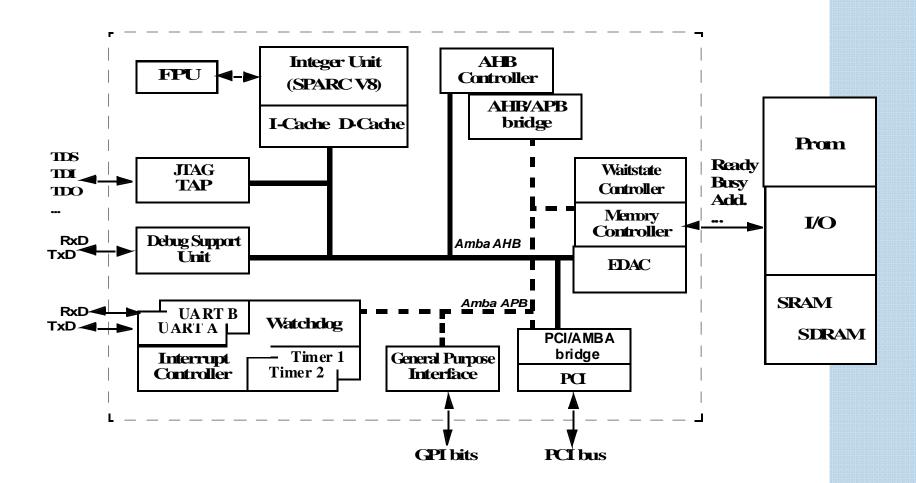


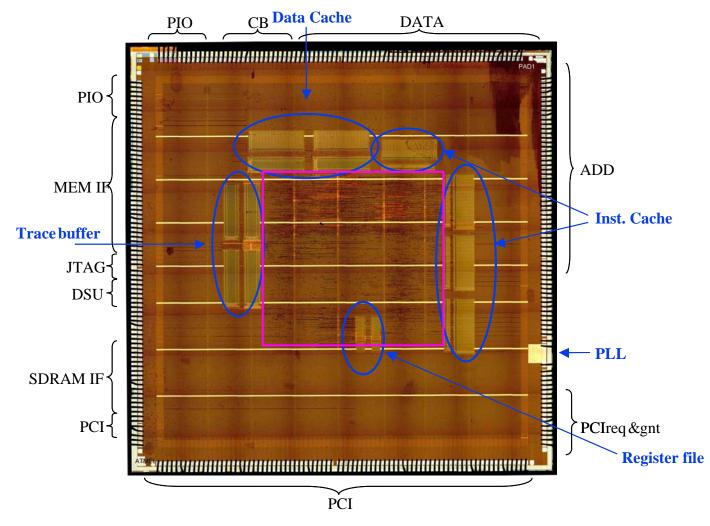
AT697 Sparc V8 32-bit Architecture

- SPARC V8 LEON2-FT with Integer and Floating Point Unit
- On chip Amba Bus
- Embedded Instruction and Data caches
 - 16Kbytes multi-sets Data cache
 - 32Kbytes multi-sets Instruction Cache
- Memories Interface for PROM, SRAM and SDRAM
- PCI 2.2 interface (33 MHz)
- Two Timers, two 8-bit Uarts and interrupt Controller
- User friendly Debug Support Unit
 - Trace buffer 512 lines of 16 bytes



AT697 basics

- ATC18RHA CMOS 0.18 micron; 1.8 V core; 3.3V I/Os
- Fault tolerance by design
 - Triple Modular Redundancy with skew
 - SEU and SET protection
 - EDAC on register file and external memories
 - Parity on the caches
- Available package
 - MCGA 349 last delivery Q2_2011
 - LGA 349
 - MQFPF 256



AT697 block diagram

AT697 Die View

AT697E performance

- Performance at 100MHz
 - 86 MIPS (Dhrystone 2.1)
 - 23 MFLOPs (Whetstone)
 - SDRAM interface speed impacted by the bus load
 - On AT697-EVAB (2 SRAM and 1 SDRAM banks) : 65 MHz maximum
- Power consumption

- 7 mW / MHz
 - At 100 MHz and for high activity: core at 0.5 W, I/O at 0.2 W

AT697E radiation performance

Total lonizing Dose

- Parts fully functional at 200 krad (Si)
- 3.3V I/O standby current increases after 100 krad (Si), and recovers after high temperature annealing
- These results allow to use these AT697E parts for space mission requiring a maximum of 60 krad (Si)

