DARE180 Maintenance & DARE90 Development

Microelectronics Presentation Days 30 March 2010 ESA/ESTEC Noordwijk – NL

> <u>Steven.Redant@imec.be</u> +32 16 28 19 28 <u>Geert.Thys@imec.be</u> +32 16 28 80 18

Outline

- WP1: DARE180 Library maintenance
 + CCN: DARE180 CIS Port
- WP2.1: DARE90 Test vehicle design
- WP2.2: DARE90 Test vehicle manufacturing
- WP2.3: DARE90 Test structure characterization and irradiation
- WP2.4: DARE90 Test results analysis and library definition

DARE180 Library Maintenance

- Objective:
 - Provide a ready-to-use DARE180 library including all the views for the complete design flow
 - Provide the necessary documentation including a data book
- Tasks:
 - Script data book generation
 - Check consistency of the library
 - Simulate failing SRAMs of DIE_HARD test chip

DARE180 – Virtuoso Database

- Schematic Update:
 - CORE, IO, IOa, PLL, LVDS, (SRAM)
 - Conversion script from old to new database for schematics and symbols
- Layout Update:
 - Conversion script based on GDSII layer remapping
 - PG tracks set to 1um
 - top metal 20kA
 - SAB layer (DRC)
 - MMSYMBOL layer added (LVS)
 - new bondpad (oxide studs)
 - minimum area rules (DRC)

- New names: DARE180_* (previously RadHardUMC18_*)
 - DARE180_CORE, DARE180_IO, ..

^{- ...}

DARE180 – Database Verification

- DRC:
 - Automated verification scripts for complete library
- LVS:
 - Include extraction for ELT
 - Automated verification scripts for complete library
- LPE:
 - Based on LVS verification scripts
 - Extraction of parasitic capacitors and resistors
 - Reduction of complex RC circuits

DARE180 – Characterization

- SignalStorm -> ELC
 - CORE and IO
 - Fully scripted approach
 - HIT cells are included in the flow
 - Automated generation of databook (html)
 - Verilog, Vital, lib/db
- Ocean (spectre)
 - LVDS and PLL
 - A lot of scripting to generate the views
 - Verilog, Vital, lib/db, html

DARE180 – SRAM Generator

- C++ code
 - Unix -> Linux
 - Minor changes
- Simulation
 - To solve problem in medium and big size SRAMs
 - High capacity spice simulator used (Ultrasim)
 - Based on schematic -> all OK
 - Based on layout with parasitic C extraction -> all OK
 - Based on layout with full RC networks -> timing problem in medium sized and big SRAMs
 - Good news: We know the problem...and also how to fix it!
 - Bad news: The solution is yet to be implemented!

DARE180 – Library Additions

- Analog IO pads for enabling a mixed-signal design flow
 - 2 possible analog domains: 1.8V, 3.3V
 - a specific breaker cell was included
- Specific views for enabling a Cadence SoC Encounter P&R flow
 - LEF files, abstract views, etc.
 - These were extensively debugged in an external design.

Beyond DARE180 ...

- The DARE180 IO libraries are compatible with the Logic and the MM-RF processing options (thick top metal)
- Large Bond Pad IO library
 - 110 x 110 um2 (standard IO = 70 x 70 um2)
 - Available for IO, IOa, LVDS and PLL
- Cmos Imaging Sensor Technology
 - Reduced metal stack (4M)
 - Only LBP version available for IO cells
 - Fully characterized with CIS transistor models
 - 'Not just another port'
 - ESD (multiple power domains, big die, limited metal layers)
 - Additional functionality for LVDS: PD input
 - 4 additional HIT cells with M1 reprogrammable Set/Reset
 - PLL not ported

DARE180, DARE180_LBP and DARE180_CIS Libraries

		Logic/MM-RF	CIS
Core	combinatorial	50	50
1.8V	normal' FF's	20	20
	HIT FF's	20	20
	HIT FF with M1 progr. Reset	no	4
	TIEx	2	2
Ю	Digital IO 70x70	40	no
	Digital IO 110x110	40	40
IO	Analog IO 70x70	5	no
	Analog IO 110x110	5	6
IO	LVDS 70x70	3	no
	LVDS 110x110	3	3
IO	PLL 70x70	1	no
	PLL 110x110	1	no
SRAM Compiler (6Tor cell)		yes	no

+ fillers, corners, extra ESD

imec

>

In a nutshell...

