Dominique de Saint Roman

Everywhere You Are Aerospace Product Line Marketing and Business Development Manager Everywhere You Are

Everywhere You /

Everyw

Everywhere You Are

AMEL

Everywhere You Are

Everywhere You Are

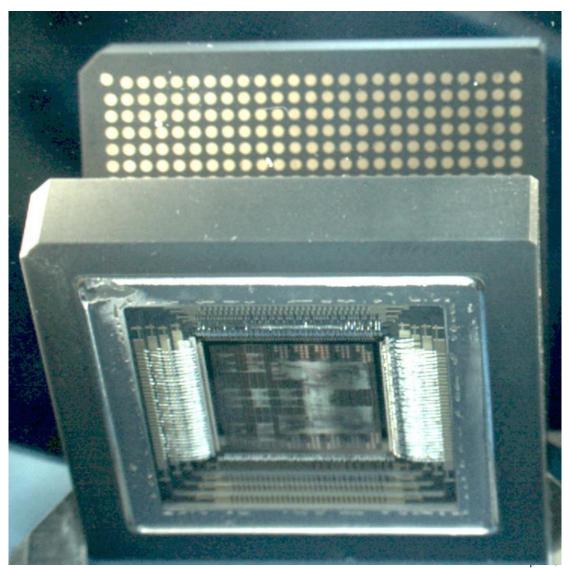
Everywhere You Are

Everywhere You Are

Everywhere You Are

Everywhere You Are®

Everywhere You Are


AI.N. LGA625 PACKAGE DEVELOPMENT AND ESCC EVALUATION/QUALIFICATION

CNES contract: 04/1643/01

ESTEC, Noordwijk, March 30th to April 1st

ALN LGA 625

AMEL

PACKAGE TECHNOLOGY RATIONALES

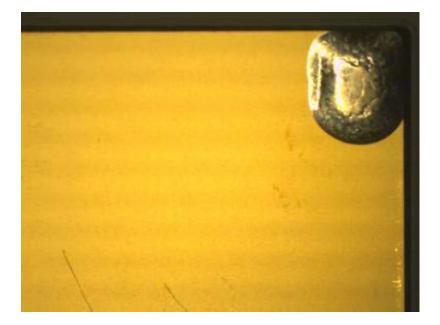
- First package of a series, w.o. rigid bond with board: <u>LGA625</u>
- 625 lands with 1.27 mm pitch and 35*35 mm body size
- Drawback of the non-rigid bond: the power heat dissipation can no longer transfer through the columns and spread out on the board => reliability impact

Initially considered mitigation means

- An heat-sink on top of the package for improved dissipation
- A more thermally conductive ceramic: Al2O3 (I = 17 W/m.K) is replaced by AIN (I = 150 W/m.K) to help conduction from die to heatsink
- A larger lid seal ring area for better ceramic-lid thermal conductivity

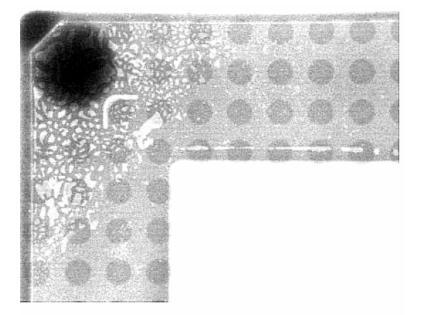
DEVELOPMENT PLAN

- Validation of the seal ring and lid option with package A
- Development and manufacturing of the B package options for the manufacturing of:
 - B1: 40# with the Tyndall PMOS4 test chip and the available lands interconnected through a daisy chain scheme for board level validation by the customer
 - B2: 2 batches of FM using an existing customer ASIC chip for qualification purpose without having to wait for the final ASIC design completion and manufacturing
- Development of the final package C for the end application and manufacturing of the first batch of FM to be used as a third lot for the package qualification

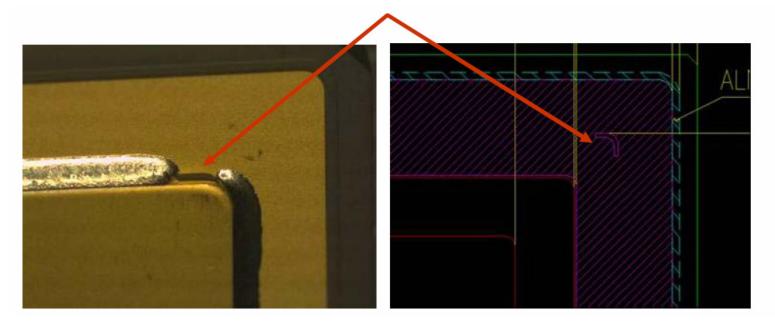


- 3 trial lots using all the same package:
 - Trial #1: 5mm Kovar Combo lid (3#)
 - Trial #2: 2mm Kovar Combo lid (3#) e2v standard
 - Trial #3: 5mm AIN Combo lid same lid/preform size (2#)

