

Galileo RF Receiver

ESTEC Contract 19068/05/NL/JD

MPD 2010 - ESTEC 2010-03-31

> C. Leme R. Salgado W. De Wilde M. Rostami

Contents

- Introduction
- Galileo System
- Chip Architecture and Features
- Silicon Results
- System Tests
- Conclusions

Introduction

The project targets are:

- Design and manufacture a dual channel RF Front-end for the reception of Galileo/GPS signals
- Characterize and validate at system level
- Produce an ASIC including all the necessary Customer Support Services
- 180nm TSMC CMOS <u>Non Space</u> technology

Project participants:

- Synopsys (IP design house)
- Septentrio (GNSS receiver manufacturer)
- Design started in 2005

SYNOPSYS[®]

Three silicon cycles:

- Version 1v0 for validating the most critical functions, in RF and baseband
- Design centering in version 2v0 that was already used for System Validation at sub-contractor facilities
- Final version 3.0 with full features for product application

© Synopsys 2010

3

All rights reserved.

Galileo Satellites

- Giove A was the first launched test satellite on 28th Dec 2005
- Giove B was launched in on 27th April 2008
- Signal analysis of GIOVE-A/B data has confirmed successful operation of all the Galileo signals with the tracking performance as expected
- Contract for building the first 14 operational satellites has been announced on 7th January 2010

> We need to get ready for the next generation market

All rights reserved.

Supported GNSS Frequency Bands

- The Galileo navigation Signals are transmitted in four different frequency bands E5a, E5b, E6 and E1
- The corresponding target RF bandwidths vary between 20 and 51 MHz
- Therefore, the RF receiver requires simultaneous tuning to programmable bands and programmable bandwidth
- GPS and Glonass also supported

Chip Features

- Supports Galileo, GPS and Glonass Positioning Systems
- Multiple Band Reception E1 / L1 / L2 / E5a / E5b / E6
- Dual band simultaneous reception e.g. :
 - L1 plus L2,
 - L1 plus E5a or L1 plus E5b,
 - L1 plus joint reception of E5a+E5b
 - L1 plus E6
- Low BOM count
 - High integration level
 - Fully integrated PLLs including loop filters
 - Digital outputs (CMOS and LVDS)
- Advanced architecture
 - Zero IF
 - Embedded DC cancellation loop
 - Automatic Gain Control
- Onboard temperature sensor for calibrated operation over extended temperature ranges
- 1.8 V Single Supply ~70mW low power consumption

Chip Description

Two receiver chains for simultaneous operation in L1 and L2

- One receiver chain uses two mixers in a sliding-IF architecture to down-convert the L1 signal, where the second LO is a division by 8 of the RF VCO
- The second receiver chain uses also two mixers, with an additional PLL to generate the second LO and tunes the L2 signals
- The RF VCO is shared for both L1 and L2 chains
- Two external SAW filters (one per chain) recommended for better robustness to out-of-band interferers
- 2-bit flash ADC (sampled up to 112 MHz) for digital output
 - CMOS or LVDS output available
 - Analog outputs before the ADC are also available
- Automatic Gain Control and Offset Compensation of the baseband chain
- Temperature sensor for calibrated operation over extended temperature ranges
- System control and status monitoring through a serial interface

Final Chip

1. Die

Die external dimensions: I , w , t	2880 x 2850x 0.9 [mm]
Minimum Bond Pad opening area: I, w	53 x 66 [um]
Minimum Bond Pad pitch	80 [um]
Silicon Version	3v0

2. Package

Туре	QFN Molded
Number of Pins	40
Pin Pitch	0.5mm
Body: I , w	6mm x 6mm
Body Material	Plastic, RoHS Compliant

© Synopsys 2010

All rights reserved.

All rights reserved.

Synopsys PROPRIETARY

Control Software

Predictable Success

Current Consumption

Parameter	Conditions	Consumption	Units
L1 Chain	Analog output	41	
L2 Chain	Analog output	31	
Simultaneous L1 & L2	Analog output	60	mW
Add-on for L1 LNA		5.5	
Add on for digital output	CMOS	10	
Add-on for digital output	LVDS	45	

Very low receiver consumption

Added consumption for digital output to support 100 MSps outputs

© Synopsys 2010

11

All rights reserved.

Noise Figure Measurements

Parameter	Conditions	Min	Avg	Max	Units
LNA Spot Noise Figure	Spot - Frequency 1575.58MHz	1.77	1.86	1.95	dB

Parameter	Conditions	Min	Avg	Max	Units	
LNA to BaseBand, Spot Noise Figure	Spot - Frequency 1577MHz	2.37	2.54	2.64 🗲	dB	

Parameter	Conditions	Min	Avg	Max	Units
Noise Figure L1 band	Mixer input	6.5	6.7	6.9	40
Noise Figure L2 band	1577MHz	7.2	7.4	7.6	uБ

Better than 2.6dB for complete chain

© Synopsys 2010

12

All rights reserved.

