NGP-N ASIC

Microelectronics Presentation Days 2010

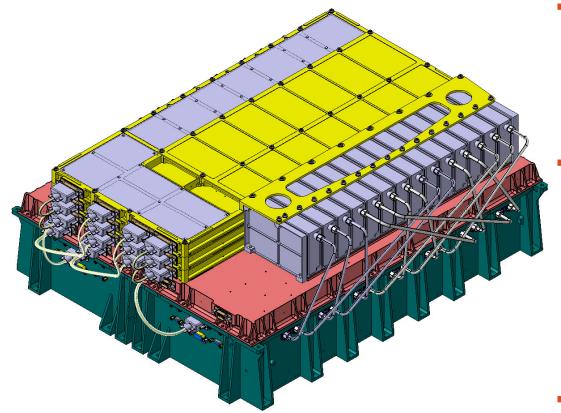
ESA contract: Next Generation Processor - Phase 2 (18428/06/N1/US) - Started: Dec 2006 ESA Technical officer: Simon Weinberg

Mark Childerhouse

Processor Product Group (ASP4) - EADS Astrium UK

DTI EXPORT CONTROL RATING: nil, rated by; M. Childerhouse. Export licence : Not required for EU countries. Community General Export authorisation EU001 is valid for export to : Australia, Canada, Japan, New Zealnd, Norway, Switzerland & USA.

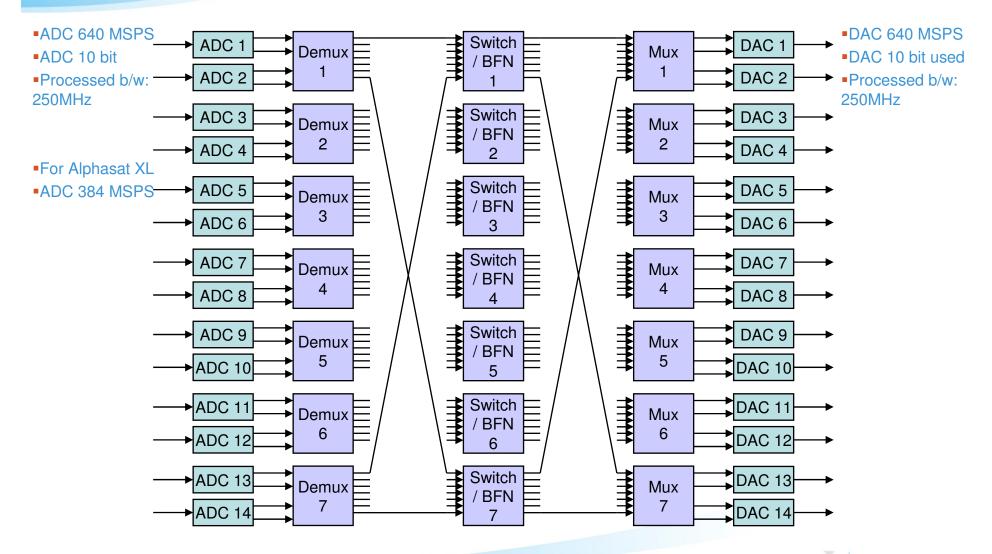
30 March 2010



Introduction

- Astrium Next Generation Processor (NGP) development funded under ARTES contract. Now being integrated into Alphasat XL mission.
- Generic transparent digital processor suitable for both narrowband (mobile) and broadband (fixed satellite service) missions.
- Modular processor architecture.
 - Signals from a variable number of modules can be combined to support a large number of digitally beam formed active antenna paths
 - Multiple modules controlled via Space Wire links from one central controller unit
- Integrated Processor (IP) concept consisting of:
 - Baseband digital signal processor (DSP)
 - Analogue pre- / post- processors mounted on top of the DSP
- Flexible DSP functions including
 - Fine granularity channelisation
 - Digital beam-forming and/or channel routing
 - Gain / level control on a per channel basis
- Single NGP ASIC design supports all digital processing functions