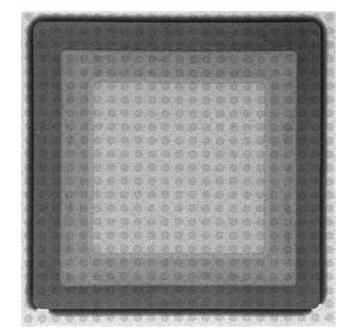
TRIAL 1 RESULTS (Kovar 5mm) (1/2)


Visual inspection: Solder alloy overflow on the top of the lid

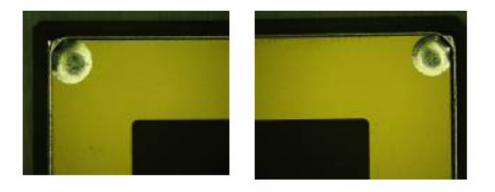
3 rejects / 3 parts


- TRIAL 1 RESULTS (Kovar 5mm) (2/2)
 - X-rays: sealing fillet reduction by 70%

Acceptance criteria: Sealing filet width reduction < 50% 1 reject / 3 parts

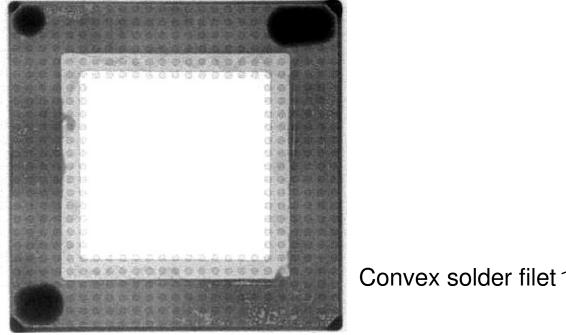

- TRIAL 2 RESULTS (Kovar 2mm) (1/2)
 - Visual inspection: Incomplete solder fillet due to alignment mark

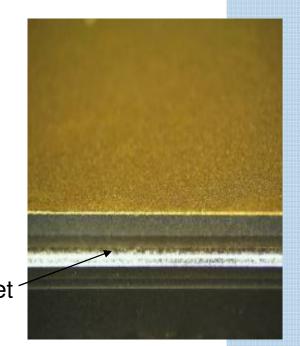
3 rejects / 3 parts


- TRIAL 2 RESULTS (kovar 2mm) (2/2)
 - X-rays:sealing fillet reduction by 10%

Acceptance criteria: Sealing fillet width reduction < 50% 0 reject / 3 parts

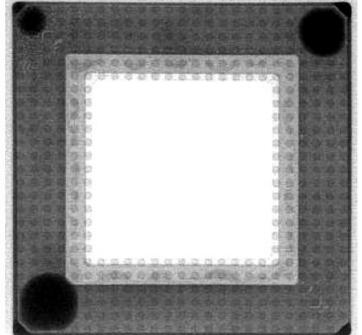
- TRIAL 3 RESULTS (AIN same size lid/preform) (1/2)
 - Visual inspection: solder alloy overflow on the top of the lid




2 rejects / 2 parts

TRIAL 3 RESULTS (AIN 5mm) (2/2)

• X-rays:sealing fillet reduction by 40%


Acceptance criteria: Sealing filet width reduction < 50%

0 reject / 2 parts

Because of the convex solder filet, a 4th trial was done for mitigating it

- TRIAL 4 RESULTS (AIN 5mm combo lid with lid smaller than preform size)
 - X-rays:sealing fillet reduction by 50%

Acceptance criteria: Sealing filet width reduction < 50% 0 reject / 2 parts

Results:

- No pin hole whatever lid configuration is
- No configuration fully compliant with space standards (solder alloy overflow)
- Only 2mm Kovar combo lid OK after some process improvements

