor glitches)
 - Synchronous switching needs additional digital and analog circuits as well as some additional power

S

Y

Α

■ Ladder: Measuring output voltage and adjust each current source accordingly → compensate for resistor matching tolerances

R

■ Measure base Current and add to current source collector current → compensate for base current variations

н

R

■ Keep collector current constant during operation – adjust μ DAC accordingly \rightarrow compensate for current source variation

Calibration Mechanism: Digital Part

- Binary part will not be calibrated in background mode – only in power up mode
- Two Unary blocks, with each 15 active channels, are calibrated in power up and background mode
 - Spare channels are used for background calibration of base and collector current
 - Channel switch over is done synchronously within digital and analog part of the DAC

н

R

R

Provisions for Radiation Hardness

All provisions are preliminary until tested and qualified with radiations tests

■Single Event Effects (SEE)

Analog and digital circuits are safeguarded by guard rings to reduce radiation induced ionization impacts on circuits and components

■Bipolar digital circuits (FF) are updated after one CLK cycle (1.5GHz) and thus are not taken as critical

■CMOS (static) registers use Tripple Mode Redundancy (TMR) \rightarrow to be checked if good enough

CMOS logic is tested and proven on big ASICs (e. g. IHP's LEON processor)

Total Dose Impacts (TID)

Mainly affecting analog degradation: All component and circuit degradations can be calibrated with calibration mechanism – except total failures

Radiation Related Specification Items

Req. #	Item	Symbol	Conditions	min	max	Unit
DAC-0285	SE Functional Interrupt induced MTBF	SEFI	[Recoverable with reset]	100 years		MTBF
DAC-0290	Multiple Conversion Errors MTBF	MCE	[Self recovering]	1 year		МТВа
DAC-0295	Single Conversion Error MTBF	SCE	[Self recovering]	1 day		MTBF
DAC-0300	Permanent conversion errors	PCE	[Recoverable with reset]	100 years		MTBF
DAC-0305	Radiation total dose			100		krad
DAC-0310	Latch up free			80		MeV-cm2/mg
DAC-0315	SEE performance		(geosynchronous orbit)		10 ⁻⁸	bit/day
DAC-0320	Useful life	t _B		20		years
DAC-0325	Early failure rate				2/1000	dpm/h

\rightarrow All specifications items are proven only theoretically at the moment

Test Results

Α

Κ

Actual Test Results

Υ

Some test boards built up
Test equipment installed and operating

S

R

 > Problems with CMOS logic and programming → under evaluation at Advico and Kayser-Threde
 > BIST mode signal derived from
 internal 12 bit counter successfully
 tested (uncalibrated)
 > Additional test boards are in production

н

R

D

DAC Output in BIST Mode 4096 steps

CONCLUSION

- The DAC contains a calibration circuitry to achieve the required performance.
- The DAC is internally a complex mixed D/A circuit; however for the user it looks like a high performance DAC with excellent robustness against environmental changes, aging and radiation effects.
- The features are high accuracy by consuming less power than non calibrating DACs.
- The calibration allows the analog part to be small.
- The DAC has been manufactured in a Multi Project Waver (MPW) at IHP Frankfurt (Oder) Sept. to December 2009. Devices are under test since January 2010.

Thank you for your attention! For further questions please contact :

Δ

Kayser-Threde GmbH	IHP Microelectronics GmbH			
Heinz-Volker Heyer Head of Electronics Systems	Karl Schrödinger Circuit Design			
Perchtinger Strasse 5	Im Technologiepark 25 15236 Frankfurt Oder			
81379 Muenchen				
Germany	Germany			
Tel.: ++49 (089) 72495-365	Tel.: ++49 (0335) 5625-650			
Fax: ++49 (089) 72495-483	Fax: ++49 (0335) 5625-433			
Heinz-Volker.Heyer@kayser-threde.com	Karl.Schroedinger@ihp-microelectronics.com			

R

Acknowledgement

н

R

We would like to thank Christoph Scheytt, Hans Gustat, Jian Zhu, Günter Grau, Alexander Stanitzki, and the ESA team as well as many others who helped to support this challenging project.