LNA S-Parameters

Parameter	Conditions	Min	Avg	Max	Units
LNA Gain (S21)	LNA input matched	16.6	16.7	16.8	
LNA (S11)	(Cp=2.4pF, Ls=9.8nH) @ 1575MHz	-8.0	-9.5	-10.9	dВ

© Synopsys 2010

13

All rights reserved.

LNA S-Parameters

Parameter	Conditions	Min	Avg	Max	Units
LNA (S12)	LNA input matched	-25.3	-26.0	-26.6	5
LNA (S22)	(Cp=2.4pr, Ls=9.8nH) @ 1575MHz	-12.0	-13.1	-14.0	aВ

All rights reserved.

Synopsys PROPRIETARY

14

© Synopsys 2010

Chain Gain without LNA

Parameter	Conditions	Min	Avg	Max	Units
Gain Max L1 band	PGA1,2 Gain=24+24 dB	92.3	93.8	94.9	
Gain Default L1 band	PGA1,2 Gain=12+12dB	70.2	71.4	72.3	dB
Gain Min L1 band	PGA1,2 Gain=0+0dB	44.7	45.9	46.4	

Parameter	Conditions	Min	Avg	Max	Units
Gain Max L2 band	PGA1,2 Gain=24+24 dB	89.1	91.1	92.4	
Gain Default L2 band	PGA1,2 Gain=12+12dB	65.9	67.2	68.2	dB
Gain Min L2 band	PGA1,2 Gain=0+0dB	41.5	42.6	43.3	

Including 16 dB in LNA, total chain gain achieves above 110 dB

© Synopsys 2010

All rights reserved.

IIP3 and 1dBCP Measurements

F1

Parameter	Conditions	Min	Avg	Max	Units
IIP3 LNA	LNA input matching Cp=4.7pf and Ls=9.8nH	6.78	7.37	7.78	dBm

Parameter	Conditions	Min	Avg	Max	Units
IIP3 RF_Amp to PGA L1 Band	PGA1,2 Gain = 0+0 dB	-18.81	-18.15	-17.83	
IIP3 RF_Amp to PGA L2 Band		-32.94	-32.73	-32.48	alDura
1dBCP RF_Amp to PGA L1 Band		-63.50	-63.06	-62.80	abm
1dBCP RF_Amp to PGA L2 Band		-59.50	-59.22	-58.80	

Measurement Set-up for LNA IIP3

Settings:

RFin=1575.42MHz. RFin Interferer1= 1805.14MHz. RFin Interferer2= 2034.86MHz. RFin Interferer level = -30dBm

16

All rights reserved.

Baseband Filters

Parameter	Conditions	Min	Avg	Max	Units
L2 LPF Bandwidth Normal Mode		14	14	14	MHz
L2 LPF Bandwidth Extended Mode	PGA1,2 Gam=12+120B	29	29	29	

Bandwidth programmability for all Galileo bands including E6

Phase Noise Measurements

Parameter	Conditions	Offset [kHz]	Min	Avg	Мах	Units
	PGA1,2 Gain = 0+12 dB	10	-73.97	-73.34	-72.97	dBc/Hz
PLL_L1		100	-81.84	-81.66	-81.43	
Phase Noise (Down connversion)		1000	-105.85	-105.69	-105.52	

Parameter	Conditions	Offset [kHz]	Min	Avg	Max	Units
	PGA1,2 Gain =	10	-74.90	-73.83	-73.06	
	0+12 dB PLL2=121.62MHz PGA1,2 Gain = 0+12 dB PLL2=192MHz PGA1,2 Gain = 0+12 dB	100	-74.70	-74.46	-74.17	dBc/Hz
PLL L2		1000	-102.05	-101.94	-101.74	
		10	-72.24	-71.90	-71.67	
Phase Noise		100	-74.66	-73.77	-72.93	
(Down connversion)		1000	-102.83	-102.62	-102.43	
		10	-71.68	-70.76	-69.58	
		100	-74.64	-73.92	-73.25	
	PLL2=223.92MHz	1000	-102.47	-102.44	-102.41	

Always below -100dBc/Hz at 1MHz offset

SYNOPSYS® Predictable Success

System Test Set-up, at Septentrio

20

Two Bands Through one Channel

© Synopsys 2010

All rights reserved.

Synopsys PROPRIETARY

Predictable Success

GPS/GLONASS Configuration

C/No and ranging performance

© Synopsys 2010

22

All rights reserved.

Temperature Stability

Excellent Stability of GNSS parameters (C/No, GD,...) for [-40, +85] °C sweep

Conclusions and Next Steps

Silicon Characterization is complete

Design is on-spec, no further redesign needed

System Validation is complete

- Design can be used in a production receiver no showstoppers identified
- Very good synthesizers L1/L2/L5 without issues
- Good interference isolation from internal ADC, even with CMOS output
- Very low power dissipation

Next Steps

- Engineering Golden Samples
- Volume Test
- Qualification
- Manufacturing and Product Engineering
- Cost Model and Ramp-up Outlook

© Synopsys 2010

24

All rights reserved.

Questions?

25

All rights reserved.

