Multi-DSP/Micro-Processor Architecture (MDPA)

Microelectronics Presentation Days 2010 30 March 2010, ESA/ESTEC, Noordwijk

T. Helfers; E. Lembke; P. Rastetter; O. Ried

Astrium GmbH

Content

- Motivation
- MDPA ASIC Features
- Blockdiagram
- Physical Layout
- ASIC status
- Application: Payload Controller using MDPA ASIC
- Application: Mass Memory Controller using MDPA ASIC
- Available Software Tools
- Outlook

Motivation

- Implementation of a System-on-Chip (SOC) based on LEON2FT to serve upcoming Telecom and EO Missions
- General Requirements
 - High Control Processing Performance
 - Scalable to multiprocessor system via SpaceWire with routing capability
 - Spacecraft interface via Milbus or SpaceWire
 - Payload interface via MilBus, SpaceWire or CAN bus
- Specific Telecom Requirements
 - DVB-S regeneration function for high speed TM/TC interface with Network Control Center (600Kbps each direction)
 - Radiation hardened to operate 15 years in GEO orbit without uncorrectable error
- MDPA (MultiDSP/microProcessor Architecture)

MultiDSP/µProcessor Architecture (MDPA) ASIC

- LEON2FT based System-on-Chip (SOC) operating at up to 80MHz; factor 5 of ERC32 performance (Hartstone benchmark)
- First SOC with SpaceWire router (path addressing) on-chip with 8 SpaceWire links operating at up to 200Mbps
- Further on-Chip features:
 - IEEE- 754 Floating Point Unit (Meiko)
 - 2 MilBus 1553 Controllers (Astrium SAS IP)
 - 1 CAN bus 2.0 Controller (ESA IP)
 - 2 UARTs
 - Modem based on DVB-S standard protocol (Astrium Ltd IP)
 - RMAP client compatible SpaceWire link
 - Debug Support Unit and Service interface
 - Watchdog, Timing functions
- Technology: Atmel ATC18RHA
- Package: CQFP352
- Testing according to QML-Q and QML-V

MDPA SoC Blockdiagram

MDPA SoC Elements

- Basic Elements of MDPA SoC
 - LEON2-FT Processor
 - Hardwired DVB-S algorithms
 - General Purpose Clock
 - UARTs with FIFO
 - SpaceWire I/Fs (with limited RMAP support)
 - Service Interface (SIF)
 - Two MIL-STD-1553B Interfaces (RT and BC)
 - CANbus
 - Time distribution services
 - Real Time Clock (RTC)
 - Spacecraft Elapsed Time (SCET)
 - Cycle Time (CT)

Additional Processing Features

- Floating Point Unit (FPU)
- Watchdog
- Non maskable interrupt (NMI)
- Reset detection register
- Software reset
- GPIO extension
- SRAM bank swap
- SRAM Chip Selects
- Debug Support via SpW and UART interface

MDPA SoC Physical Layout

All the space you need

26.03.2010

ASIC status

- Validation Prototypes available since July 2009
- Industrial Prototypes available since September 2009
- Industrial Prototypes have been tested by Atmel over military temperature range at speed (80MHz)
- Industrial Prototypes have been implemented on controller module board and have been fully functional tested up to 80MHz
- QML-V parts have been packaged and are currently under test at Atmel
- Availability of QML-V Flight parts: end of April

AlphaSAT Payload Controller with MDPA

- MDPA receives mobile communication requests and configures on-board switch subsystem accordingly
- Network Control Channel is regenerated by on-chip modem
- On-Board Switch connected via 8 SpaceWire links using RMAP protocol
- Spacecraft I/F: MilBus 1553 RT
- 16 Mbyte SRAM working memory, 2x 4Mbyte EEPROM, 64KByte PROM capacity
- 15 years GEO orbit operation

AlphaSAT Payload Controller Blockdiagram

is the property of Astrium. It shall not be communicated to third parties without prior written agreement, Its content shall not be disck

AlphaSAT Payload Controller EQM Unit

Next Generation Mass Memory Supervisor using MDPA

- MDPA based controller and file system manager for next generation flash, SDRAM or DDR-RAM based mass memories
- Supports MilBus, CAN, UART or SpaceWire external interfaces
- Internal 16bit wide parallel memory module interface
- Main advantages over ERC32:
 - Higher performance by factor 5
 - Highly integrated, lower power (3.5W for board @40MHz)
 - More sophisticated test interface (direct register/memory access via DSU; watchpoints, Breakpoints, single step etc)

Available Software Tools

- Boot strap
- Low level Software routines according to ECSS-E40
- Debug Support Unit Monitor (e.g. from Aeroflex Gaisler)
- Service Interface box (USB interface) with host tools for software download, monitoring, task level debugging and task timing tool
- MDPA simulator

Conclusion and Outlook

- First implementation of LEON2FT with SpaceWire and routing functionality
- MDPA ASIC full operational with 80MHz of processing speed
- Versatile payload equipment controller can be realised due to
 - High number of interfaces and functions on chip
 - High CPU performance at low power due to high integrated semiconductor technology (0.18micron)
 - Robustness of the design due to various error protection methods
 - State-of-the-art assembly methods (Quad flat pack)
- The MDPA chip can be made available to interested parties on case by case basis