

FLIPPER

SEU Fault Injection in Xilinx FPGAs

ESA/ESTEC Contract n. 8559/NL/LvH/gm

Monica Alderighi National Institute for Astrophysics, IASF Milano, Italy *monica@iasf-milano.inaf.it*

Computing Systems for Space Group Fabio Casini, Sergio D'Angelo, Marcello Mancini, Sandro Pastore, Giacomo Sechi

Outline

Overview

Basic principle and main features
Case study
Preliminary results
Conclusions

FLIPPER what is it?

FLIPPER is a flexible XC2VP20-based board conceived as a powerful hardware platform for the following main application

SEU emulation by fault injection in Virtex II devices (patent pending)

FLIPPER can be used in more general ways

- radiation ground testing
- test equipment
- digital I/O board
- general purpose Virtex2 board

<mark>.</mark> ...

Why FLIPPER?

- SEUs are of utmost concern for Xilinx devices as functionalities are sensitive to unintended change in configuration memory
- Fault Injection tools able to adequately address "reacheable" radiation sensitive parts, are useful
- Our objective is providing one tool able to:
 - inject SEUs into the configuration memory
 - manage a high number of I/O pins
 - exercise a DUT device performing on board comparison of test results

FLIPPER basic principle

SEU injection by *active partial reconfiguration*

- SEU injection by configuration adopted in an earlier prototype for Virtex I*
- Close approach, yet with different purposes, used by FT UNSHADES
- Reported approach by the literature in the FI field (e.g. R. Leveugle)

* Alderighi et al., Proocedings of the 18th IEEE Int'l On-line Testing Symposium, 2003 Alderighi et al., Proocedings of the 9th IEEE Int'l Conference on Defect and Fault Tolerance in VLSI Systems, 2003

FLIPPER what's for

- Analyze SEU effects in designs implemented in Xilinx FPGAs Study SEU effects in Xilinx FPGA reconfiguration logic by means of a write operation into configuration logic registers Evaluate/compare mitigated designs in
- one/selected device(s)

FLIPPER features

- SEU emulator comprising hardware, firmware & software
- Fault injection based on frame modification and active partial re-configuration
 - Verified through JTAG & Impact verify
- Single bit and multiple bit upsets
- Test vectors and gold vectors imported from ModelSim simulation
- Test vectors up to 150 bit wide and gold vectors up to 120 bit wide
- \approx 26000 test vectors @10MHz \rightarrow \approx 11 injection/s with max. I/O port width

FLIPPER features (cont'd)

- After each injection the DUT is exercised for the whole set of test vectors
- Test/gold vectors comparison performed on board. In case of mismatch, a fault packet is sent to the PC containing:
 - # of the current injected fault
 - # of the current test vector
 - Ex-OR between the current DUT outputs and the expected (gold) values
- DUT FPGA's pin wired together in triplets on the DUT board to implement XTMR-ed designs
- XQR2V6000 used as DUT for ESA contract
- Test execution either via GUI interface or in batch mode
- Injection mode and options selectable via software

Technical features

Main board:

- Xilinx XC2VP20-5 FF896
- USB 2.0 port with dedicated microcontroller
- Up to 128 MByte SDRAM or 256 MByte DDR memory
- 16 MByte Flash
- ISP Flash for FPGA configuration (JTAG configuration also allowed)
- 32 KByte I²C E²PROM for the microcontroller configuration
- Temperature control chip
- Two customizable frequencies through independent oscillators
- Two 240 pin connectors plus one 60 pin connector for DUT boards
- P160 connectors for standard expansion boards
- Single power supply (5V/10A)
- On-board voltage regulators for
 - 1.5V/15A
 - 2.5V/15A
 - 3.3V/6A
 - 1.8V/1.5A
- Power LEDs
- FPGA configuration LEDs
- Size: 22 cm x 12 cm

Technical features (cont'd)

Piggy-back DUT board:

- In principle any Xilinx V2, V2 Pro, V4, and next generation devices can be used (with some limitations) for fault injection test
- Up to 416 DUT pins can be driven by the main board's FPGA (more pin in case of XTMR-ed designs)
- DUT FPGA accessible either through SelectMAP port or JTAG port
- Temperature control chip
- Two 240 pin connectors plus one 60 pin connector
- Powered by the main board
- FPGA configuration LEDs
- Size: 10 cm x 12 cm

Case Study

Injection into a specific design
 ESA CUC-CTM IP core

 Provides basic time keeping functions

 Evaluate XTMR version vs unmitigated one

 Test-benches and XTMR version provided by ESA

CUC-CTM

 Provides alarm services and periodic pulses
 Can be accessed and programmed via AMBA APB slave interface

CUC-CTM Implementation XQR2V6000

	Plain	XTMR
FF	785 out of 67,584 (1%)	2,361 out of 67,584 (3%)
LUT	1789 out of 67,584 (2%)	7,167 out of 67,584 (10%)
IOB	212 out of 824 (25%)	569 out of 824 (69%)
GCLK	1 out of 16 (12%)	3 out of 16 (18%)

Test Structure

Device configuration
Injection by active partial reconfiguration
Functional test
Repeat from the injection without restoring the bitstream

Test info

Injection strategy

- Single bit flip
- Fault Accumulation
- Stop condition \rightarrow first functional fault
- Campaigns
 - plain/XTMR
- XTMR options
 - The "entire design" is triplicated
 - "Standard" as XMTR types
 - "Triple voted" output
- # run
 - **1000/2500**
- # test vectors
 - 26452/26452

Distribution of the number of injections - Plain version XQR2V6000 DUT

Distribution of the number of injections - XTMR version XQR2V6000 DUT

Cumulative Frequency Distribution of the number of injections - Plain version XQR2V6000 DUT

Cumulative Frequency Distribution of the number of injections - XTMR version XQR2V6000 DUT

Injections to the first functional fault

Cumulative Frequency Distribution - Plain Vs. XTMR XQR2V6000 DUT

🗖 XTMR 🔳 Plain

INAF

letherlands 19

Plain VS. XTMR

Conclusions

- Encouraging preliminary results
 Extension of the actual contract for FLIPPER upgrade
 Likely usage of FLIPPER in a proton
 - radiation testing

monica@iasf-milano.inaf.it

http://cosy.iasf-milano.inaf.it/flipper_index.htm