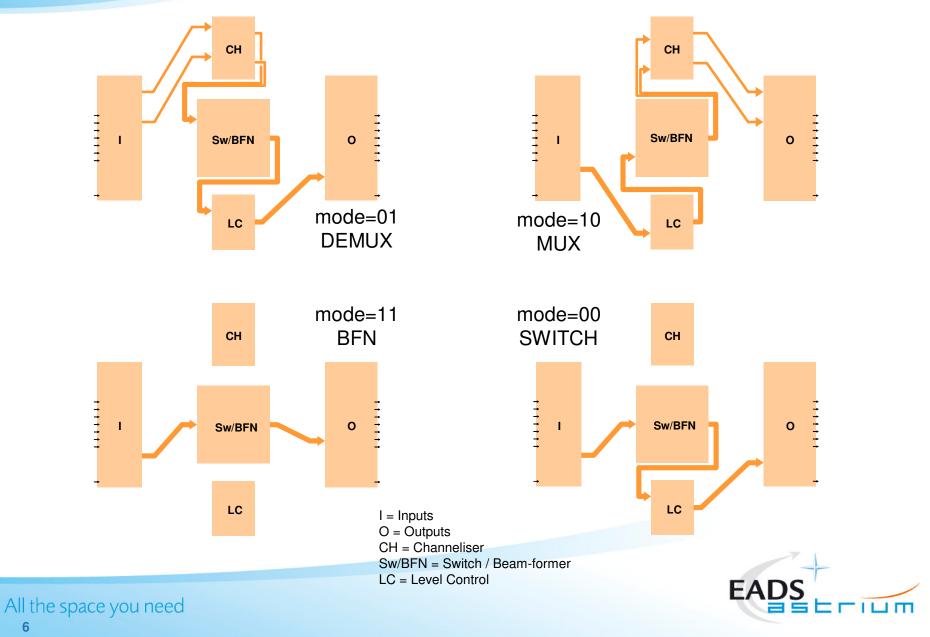
Next Generation Integrated Processor Module


Alphasat XL mission

- 120 antenna elements
- 41/48.5 MHz (FWD/RTN) processed bandwidth per element.
- 200 KHz channelisation
- Requires:
 - Four Forward link IP modules
 - DSP + L-band Post-Processor
 - Four Return Link IP modules
 - L-band Pre-Processor + DSP
 - One central controller
 - 15 ASICs/DSP module

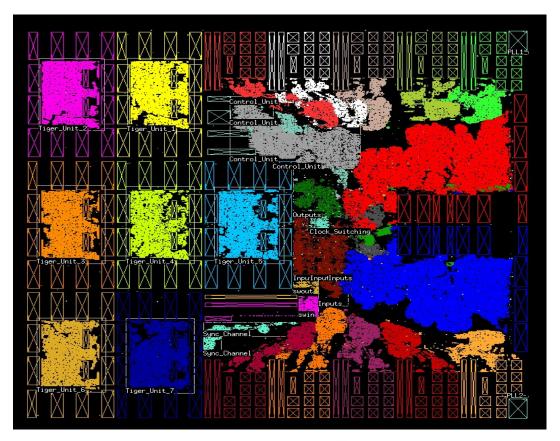
 Provides digital beam-forming for 120 active antenna elements over the extended L-band.

DSP Module Digital Processing Architecture



ASIC Functional Characteristics

- Four major modes of operation
 - Demux, Switch, Beam-former and Mux
- LVDS I/O reused for ADC-ASIC, ASIC-ASIC and ASIC-DAC connections
 - Supports multiple ADC and DAC interfaces
- Data path functions include:
 - Channelisation (demux and mux)
 - Construct TDMs of separate channels
 - Switching (time and spatial switches)
 - Digital beam forming
 - Gain and automatic level control
 - Synchronisation functions (due to uncertain delays) PI
- Controlled via a Space Wire interface
 - Each ASIC includes a 4 way SpW router to support routing for various configurations of populated ASIC and internal redundancy.
 - 0.25 Mbits of configurable coefficients per ASIC (mode dependent)
 - Encoded configuration data for SEU protection (error detection)
 - Attention request mechanism to flag errors to external controller


ASIC Dataflow (4 major modes)

6

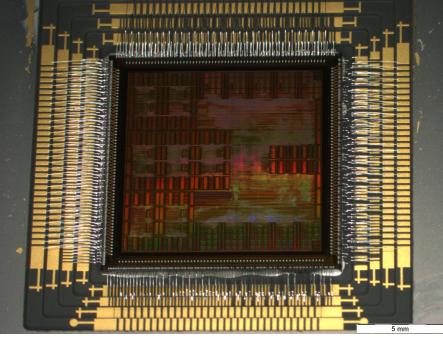
Layout

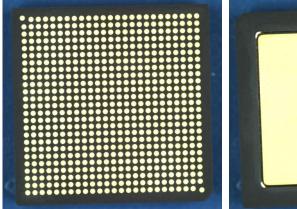
- Routing Congestion
 - RAM routing restrictions
- RAM (>200) placement
- Block level layout
 - Tiger logic constrained
- I/O timing
 - Multiple LVDS
 - Balanced clocks
 - Delay matching
- Timing closure
 - Multiple clock domains (>80)
 - Multiple IO modes
- Power Grid
 - RAM blocking
- Layout iterations
 - Many more than expected
- Suggestions
 - Floor planning tools
- All the space hysicat synthesis

