DTP ASICs experience feedback
Developed under ARTES3 ESA contract

Emmanuel Liégeon
Manager of ASIC/FPGA Design Group
Thales Alenia Space Toulouse
Summary

- Context
- ASICs description
- Lessons learned
- Design flow
- Focus on C-based Architecture Synthesis
- Focus on Physical Synthesis
- Conclusion
Standard DTP architecture

High Data Rate Transfer Between Functions (x Gbps)

ADC \rightarrow DEMUX \rightarrow MUX \rightarrow DAC

\(1 \rightarrow n \rightarrow n \)

2n converters

Core Signal Processing (Hundreds of ASICs)

Very High Throughput
CHAN ASIC

- MUX or DEMUX operation
- Main features

<table>
<thead>
<tr>
<th>Name</th>
<th>CHAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working Frequency</td>
<td>Up to 350 MHz</td>
</tr>
<tr>
<td>Technology</td>
<td>ATC18RHA (ATMEL 0,18 µm)</td>
</tr>
<tr>
<td>Matrix</td>
<td>ATC18RHA95_504D (double padring) (4.8 M usable gates)</td>
</tr>
<tr>
<td>Package</td>
<td>MCGA</td>
</tr>
<tr>
<td>Core Power Supply Voltage</td>
<td>1.8 V</td>
</tr>
<tr>
<td>Periphery Power Supply Voltage</td>
<td>3.3 V</td>
</tr>
<tr>
<td>Estimated Power Consumption</td>
<td>9 W</td>
</tr>
<tr>
<td>Measured Power Consumption</td>
<td>6 W</td>
</tr>
</tbody>
</table>

- Prototypes delivered in 09/2009
- Prototypes fully tested on the DTP EQM
CHAN LAYOUT

- > 100 memory blocks
- 2 PLLs
- More than 48 clock domains
SW ASIC

- **Switch operation**
- **Main features**

<table>
<thead>
<tr>
<th>Name</th>
<th>SW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working Frequency</td>
<td>Up to 150 MHz</td>
</tr>
<tr>
<td>Technology</td>
<td>ATC18RHA (ATMEL 0,18 µm)</td>
</tr>
<tr>
<td>Matrix</td>
<td>ATC18RHA95_504D (double padring) (4.8 M usable gates)</td>
</tr>
<tr>
<td>Package</td>
<td>MCGA</td>
</tr>
<tr>
<td>Core Power Supply Voltage</td>
<td>1.8 V</td>
</tr>
<tr>
<td>Periphery Power Supply Voltage</td>
<td>3.3 V</td>
</tr>
<tr>
<td>Estimated Power Consumption</td>
<td>6.2 W</td>
</tr>
<tr>
<td>Measured Power Consumption</td>
<td>5.8 W</td>
</tr>
</tbody>
</table>

- **Prototypes delivered in 03/2009**
- **Prototypes fully tested on the DTP EQM**
SW ASIC main features (2/2)

SW Layout
- some memory blocks
- 1 PLL
- > 20 clock domains
Lessons learned (1/2)

MCGA package
- difficulties to place n and p balls of LVDS signal close to each other
 - Atmel had to “grope” to obtain expected results
- No detailed RLC model of this package at the beginning of the project
 - Very long time to obtain this RLC model => ask it at the early beginning of the project

Pads
- No internal adaptation resistor between n and p pins in RX LVDS pads
 - These resistors had to be placed directly on the board
- No 2.5V pads library available at the beginning of the project
 - Use of 3.3V instead. This 2.5V library is now available
Lessons learned (2/2)

Clock trees
- CHAN had a lot of generated clocks (>48) and it was difficult to set an efficient approach with Atmel for the layout constraints
 - Many iterations but in the end, fully successful design
- MX04Dx and MX02Dx multiplexer rise/fall delay are not balanced
 - Clock pulse width issue on high frequency clock. Necessity to use standard logic cell instead of multiplexers on clock trees.

Memories
- Issue with the memories when the awt pin is used (timing arc seen by Synopsys between di and do in functional mode)
 - Use of set_disable_timing command
ATC18RHA design flow

- Spec level
 - Specification and C model creation
 - C-based architectural synthesis
 - IPs integration
 - Logic Synthesis with default WLM
 - Scan insertion
 - RTL Simulation
 - Early Floorplanning
 - Physical Synthesis
 - Static Timing Analysis
 - Formal Proof
 - Simulation
 - Timing driven Layout
 - Static Timing Analysis
 - Simulation
 - Formal Proof
 - TOS references generation
 - ASC Manufacturing

- RTL level
 - Optional parallel validation flow: FPGA/emulation
 - Gate-level pre-layout
 - Post layout level

- Precision RTL (Mentor)
 - Workshop Forte (Sun)
 - Catapult SL (Mentor)
 - HDL Designer (Mentor)
 - Rule checker (Synopsys)
 - ModelSim (Mentor)
 - Test coverage (Mentor)
 - Design Compiler
 - DFT compiler, Tetramax (Synopsys)
 - IC Compiler (Synopsys)

- Thalès Design
- Thalès Verification
- Thalès Logic Synthesis
- Activity under manufacturer responsibility
FOCUS ON

C-BASED

ARCHITECTURE SYNTHESIS
Standard flow

Processing requirement

Algorithm study matlab, C/C++

C/C++ algorithm coding

Algorithm requirement

Algorithm architectural study

C/C++ (C TB) algorithm simulation

stimuli

bit to bit comparison

res

FPGA techno evaluation

ASIC techno evaluation

RTL VHDL algorithm coding

RTL VHDL (VHDL TB) algorithm simulation

res
Catapult SL – C flow

Processing requirement

Algorithm study matlab, C/C++

C/C++ algorithm coding

Catapult SL

Algorithm architectural study

RTL VHDL generation

C/C++ (C TB) algorithm simulation

stimuli

bit to bit comparison

res

res

Constraints script

Lib ASIC

Lib FPGA
Catapult SL –C flow

Processing requirement

Algorithm study matlab, C/C++

C/C++ algorithm coding

C/C++ (C TB) algorithm simulation

bit to bit comparison

RTL VHDL (C TB) algorithm simulation

Algorithm architectural study

RTL VHDL generation

Catapult SL

Lib ASIC

Lib FPGA

Constraints script
FOCUS ON

PHYSICAL SYNTHESIS
Physical Synthesis

Why to use Physical Synthesis?

- From 0.18 µm technology, timings after layout can’t be accurately predicted with a logical synthesis (at least 50 % of time spent in net)

- Potential timing problems need to be anticipated in order to avoid too many iterations with the foundry and so increase cost and schedule of layout phase

- In case many hard macros have to be placed

- In case of very congested designs
IC Compiler flow

Foundry
- Libraries
- Calibration factor
- Matrix definition (DEF)

Design Compiler
Topo netlist (verilog)

Timing constraints
file (SDC)

Macros placement
constraints (DEF)

IC COMPILER
(Synopsys)

Reports
- Congestion map
- Timing reports

Post-placement
netlist (verilog)

Timing
constraints file (SDC)

Placement of std cells
(DEF)
Conclusion

- Very interesting ASIC designs using all the capabilities of ATC18RHA technology
- Layout activities very complex having led to improvements in methodology / tools / TAS-Atmel team skills => already effective in on-going designs
- Strengthened experience on the ATC18RHA development flow, including Physical Synthesis and C-based Architectural Synthesis
- First use of CGA packages
- First run success for both designs : fully tested on EQM of DTP