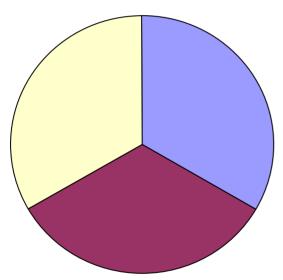
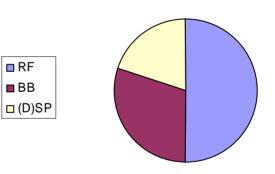
Modernised GNSS Receiver and Design Methodology

March 12, 2007

Overview

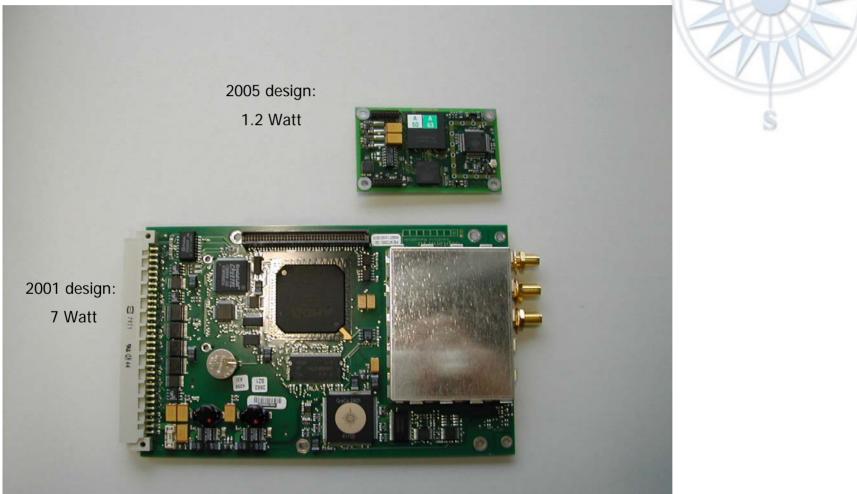
- Motivation
- Design targets
- HW architecture
 - Receiver
 - ASIC
- Design methodology
 - Design and simulation
 - Real Time Emulation
 - Software module validation

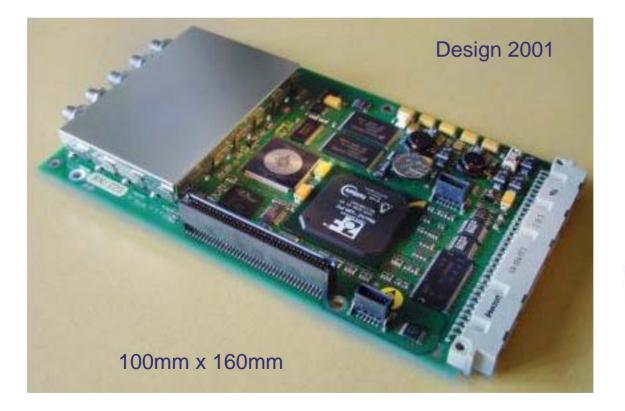

March 12, 2007


- Facts
 - New signals (beyond classical L1/L2 GPS and EGNOS)
 - Increased interest in Glonass
 - New applications
- Applications for high end receivers
 - > 100 channels tracked
 - Survey, timing receivers, machine control
 - Multiple antenna's, RTK, attitude,....

