Microelectronics Presentation Days 2010

Developed under ARTES3 ESA contract

Emmanuel Liégeon Manager of ASIC/FPGA Design Group Thales Alenia Space Toulouse

THALES

IUEL/LPE/NA

30/03/2010 100401290L

All rights reserved, 2010, Thales Alenia Space

ThalesAlenia

A Thales / Finmeccanica Company

Page 2

Context

ASICs description

Lessons learned

- Design flow
- Focus on C-based Architecture Synthesis
- Focus on Physical Synthesis

Conclusion

IUEL/LPE/NA 30/03/2010 100401290L

^{30/03/2010 100401290}L

CHAN ASIC main features (1/2)

Page 4

CHAN ASIC

- MUX or DEMUX operation
- Main features

Name	CHAN
Working Frequency	Up to 350 MHz
Technology	ATC18RHA (ATMEL 0,18 µm)
Matrix	ATC18RHA95_504D (double padring)
	(4.8 M usable gates)
Package	MCGA
Core Power Supply Voltage	1.8 V
Periphery Power Supply	3.3 V
Voltage	
Estimated Power Consumption	9 W
Measured Power Consumption	6 W

- Prototypes delivered in 09/2009
- Prototypes fully tested on the DTP EQM

IUEL/LPE/NA

CHAN ASIC main features (2/2)

CHAN LAYOUT

- > 100 memory blocks
- 2 PLLs
- More than 48 clock domains

				14-1			
			and the second se	A CONTRACTOR OF			
						1	LE

IUEL/LPE/NA

Page 5

SW ASIC main features (1/2)

Page 6

SW ASIC

- Switch operation
- Main features

Name	SW
Working Frequency	Up to 150 MHz
Technology	ATC18RHA (ATMEL 0,18 µm)
Matrix	ATC18RHA95_504D (double padring)
	(4.8 M usable gates)
Package	MCGA
Core Power Supply Voltage	1.8 V
Periphery Power Supply	3.3 V
Voltage	
Estimated Power Consumption	6.2 W
Measured Power Consumption	5.8 W

- Prototypes delivered in 03/2009
- Prototypes fully tested on the DTP EQM

IUEL/LPE/NA

SW ASIC main features (2/2)

SW Layout

- some memory blocks
- 1 PLL
- > 20 clock domains

THALES All rights reserved, 2010, Thales Alenia Space

IUEL/LPE/NA

MCGA package

- difficulties to place n and p balls of LVDS signal close to each other
 - Atmel had to "grope" to obtain expected results
- No detailed RLC model of this package at the beginning of the project
 - Very long time to obtain this RLC model => ask it at the early beginning of the project

Pads

- No internal adaptation resistor between n and p pins in RX LVDS pads
 - These resistors had to be placed directly on the board
- No 2.5V pads library available at the beginning of the project
 - Use of 3.3V instead. This 2.5V library is now available

Lessons learned (2/2)

Page 9

Clock trees

- CHAN had a lot of generated clocks (>48) and it was difficult to set an efficient approach with Atmel for the layout constraints
 - Many iterations but in the end, fully successful design
- MX04Dx and MX02Dx multiplexer rise/fall delay are not balanced
 - Clock pulse width issue on high frequency clock. Necessity to use standard logic cell instead of multiplexers on clock trees.

Memories

- Issue with the memories when the awt pin is used (timing arc seen by Synopsys between di and do in functional mode)
 - Use of set_disable_timing command

IUEL/LPE/NA

ATC18RHA design flow

30/03/2010 100401290L

ThalesAlenia

FOCUS ON

C-BASED

ARCHITECTURE SYNTHESIS

IUEL/LPE/NA

30/03/2010 100401290L

30/03/2010 100401290L

30/03/2010 100401290L

Page 15

FOCUS ON

PHYSICAL SYNTHESIS

THALES All rights reserved, 2010, Thales Alenia Space

IUEL/LPE/NA

Why to use Physical Synthesis?

- From 0.18 µm technology, timings after layout can't be accurately predicted with a logical synthesis (at least 50 % of time spent in net)
- Potential timing problems need to be anticipated in order to avoid too many iterations with the foundry and so increase cost and schedule of layout phase
- In case many hard macros have to be placed
- In case of very congested designs

IUEL/LPE/NA

- Very interesting ASIC designs using all the capabilities of ATC18RHA technology
- Layout activities very complex having led to improvements in methodology / tools / TAS-Atmel team skills => already effective in on-going designs
- Strengthened experience on the ATC18RHA development flow, including Physical Synthesis and C-based Architectural Synthesis
- First use of CGA packages
- First run success for both designs : fully tested on EQM of DTP