- The DARE180 library supports design of ASICS for spacecraft
 - Uses commercially available technology without tweaking the process
 - Using the library is free of charge for European space industry
 - Customer can do front-end design (to netlist)
- Physical implementation services provided by imec
- Manufacturing, Packaging, Quality screening & Radiation test up to FM is supported
- Flexible solution

- DARE180 allows for mixed signal designs
 - Analog IO
 - Can add specific analog blocks: designed by you, a design house or imec
- Cells can be added to the library

The DARE180 standard cell library family

- Developed in several ESA projects
- DARE = Design Against Radiation Effects (=RHbD)
- Commercial Technology: UMC L180 CMOS
- TID hardness is far beyond requirement level for geostationary orbit
 - Tested to 1 MRad
- No SEL, SEFI, SEH seen so far
- Low SEU sensitivity, compatible with geostationary orbit mission
 - 'normal' flip-flops & RAMs
 - HIT-based flip-flops are very insensitive to SEU

DARE180 vs a commercial .18 library

- Maximum gate density = 25Kgates/mm2
- DARE180 cells are 2 4 times bigger than cells with same functionality from a commercial library
- DARE180 vs commercial cell power = 2.2x
 - Total power = Internal & Switching power
- No speed penalty
- Views available for a classical ASIC design flow
 - Using the HIT flip-flops no triplication is necessary
- Designs with a lot of RAM become very big
- SEU Hardening of RAM using EDAC circuit

How to get access

- Get in touch with <u>Steven.Redant@imec.be</u>
 By mail, or by asking access to the library files on the web
- Sign NDA (per project)
- Get access to the download area on the web
 - <u>www.europractice-online</u> -> UMC -> Radiation-Tolerant-Library
- Download the (Front End) views
 - Synthesis & Simulation

Outline

- WP1: DARE180 Library maintenance
 + CCN: DARE180 CIS Port
- WP2.1: DARE90 Test vehicle design
- WP2.2: DARE90 Test vehicle manufacturing
- WP2.3: DARE90 Test structure characterization and irradiation
- WP2.4: DARE90 Test results analysis and library definition

DARE90 – layout for TID hardness

- TID hardness requires circular gates (ELT shapes) for NMOS devices
- UMC's 90nm Design Rule Manual forbids the use of polysilicon corners on diffusion
 - 90 degrees nor 45 degrees
 - In DARE180 45-degree corners were still allowed
- We sent a test structure (with 36 ELT devices NMOS and PMOS) to UMC for investigation
 - Good news: UMC gave clearance to process this type of layout, "at our own risk"

DARE90 – which device flavor to choose? (1)

	t _{OX,inv}	V _{T,sat}	I _{ON}	IOFF
	(nm)	(mV)	(uA/um)	(nA/um)
	NM	IOS		
$SP - low V_T - 1.0V / 1.2V$		155 / 137	760 / 993	80 / 100
$SP - reg. V_T - 1.0V / 1.2V$	2.25	240 / 227	655 / 907	5.0 / 5.0
$SP - high V_T - 1.0V / 1.2V$		370 / 362	480 / 710	0.3 / 0.4
$LL - low V_T - 1.2V$		386	546	0.2
$LL - reg. V_T - 1.2V$	2.95	453	480	0.03
$LL - high V_T - 1.2V$		540	385	0.006
PMOS				
$SP - low V_T - 1.0V / 1.2V$		105 / 90	320 / 448	80 / 110
$SP - reg. V_T - 1.0V / 1.2V$	2.45	177 / 167	280 / 394	10 / 12
$SP - high V_T - 1.0V / 1.2V$		300 / 287	195 / 297	0.4 / 0.6
$LL - low V_T - 1.2V$		287	250	0.8
$LL - reg. V_T - 1.2V$	3.10	409	185	0.03
$LL - high V_T - 1.2V$		455	155	0.01

DARE90 – which device flavor to choose? (2)

- What are we aiming for?
 - first of all: functional circuits!
 - then: low power, high speed, minimal area, low leakage,...?
- Low leakage (LL option) may be desirable for space applications
 - I_{OFF} (= subthreshold leakage) is reduced by 2 orders of magnitude w.r.t. SP...
 - ... but drivestrength (speed) is also reduced
 - LL devices run at 1.2V operating voltage only

DARE90 – which device flavor to choose? (3)

• Is there an impact on SET sensitivity? We don't know yet.

assumption: sensitivity ~ $1/(I_{driver} * C_{node}) = FOM$

- C_{node} can be interpreted as the C_{OX} per unit area (= C'_{OX}) seen by the driver
- I_{driver} is the I_{DS} of the device keeping the node at its logic level

example for PMOS driver:

What happens to SET sensitivity when replacing all SP devices by equally sized LL devices?

$$t_{OX}*1.26 \rightarrow C'_{OX}/1.26$$
; $I_{driver}/1.93 \rightarrow FOM_{LL} = 2.43*FOM_{SP}$

conclusions:

- LL is more SET-sensitive than SP when the device area is unchanged. Speed decreases.
- Restoring the speed by increasing the PMOS W/L increases the area.
- Maintaining the PMOS W/L and keeping it SP yields a better FOM: $FOM_{LL} = 1.26*FOM_{SP}$ (but PMOS I_{OFF} detereorates)
- The case of an NMOS-ELT driver is always much better because of its higher drivestrength: $FOM_{Ndriver} \approx FOM_{Pdriver}/9$ (see next slide)

What about the V_T option?