State of the art

- Fast acquisition
- Low power consumption


Power reduction in 3 domains



Situation 2001 → Situation 2007
Gain through technology and integration level

Example:

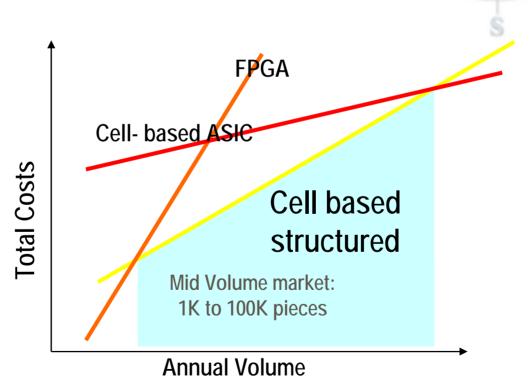
Size reduction

Design 2006

56.5mm x 76.4mm

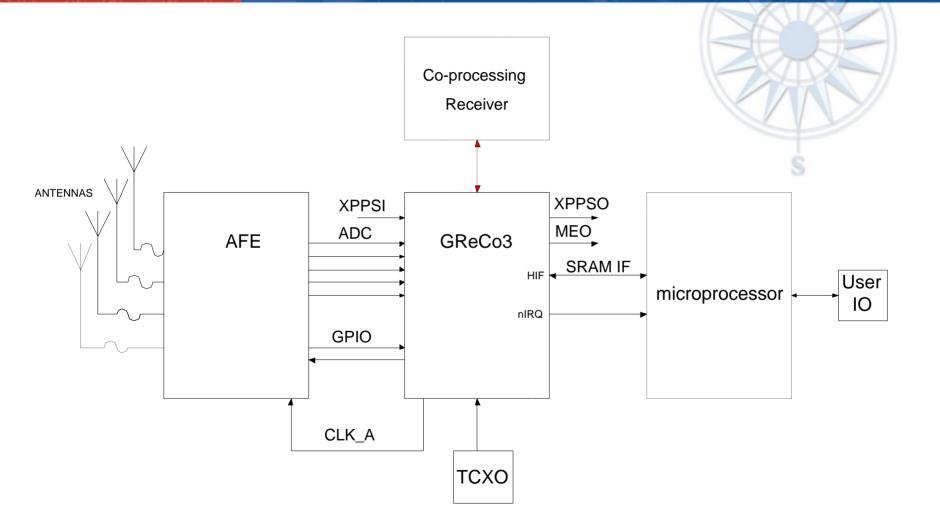
Design targets

Professional receivers

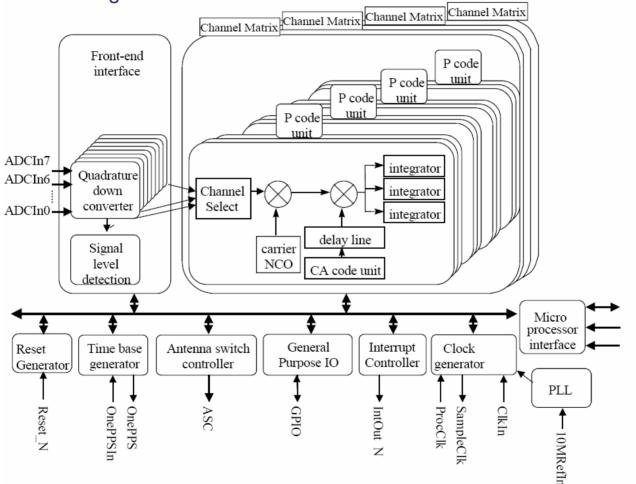

- High availability ("All-in-view" tracking)
- Mm level accuracy and high update rate
- Integrity
- Practical in use
 - Fast (re)acquistion
 - Rovers
 - Accurate timing
- Engineering concerns
 - Scalability
 - Programmability
 - Technology independence and portability
 - Testability
 - ROHS