	IVE	X-rays	Conclusion
1	3 rejects	1 reject	Fail
2	0	0	ОК
3	2	0	Fail
4	2	0	Fail

- 5mm seal ring: additional tests were performed to mitigate the solder alloy overflow
 - Standard process: use of 4 clips 1.5 pound
 - Trial 1: reduce the number of clips down to 2
 →No improvement (16 rejects / 20 parts)
 - Trial 2: reduce the clips pressure down to 1 pound
 - \rightarrow No improvement (18 rejects / 20 parts)

Conclusions

Recommendation was to go ahead with 2mm kovar option

Validation and reliability tests

- ✓ Cavity co-planarity characterization
- ✓ Die attach tests
- ✓ Seal ring characterization hermeticity
- ✓ Thermal cycling (300 cycles)
- ✓ Fine and gross Leak
- ✓ Vapor content (3#)
- ✓ Micro-sectionning (2#)
- ✓ PIND tests
- ✓ Visual inspection & X-rays
- ✓ Stud pull test (10#)

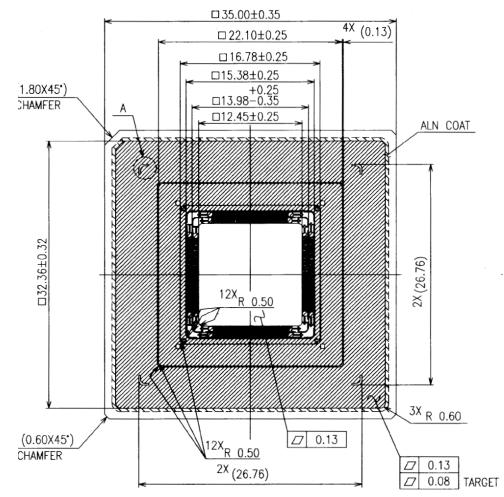
Conclusions

Process is compliant with space quality level

Daisy chain packages (B1): manufacturing and delivery

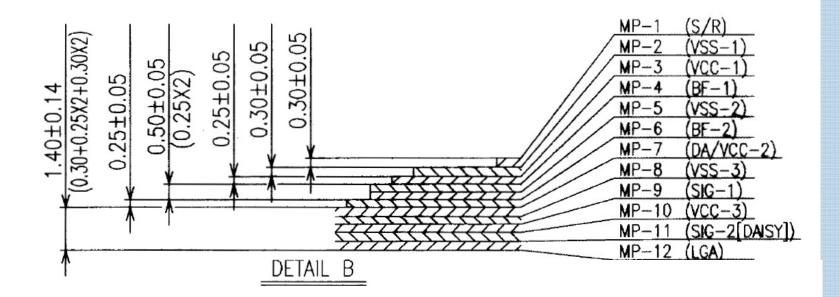
- The aim of this was to validate the assembly of the packages on the boards
- This package is worst case compared to the final package from a thermal point of view:
 - Smaller die (10*10 mm instead of 14*14)
 - Smaller ceramic thickness (3mm instead of 6mm)
- This package includes a thermal die, PMOS4 from Tyndall with:
 - Heater resistor (up to 12W)
 - Temperature reference diodes (3 per die)
 - Strain gauges (6 per die)

April 10


Daisy chain packages (B1): manufacturing and delivery

- We proceeded with the procurement of the PMOS4 thermal die, the test socket & board
- We set the package specification, designed and procured it
- We packaged the PMOS4 die to produce 40#, tested them and shipped them to the customer for evaluation of their assembly on flight boards
- B1 thickness is 3mm and is a worst case for thermal & mechanical evaluation with respect to the 6mm for the C package which will allow for a better heat conduction

PACKAGE B1 THERMAL DIE + DAISY CHAINS


Package design (1/2)

