LEON3 Fault-Tolerant Design Against Radiation Effects - ESCC Evaluation

P. Somerlinck / S. Habinc / S. Redant

Microelectronics Presentation Days 2010
Table of Contents

• **Project overview**
 - Context
 - Design
 - Test equipments
 - Status

• **Results**
 - Production yield
 - Library experience
 - Package Construction analysis
 - TID test
 - ESD test

• **Pre-Results**

• **Conclusion**
Project overview
• Evaluation of the feasibility to develop and produce an ASIC having a proved capability for space use in a fabless approach, using a commercially available technology (UMC 0.18 µm CMOS), the Design Against Radiation Effects (DARE) library and a dedicated production and evaluation flow complying with the ESCC standards

• The 2 main outputs of the project will be:
 - An evaluation plan summarizing the results of all the tests
 - An ASIC procurement & Qualification flow defining the tests to perform for guaranteeing highest space quality and reliability requirements for future DARE chips.

• Design selected is the Aeroflex-Gaisler LEON3-FT

• Responsibilities:
 - Thales Alenia Space ETCA (B) - Prime
 - Project management
 - Validation and evaluation testing
 - Aeroflex Gaisler (SE)
 - LEON3-FT processor design
 - IMEC (B)
 - Layout generation and DARE library
 - Interface with ASIC wafer fab via MPW EUROPRACtICE run
Design

- LEON3-FT core with MMU & 2x16 KB caches
- 2 SPACEWIRE links + CAN-BUS interface
- Memory Controller with EDAC supporting SDRAM-PROM-SRAM memories
- 16 GPIO + UARTs
- Max core frequency : 120 MHz
- Max SpaceWire rate : 250 MBPS
- Max power consumption : 3 W

- DARE library (1.8V / 3.3V) – UMC 0.18 CMOS technology
- Full Custom CQFP256 with tie bar. Leads pitch 0.5
- Die dimension : 10 x 5 mm
- 430k equivalent gates
• Functional tests performed in application-representative conditions on GAISLER GR-PCI-XC2V LEON PCI development board

• Schlumberger tester at test house facilities (SERMA) for production tests.

• Dedicated ETCA test boards for evaluation and validation tests
• Design / Layout / Manufacturing √
• ADR / PDR / CDR successful √
• Design validation
 • Assembly & screening tests √
 • TID tests √
 • Heavy ions tests
• Evaluation tests
 • ESD HBM test √
 • Package construction analysis √
 • Functionality verification over varying parameters (T°, Voltage,...)
 • Mechanical & thermal package tests
 • Die construction analysis
 • Thermal & power step stress tests
 • Life-test > 2000h & burn-in
• Project end : September 2010
Results
Production yield

- **149 parts produced and packaged into CQFP 256**
 - 7 parts rejected during assembly after visual inspection
 - 4 parts used for package constructions analysis & assembly trial

- **138 parts electrically tested at 3 temperature (-55°C / +25°C / 125 °C)**
 - IO continuity tests.
 - Supply currents measurement (Iccsb, Iccop)
 - Static and dynamic parameters measurement (Vol/Voh/Vil/Vih,tplh,tphl)
 - Scan and functional tests
 - 124 passed the tests but after cache disabling (cache problem detected during electrical testing)
 - 14 failed the test

√ Excellent production yield (Manufacturing + Assembly + Production tests)
⇒ +/- 85%
Library experience

- **Risk on functionality of larger RAMs known at project start**
 - Large RAMs for caches on LEONDARE did not work correctly. Smaller ones did.
 - Simulations of full RAMs showed problem. Solution identified.
 - Problem will be corrected in upcoming compiler version.
 - Workaround by not enabling the caches by software

- **Power consumption estimate complied with measurements after LVDS buffer consumption was taken into account.**
Package construction analysis

- Following ESCC2269000
- Performed on 3 parts, ball bonding 25 µm diameter gold wires.

Results:
- No assembly defect was revealed
- Internal connection were good
- Wire pull & die shear test were correct
• **Following ESCC22900**

• **Icc stand-by of the core:**
 - Stable until 100 krad (Si)
 - Increase until 500 krad (Si)
 - To decrease until 1 Mrad (Si)
 - Fully recovery & functional after accelerated ageing at 100 °C

• **Icc stand-by of the IO:**
 - Dominated by the LVDS buffers consumptions
 - No significant evolution during the irradiation
• **Timing drift:**
 - Measure of an embedded ring oscillator
 - No significant variations during and after irradiation
ESD tests

- Following ESCC23800 (MIL-STD883H Method 3015)
- DARE IO ESD protection embedded
- Human Body Model passed at 1 KV, 2KV & 4 KV
- Post electrical tests passed after 1 KV, 2KV & 4 KV

⇒ ESD Class 3A (>4kV) device!
• Thermal step-stress test combined with a power step-stress test:
 - First step at 150 °C and power max

• First heavy ion test on December 2009:
 - SEU hardening results seem good (LET th > 55Mev.mg/cm²)
 - Connector problem during the test campaign invalid the results
 - New test in May 2010
• The first results shows that DARE library using the commercial UMC 0.18 technology keeps one’s promises as expected.

• The LEONDARE project confirms the possibility to take advantage of commercial technologies for the design of rad-hard ASICs.
Thales Alenia Space in Belgium

Charleroi
Tel. : + 32 (0)71 44 22 11
Fax : + 32 (0)71 44 22 00
etca.info@thalesaleniaspace.com

www.thalesaleniaspace.com