- $I_{OFF} \sim 1/V_T$: higher V_T means lower leakage current
- speed ~ $1/V_T$: higher V_T means lower drivestrength

DARE90 – NMOS/PMOS drivestrength balancing (1)

- Nowadays commercial library vendors do not apply this for regular DSM standard cells
 - Goal = minimal area
 - Balanced buffers/inverters are provided separately for clock trees
- But: minimal NMOS ELT shapes have a significantly higher W/L ratio compared to minimal 'rectangular' transistors
 - geometrically: $W_{ELT,min} \approx 9^*W_{rect,min}$!!
 - *electrically*: difference in carrier mobility $(\mu_N/\mu_P \approx 3)$!
 - In total there's a serious drivestrength disproportion between NMOS-ELT and a minimal rectangular PMOS

DARE90 – NMOS/PMOS drivestrength balancing (2)

• Several scenarios:

- 1. Live with it: make minimal rectangular PMOS devices
 - Good for cell area
 - Bad for cell delay & short-circuit power
- 2. Construct PMOS devices as minimal ELT shapes
 - Drivestrength mismatch is now limited to the inherent difference in carrier mobility ($\mu_N/\mu_P \approx 3$)
 - Larger cell area
 - Smaller cell delay, less short-circuit power
- 3. Build multi- V_T cells? Or even mixed LL-SP?
- 4. ESA/industry requirements?
- Choice depends on the aim
 - Low power, high speed, minimal area, low leakage,...?

DARE90 – device modeling

- BSIM4 (v4.3.0) is used in the 90nm PDK
 - unlike BSIM3 (v3) in DARE180
- an ELT aspect ratio model can be found in literature
 - Anelli, Giraldo (CERN), used in DARE180
 - How valid is this for 90nm?
- UMC provided us with another picture:
 - This is a LITHO-simulation on our test structure
 - Overall the processed gate length is larger than the drawn gate length (dotted line), especially in the corners
- We quantified this by adjusting the standard ELT model
 - this preliminary eqn. is only valid for the 36 samples of our test structure!

DARE90 – standard cells

- a "multi-flavor" ELT Pcell was developed see next slide
 - adjustable parameters:
 - height (H), width (B) and gate length (L)
 - LL or SP marker layers
 - Low/regular/high V_T marker layers
 - Both aspect ratio models were integrated (CERN, IMEC)
- Based on previous decisions (device flavor, NMOS/PMOS compensation, etc.):
 - Initial simulations must still be run to define D1, D2, etc.
 - The most complex cell must be designed & laid out to come to the basic standard cell frame
 - reference = HIT cell

DARE90 – ELT Pcell

Edit Instance Propertie	25	*
OK Cancel A _f	pply Next Previous	Help
🔷 Attribute 💠 Connecti	vity 🔶 Parameter 💠 Property 🔷 ROD 🔷 DFM	Common
MOS type		
Gate oxide option	\diamond Std Performance (SP) \blacklozenge Low Leakage (LL)	
VT option	🔷 low 🔶 regular 🔷 high	
Model Name	n_12_11	
Gate length (L)	90. 00r <u>š</u>	
Inner width (B)	280.00r <u>ě</u>	
Inner height (H)	560.00r <u>x</u>	
	Set to minimum	
Aspect ratio model	♦ CERN \Diamond IMEC	
Aspect ratio (W/Leff)	25.193	
Gate with (W)	1.764 <u>ų</u>	
Drain area (AD)	0. 157 <u>ř</u>	
Drain perimeter (PD)	1. 68ų	
Source area (AS)	0. 785 <u>p</u>	
Source perimeter (PS)	7.02už	
	Calculate	
Contact area N	\Diamond Space \blacklozenge Space & Fill \Diamond No space	
Contact area E	\diamondsuit Space \blacklozenge Space & Fill \diamondsuit No space	
Contact area S	\Diamond Space \blacklozenge Space & Fill \Diamond No space	
Contact area W	◇ Space ♦ Space & Fill ◇ No space	