Single Event Effects

- No Single Event Latchup (SEL) at 95 MeV/mg/cm2 max voltage – 125°C for a fluence of 1 E7 particles/cm2
- Very good Single Event Upset/Transient (SEU/SET) protection

AT697F rationales

- Prototype devices: AT697E and Flight devices: AT697F
- ATC18RHA library
 - To allow successful total dose test up to 300 krad (Si)
 - To ensure appropriate process reliability monitoring (through SEC test vehicle)
- Bug removal
 - All known bugs has been corrected (see AT697E errata sheet)
- Removal of existing functions
 - 16-bit mode PROM/RAM interface (no EDAC support)
 - PCI single transaction mode
- Addition of new functions
 - Addition of Two Memory Block Protection Units (TSC695F compatible)
- Pin out compatible with AT697E

AT697F improvements

- Feedbacks from customers during AT697E validation
- Improvements
 - Asynchronous assertion of BRDYN
 - Use of the BRDYN for PROM area
 - Extending the timers to 32-bits
 - Addition of four external interrupts
 - AHB trace buffer halt
 - New 8-bit memory EDAC scheme
 - Write to 8-bit PROM with EDAC enabled
 - PCI device configuration boot pin made readable
 - PCI configuration registers made AHB readable in satellite mode
 - Higher capacitive load capability.
 - Higher ESD protection 2000V (250V for AT697E)
 - Total dose : tested up to 300Krad(si) successfully
- SDRAM interface speed up to 90MHz

AT697F status

- Preliminary Datasheet available. Final June 2010
- ESCC evaluation started. Final report end Q3/2010
- Order entry opened
 - Engineering Models already shipping
 - Availability

- SMD number: variant 5962-072240

- EM order+6w

- QML-Q order+12w

- QML-V order +24w

- TID report done
- Heavy ions: July 2010

ATMEL AT697 Compact PCI Evaluation board

- Compact PCI plug-in format
 - 6U format, 32 bit, 33MHz interface
 - Configurable for System and Peripheral slot operation
 - Two mezzanine board MCGA & MQFPF
- Processor
 - Atmel AT697E/F, Rad-Hard 32 bit Sparc V8 Embedded Processor
- On-board memory
 - SRAM 4Mbyte
 - 2 AT60142 SRAM banks
 - FLASH 2Mbyte
 - SDRAM 64Mbyte
- Interfaces
 - Memory/Peripheral expansion connectors
 - Debug Support Unit interface
 - PIO expansion
 - On-board power regulation allows operation from PCI slot, or stand-alone with +5V supply.

Lesson learnt

Design

- TMR
 - No automatic design tools, manual script
- Skew
 - Triple skewed Clock
 - Tools must be squeezed!
 - 10% increase in power consumption (and area)
- Reset
 - AT697F keeps Flip-Flop data under reset
 - Simulation at gate level did not converge
- Test
 - TDF
 - Accurate measurement of set-up and hold with tester loads
 - Simulation with tester loads done successfully
- See also DAC 2009 presentation by R.Weigand

AT7913E Sparc V8

- Sparc V8 Leon2 FT with Floating Point Unit
- AT7913E RTC (Remote Terminal Controller)
 - Two CAN interface
 - FIFO interface (parity check)
 - ADC/DAC interface
 - 2 UART interfaces
 - 2 bidirectional SPW link 200Mbit/s on chip LVDS
 - 64kB x 32 on chip memory with EDAC
 - · ...
- CMOS Technology: ATC18RHA (0,18 µm)
- LGA 349
- MQFPF 352 feasibility on going
- Power consumption: ~0.7W@50MHz
- 1.8V core, 3.3V I/O

AT7913E Sparc V8 Status

- SMD spec and Datasheet available
- User's Manual for June
- Order entry opened, first samples delivered
- Availibilty

■ EM end May 2010

QML-Q order + 12w

QML-V order + 24w

- Evaluation Kit in development at AURELIA/CAEN and STAR DUNDEE
- Contract "almost" closed with RUAG
- Support set-up with cooperation of RUAG

Questions?

Thank You