Statistics

- Gates
- RAMs
- I/O buffers (pins)
- Clocking rate
- I/O Data Rates
- Power estimation
 - Pre-layout estimates in line with expectation
 - 640MHz, 1V8, 6 active inputs and outputs
 - DEMUX 7.9W
 - SWITCH 4.2W
 - MUX 7.5W

2.2M gates

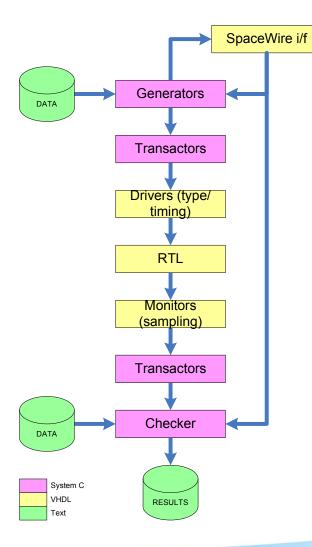

- 3.1M Bits in 255 instances
- 235 (398)
- 320MHz max/160MHz most logic
- 160MHz 320Mbps



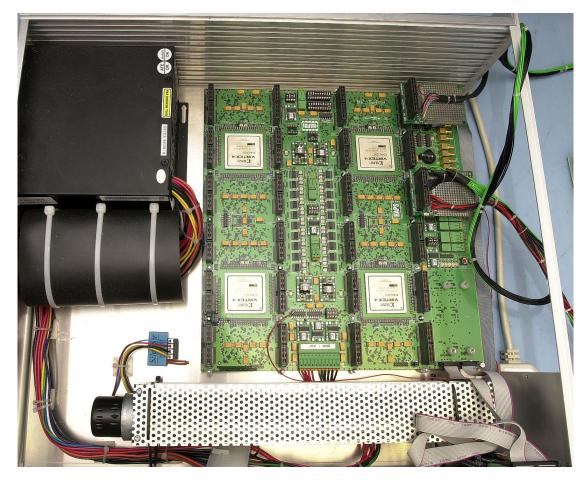
Technology

ATMEL ATC18RHA

- 0.18 μm
- 85 nW/gate/MHz @100% toggle rate
- 1.8V core supply
- 2.5V buffer supply
- TID of 300 kRad
- Array is ATC18RHA95_544_252
 - 796 buffer sites dual pad ring
 - 132 mm² core area
- Package 625 LGA



Verification Platform (Simulation)



Very challenging verification task

- Implementation spec >300 pages
- SoC for each requirement
- Block level treated as smaller chip
 - Allowed block(s) to be finished independently
- Common test bench
 - Important to maximise test bench reuse
 - Written in mixed System-C/VHDL
 - Near generic design for top-level use
 - Single reconfigurable bench for all major ASIC functional modes
 - Controlled via tcl scripts
 - Contains full Space Wire interface
 - Designed to support generation of production vectors

Verification Platform (FPGA Prototyping)

- Commercial HAPS board
- Four large Xilinx Virtex FPGAs
- Prototyping performed for:
 - Full RTL for one ASIC
 - Control functionality for 21 ASICs forming one module
- Prototyping used to verify:
 - Automatic level control function
 - Embedded test bench
 - Space Wire configuration of all ASIC coefficients (0.25 Mbits configuration data per ASIC)
- Test bed controlled via SpaceWire test system & software
 - S/W developed in house GUI
 - Coefficient control and monitor
 - Collects Attention Requests

Conclusions

- Extremely large and complex ASIC development
 - Stretching the technology in all parameters: area, speed and I/O.
- ASICs have been manufactured and tested
 - Full functionality has been verified to be right first time.
- ASIC core power dissipation has been measured
 - Found to be close to and slightly below the estimates.
- FPGA prototyping proven invaluable in the verification
 - Covering situations that would be too lengthy to simulate.
- ASICs will be flown on the Alphasat XL mission
 - Provide extended L-band mobile services for Inmarsat on the new Alphabus platform.