DARE90 – I/O ring - cells

Name	Kind
inpad	CMOS input
outpad	CMOS output
vddpad	Core Power
gndpad	Core Ground
v3iopad	I/O Power
v0iopad	I/O Ground
Corner	Corner cell
FILLER118_DARE	I/O Fillers(necessary because bondpad pitch exceeds width of an IO cell)

DARE90 – I/O ring - ESD

- 3.3V IO
- ESD rules for 90nm \approx 180nm
- Minor changes expected
- ESD expert input
 - DARE180 ESD = portable for I/O cells with thick oxide
 - Gate length of GGPMOS and GGNMOS may go from 0.44 to 0.25 um.
- Implementation without ESD device directly between 1.2V and 3.3V

DARE90 - Combinatorial Core Cells for DIE_HARDER

Name	Kind	
Combinatorial cells at 1V (limited core library cells)		
INVD1	Inverter, drive 1	
NOR3	3-input NOR, drive1	
NAND2	2-input NAND, drive 1	
BUFD1	Buffer, drive 1	
EXOR2	EXOR, drive 1	
NOR2	2-input NOR, drive 1	
BUFBD1	Balanced Buffer, drive 1	
BUFBD4	Balanced Buffer, drive 4	
Combinatorial cells at 3.3V (not part of core library)		
INVD0V3	Inverter, drive 0 using 3.3V transistors	
NAND2V3	2-input NAND gate, drive 0 using 3.3V transistors	
NOR2V3	2-input NOR gate, drive 0 using 3.3V transistors	

DARE90- Memory Core cells for DIE_HARDER

Memory cells (limited core library cells)	
XDFF	HIT D-flip Flop, with Guard Bands, with Enclosed transistors
XDFF_NG	HIT D-flipflop, No Guard Bands, with Enclosed Transistors
XDFF_NE	HIT D-flipflop, with Guard Bands, no Enclosed Transistors
XDFFC(=DFFX1)	Non-hardened D-flipflop
XDFFRL	HIT asynchronously resettable D-flipflop
XDFFSL	HIT asynchronously settable D-flipflop
XDFFSLRL	HIT asynchronously settable & resettable D-flipflop
XLATCHD1	HIT latch, Drive 1
XLATCHD2	HIT latch, Drive 2
XLATCHC(=DLAHX1)	Non-hardened latch

DARE90 – Teststructures

Structure	#Supply domains	TEST
Ring Oscillators 1.2V +3.3V	1	TID
ShiftReg Phys. Countermeasures	4	TID
SET data + clock + reset	1	SET/SEL
ShiftReg SEU	1	SEU/SEL
Functional Comb + Seq	1	Functional
Functional IO	2	Functional
Total	10	

Outline

- WP1: DARE180 Library maintenance
 + CCN: DARE180 CIS Port
- WP2.1: DARE90 Test vehicle design
- WP2.2: DARE90 Test vehicle manufacturing
- WP2.3: DARE90 Test structure characterization and irradiation
- WP2.4: DARE90 Test results analysis and library definition

DARE90 – DIE_HARDER Floorplan

- Pad-limited design
- Total size of the chip: 3330 x3330 sq.µm
- 10 Supply domains
- I/O voltage: 3.3V
- Core voltage: 1.2V

DARE90 – Package – Bonding diagram

 Ceramic QFP120 Package

Outline

- WP1: DARE180 Library maintenance
 + CCN: DARE180 CIS Port
- WP2.1: DARE90 Test vehicle design
- WP2.2: DARE90 Test vehicle manufacturing
- WP2.3: DARE90 Test structure characterization and irradiation
- WP2.4: DARE90 Test results analysis and library definition

DARE90 DIE_HARDER test setup

- Teradyne J750
- HATINA

Outline

- WP1: DARE180 Library maintenance
 + CCN: DARE180 CIS Port
- WP2.1: DARE90 Test vehicle design
- WP2.2: DARE90 Test vehicle manufacturing
- WP2.3: DARE90 Test structure characterization and irradiation
- WP2.4: DARE90 Test results analysis and library definition

DARE90 Ring Oscillator TID: Frequency

Geert Thys Microelectronics Presentation Days 2010 36

DARE90 Ring Oscillator TID: Idd (1.2V)

DARE90 Ring Oscillator TID: Icc (3.3V)

Conclusions

- DARE180
 - The updated library is available as V4.1
 - The SRAM problem is identified and scheduled to be fixed
 - The library development is scripted from GDSII to LEF
- DARE180_CIS
 - Not a straight forward porting
 - Valuable feedback on our characterization flow
- DARE90
 - Analysis of irradiation tests (TID, SEU, SET, SEL)
 - Definition of complete library
 - Reuse of DARE180 scripting environment

imec Years of Making Technology Fly