

SCOC3 (Spacecraft Controller On Chip)

ESTEC, Noordwijk, 7th and 8th March 2007

Page 1 SCOC3 - ESTEC - MPD 7th/8th March 2007

Contents

- 1. Project history
- 2. Project applications
- 3. Activities
- 4. SCoC3 specification (main outlines)
- 5. SCoC3 architecture
- 6. SCoC3 S/W
- 7. SCoC3 development methodology (including testability/validation)
- 8. Planning
- 9. Conclusions

EADS

1) Project history

- **SCoC1** : First contract 2000: ESA 13345 contract called "Building Blocks for System on a Chip" to:
 - Define a methodology for the integration of system within an ASIC
 - Design a large SCOC1 ASIC through FPGA prototyping based on LEON1. Contract stopped at FPGA prototyping step
- SCoC2 : ASTRIUM SCoC2 development continuation based on LEON2 with MAEVA FPGA prototype board to improve the architecture and develop new IPs
- **SCoC3** : The aim of the current ESA contract SCoC3 is a continuation process:
 - by moving to the LEON3 and improving the architecture in terms of performance,
 - by developing new IPs and improving existing IPs
 - to simulate and validate the SCoC3,
 - to assess the gate level design phase by performing synthesis and static timing analysis on a selected technology.

2) Project Applications

- Main issue: P/F applications
- Telecommunication satellites: High Reliability
- Earth Observation and Science satellites: From High Reliability to simplex implementation
- Micro satellites with same reliability factor as EO & Science but also low cost approach
- Others like Probes, Launchers, Navigation, Formation flying, ...

3) Activities

• Phase 1 (TRP)

Financing	Tasks								
ESA	Initial analysis and requirement specification								
ESA	Architectural design:								
	 Architecture study of block interconnect scheme 								
	 Functional specification of the IP macros 								
	 Development / modification for adaptation of the IP macros 								
	 Simulation at VHDL RTL level / Environment developed in VHDL on a « standar basis 								
ASTRIUM	S/W development (drivers, boot, self-tests,)								
ASTRIUM	SOC approach is verified / debugged on a FPGA demonstration board with SOC function integrated in a reprogrammable FPGA	ר :							
	 Activity performed in parallel with the simulation and S/W development 								
	 Progressive integration of the IP macros 								

3) Activities

• Phase 2 (GSTP under construction)

Financing	Tasks
ESA	Asic back-end
ESA	Foundry
ASTRIUM	Board validation

4) SCoC3 Specification

- AOCS/Data Handling on single chip including I/O (1553, SpW, CAN, UART,...), CCSDS TC, CCSDS TM, CCSDS Time Mngt
- Processor LEON3-FT with GRFPU-FT at 120 MHz
- AMBA architecture
- Power management
- IP Monitor: AMBA statistics and trace
- Mature technology: ATC18RHA with qualified package BGA472

Page 7 SCOC3 - ESTEC - MPD 7th/8th March 2007

5) SCOC3 Architecture

- The processor bloc is based on LEON3 µP with GRFPU, a memory controller, UART and Spacewire interfaces communicating via the CPU-AHB AMBA bus
- The on-board I/O subsystem providing UART, CAN, SpW, MIL1553
 BC/RT. Data exchanges are of DMA type in the I/O memory
- The TM/TC subsystem provides one packet telemetry encoder (PTME) and one telecommand decoder (TCDA) unit, with MAP interface
- The CCSDS time generator and an event switch matrix, clock and reset distribution, debug support

5) SCOC3 Architecture

Page 9 SCOC3 - ESTEC - MPD 7th/8th March 2007

5) SCOC3 Architecture - Main IP block module

Module	Source						
LEON3-FT SPARC µP IP –MMU, GRFPU-FT –AHB/APB	Gaisler Research						
Spacewire IP with RMAP functionality	EADS Astrium						
CCSDS TM IP	ESA						
CCSDS TC IP	EADS Astrium						
CCSDS Time Mngt IP	ESA						
1553 IP	EADS Astrium						
CAN IP	ESA						
UART IP	Gaisler Research						
Memory Controller IP (SRAM, SDRAM)	EADS Astrium						
Miscelaneous (AHB/AHB, Clocks, Housekeeping)	EADS Astrium						
Monitor IP (real time debug and tests)	EADS Astrium						

5) SCOC3 Architecture - Operating modes

- Full mode SCOC3 acts as spacecraft main computer
- Processor and I/O only SCOC3 can be used for payload data handling and processing
- TM/TC only SCOC3 can replace a conventional TM/TC subsystem using 'discrete' components
- Processor and TM/TC SCOC3 can be used as main computer next to a separate on-board communication structure

6) SCoC3 Software

- Drivers with IPs
- Development environment based on C
- Tools: GRMON, TSIM, ...
- SCoC3 simulator created
- RTEMS and/or VxWORKS Operating System
- Service Interface software
- Reuse of DHS layers from Pleïades or Bepi-Colombp

Page 12 SCOC3 - ESTEC - MPD 7th/8th March 2007

7) SCoC3 Development methodology

- SOC Design leads to find out solutions for:
 - Standardization of the interfaces, internal and external
 - · Internal for easy interconnect of IP based on the use of a catalogue of IP
 - External to reduce the number of IP to develop
 - Current standardization of the methodology of validation of SOC model (RTL)
 - Hardware/Software Co-simulation with proprietary solutions
 - Prototype of the SCoC on FPGA and deliver to users/software developers models
 - Simulation remains simulation and only emulates the use of the SOC in modelled environment
 - Accelerate the bug discovery
 - SCoC validation in equipment environment

8) SCoC3 planning

Phase 1:

WPID	WP Name	Start Date	Dura- tion	то	1	2	3	4	5	6		8		9 10) 11	1	2 13	14	15	
0	0 Management		15		-	2	5	•	2	Ŭ	'				· • •		- 13			
1	1 SCOC Definition Phase		3		ко			SRR	L											
2	2 Assurance of Existing IP Cores		1.5	1				, 												
3	3 Development of new IP Cores		6					_	1						•		А	DR		
4	4 Architectural Design and Verification		11					,	1						↓		•		FR	
4	Architecture Finalization	T0+2	1																	
4	4 SCOC coding		2/8					ł	, [
4	SCOC verification by simulation	T0+4	9																	
4	SCOC verification by prototyping	T0+7	6															↓		
5	ASIC Feasibility Study		2												mm					
	Progress meetings													\setminus						
	Milestones						М	1	PN	11		Р	VI 2		Р	IVI.3	1	M2	М3	
				Т0	1	2	3	4	5	6	7	8		9 10) 11	12	2 13	14	15	

Phase 2:

Under discussion

9) Conclusion

- Product: On Board Computer core low power/low cost/ low volume
- Methodology: Ever improving the reuse from IPs and standard bus
- Software: Development improved using commercial tools and could be provided with dedicated software support
- Integration: One ASIC allowing different operating modes and several architecture
- Contacts:
 - Roland Weigand ESTEC roland.weigand [at] esa.int
 - Franck Koebel EADS Astrium franck.koebel [at] astrium.eads.net
 - Marc Souyri EADS Astrium marc.souyri [at] astrium.eads.net
 - Jean-Francois Coldefy EADS Astrium jean-francois.coldefy [at] astrium.eads.net