AMEL

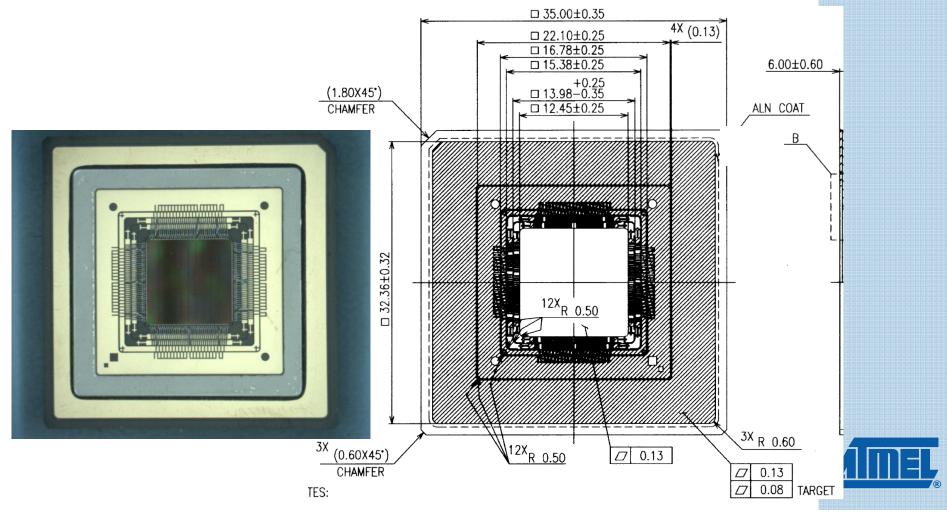
PACKAGE B1 THERMAL DIE + DAISY CHAINS

Package design (2/2)

PACKAGE B1 THERMAL DIE + DAISY CHAINS

540 unused pins are daisy chained as follow

 $\otimes \otimes \otimes$ $\otimes \otimes \otimes$ \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ $\bigotimes \otimes \bigotimes$ $\otimes \otimes$ $\langle \chi \rangle$ $\otimes \otimes \otimes \otimes$ $\otimes \otimes \otimes$ $\otimes \otimes \otimes \otimes$ \otimes \otimes \otimes $\otimes \otimes \otimes \otimes \otimes \otimes$ $\otimes \otimes \otimes \otimes \otimes \otimes \otimes$ $\otimes \otimes \otimes \otimes$ *** **** $\otimes \otimes \otimes \otimes \otimes \otimes \otimes \otimes$ $\otimes \otimes \otimes \otimes \otimes \otimes \otimes$ $\otimes \otimes \otimes \otimes \otimes \otimes \otimes$ $\otimes \otimes \otimes \otimes \otimes \otimes \otimes \otimes \otimes$ $\otimes \otimes \otimes$

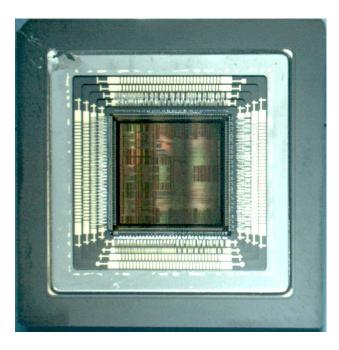


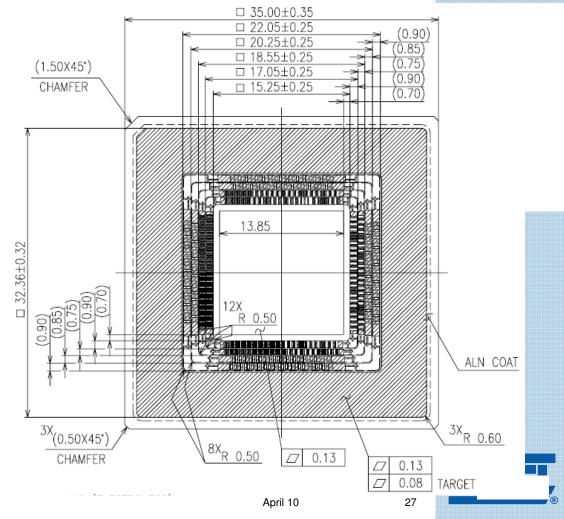
- The aim of this package is to start the qualification of the final package (1st and 2nd lot) with an available ASIC die
 - Same thickness than final package (6mm), same seal ring...
 - Only cavity size is different

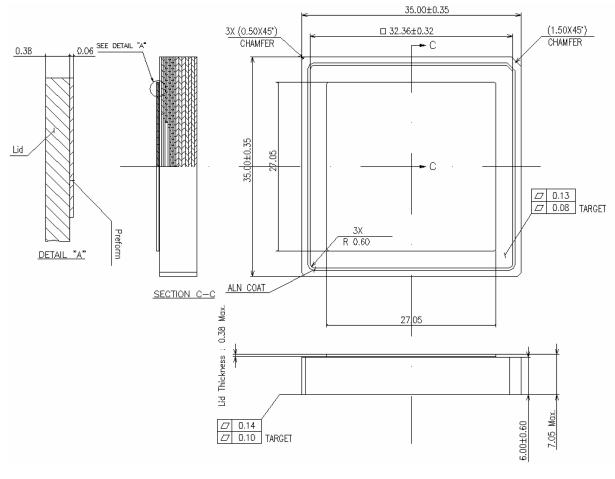
No parts have been delivered to the customer, only the qualification tests report

Package design (1/2)