Efficient Design and Technology

Size and Cost : FPGA vs ASIC



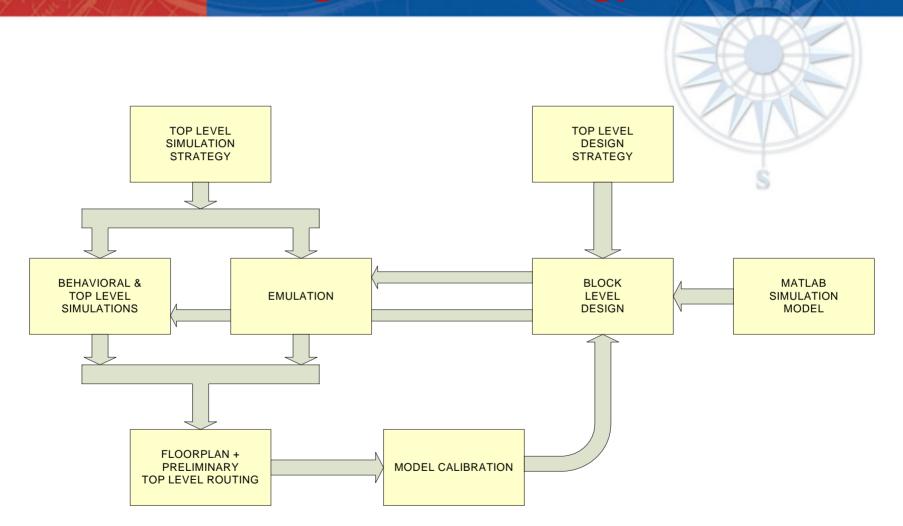
HW architecture


March 12, 2007

Receiver architecture

Evolution, not revolution

GReCo Block Diagram



GReCo3 Functionality

GReCo3 supports

- GPS modernisation and new signals (L2C, galileo codes, memory codes,...)
- Multi constellation/Antenna support (5 FrontEnd inputs)
- Large number of universal channels
- Fast Acquisition Unit
- HW co-processing units
- Multipath mitigation support
- Interference detection functionality
- Improved NCO resolution
- More observables
- Clock steering functionality
- Watchdog and support functions

Synergy: baseband operation with Galileo1 RF ASIC possible

"Platform independent" design allows

- easy FPGA prototyping
 - Increases first-time-right ASIC port
 - Allows early SW co-design
- Project interchangebility
 - Sharing IP modules over projects on different platforms

Matlab simulation models

- Higher visibility on dynamic range DSP units
- in-depth emulation of various HW units

GNSS specific design issues

- Long codes, large number of space vehicles
- Signal structure
 - Generating test vectors is time-consuming
 - Complexity to create real-world scenario
 - Cross-correlation, multipath,...
- Side effects
 - Code/carrier phase measurement hard to simulate
- Early performance evaluation
 - Conformance with theory
 - bandwidth performance trade-off

Non GNSS specific design issues

- Asynchronous MP interface
 - Clock difference GNSS and microprocessor
 - 16/32 bit interface, little/big endian
 - Maximum compatibility
- Benefits of hardware co-processing units
 - Trade-off
 - Less host processor load
 - More IO cycles to transfer data from/to ASIC

	complexity	vhdl testbench coverage	emulation
Channel	medium	93	%
type 1		coverage not 100% due to :	focus on :
		large number of SV codes	testing all SV codes
		lots of modulations	testing different modulations
		flexibility/compatibility	long-term data-logging (counter drifting)
Channel	high	97	%
type 2		coverage not 100% due to :	focus on :
		very long codes	tracking implementation
			verification of all SVs through long-term data logging
			verify interface with tracker CA-channel
MPIF	high	99	%
			focus on :
			long-term verification
			hardware delay independency
			remove vhdl processor-model dependency
FAU	high	96	%
		coverage not 100% due to :	focus on :
		large number of possible codes	verify large number of codes
		limit dynamical range not reached	verify large subset of settings
		very flexible settings	verify cooperation with tracker channel
RFE	low	98	%
		coverage not 100% due to :	emulation
	Į.	interference detection logic	to be done

-

Conclusion

Emulation brings benefits

- Efficiency
 - More cases can be investigated
 - Realtime emulation up to 10.000x faster than simulation
- SW re-usable
 - Engineering sample testing
 - End product
- Not entirely free of risks
 - HW parameters are not tested
 - Not a replacement, but a complement for RTL simulation