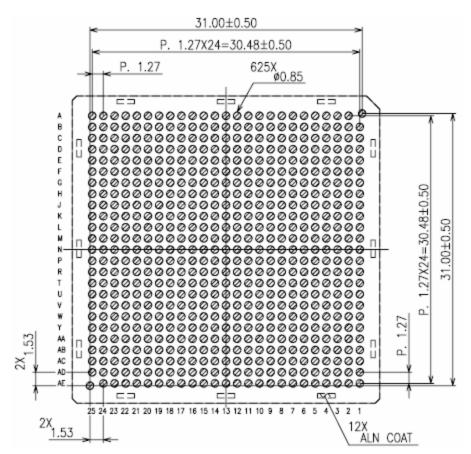
Package design (2/2)



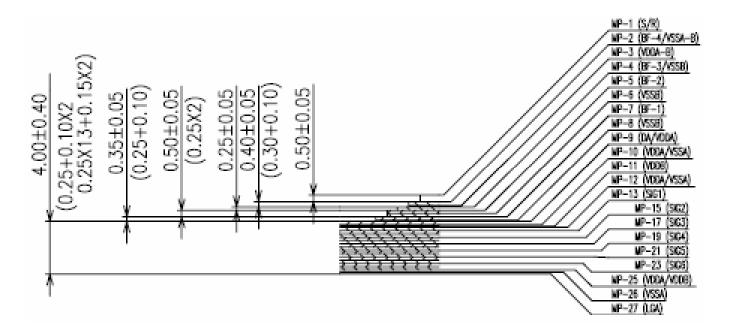

- Die manufacturing and probe
- B2 Package specification, design and procurement
- Lot 1 was assembled, tested to QML V and CNES CSI'd
- Lot 2 was assembled, tested to QML V and CNES CSI'd
- First and second lots qualification on going


End customer ASIC manufacturing	Completed
Package C design and procurement	Completed
End customer ASIC industrialization	Completed
Lot 3 assembled and CNES precaped	On going (1)
ESCC qualification test plan	Completed (2)
Lot 3 CNES CSI	10W18

Package design (1/4)



Package design (2/4)

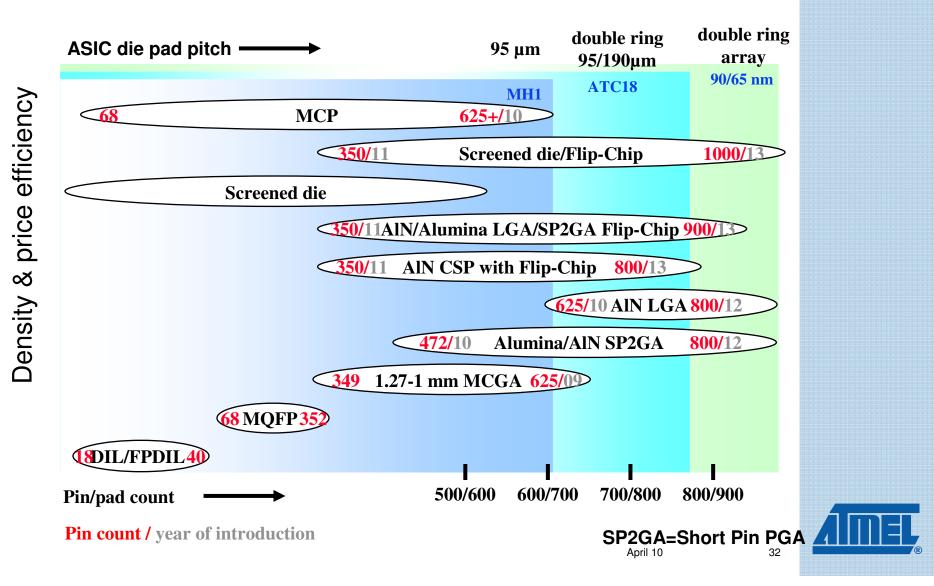

Package design (3/4)

29

April 10

Package design (4/4)

The 27 layers were necessary for a good matching of the LVDS


April 10

ESCC QUALIFICATION STATUS

Lot 3 parts ready for qualification	10W19
Atmel qualification completed	10W25
Atmel qualification report	10W26
ESCC evaluation completed	10W33
	10W35

SPACE PACKAGES OFFERING & ROADMAP

THANKS TO ...

Jean-Louis Venturin and David Dangla, CNES, who managed to make and manage this contract

Valérie Briot, ATMEL, who managed it!

