aspire invent achieve

Radiometric Performance Enhancement of APS

3rd Microelectronic Presentation Days, Estec, March 7-8, 2007

Outline

- Introduction
- Backside illuminated APS detector
 - Approach
 - CMOS APS (readout) design:
 - Sensor and pixel architecture
 - Readout modes
- Technological developments
 - Thin wafer processing
 - Special features on hybrid arrays
 - Backside surface treatment
 - AR coating
- Conclusions

Introduction

 European Space Agency funded project "Hybrid APS" (ITT AO/1-3970/02/NL/EC)

Partners:

- FillFactory/Cypress: design
- IMEC: technology development
- Galileo Avionica: radiometric characterization
- Aim: snapshot shutter CMOS APS demonstrator for high-end spaceborne imaging
- Hyperspectral imaging

2-D sensor with spectrometer slit:

- Spatial information on x-axis
- Spectral information on y-axis
- Spatial information by scanning

Backside illuminated detector: approach

Hybrid approach

backside thinned diode array flipchip integrated using In bumps

CMOS readout array

Sensor architecture

- synchronous pipelined shutter
- 22.5 µm pixel pitch
- stitched design:
 - 512 x 512 pixels stitch blocks
 - up to 2048 x 2048 pixels
- pseudo-differential output per 256 columns
- 20 Mpixels/s per output
- SPI interface for upload: addressing, gain & offset, NDR, non-linear amplifier, etc.

Backside illuminated detector: CMOS APS design

imec

Backside illuminated detector: CMOS APS design

Backside illuminated detector: normal readout mode

Backside illuminated detector: Optimized readout modes

- Non-destructive readout (NDR)
- Line by line variable integration time
- Ref.: J. Bogaerts et al.: 2005 IEEE Workshop on CCD and Advanced Image Sensors, Nagano, Japan, June 2005

Technology development & challenges

 Realized through stitching stepper lithography 512², 1024² and 2048² pixel arrays

Readout: 0.35 µm technology@ commercial foundry

Hybrid diode array: 0.13 µm technology @ Imec

Technology development & challenges: thin wafer processing

- (post-) processing of thin wafers (35 um)
 - Backside thinning with excellent thickness (uniformity) control (< 1 um)
 - use of temporary carrier for thin wafer handling
 - Ref.: K. De Munck et al., IMAPS Device Packaging 2006, IEDM 2006

Technology development & challenges: special features

- Hybrid diode array: special features
 - Graded epi for built-in electrical field: enhanced charge collection at low voltage operation
 - Doped poly-Si filled trenches for cross-talk reduction

Technology development & challenges: backside passivation

- Backside surface treatment after thinning
 - Damage removal by dry/wet etch
 - Shallow (50nm) backside implantation
 - Dopant activation by laser annealing

Technology development & challenges: AR coating

- Optimized broadband ARC
 - Reflectivity <3% @ 400 to 850nm
 - Spectral response: 60% → >80%

Technology development & challenges

Working detectors realized: COB package

Monolithic: 1024² pixels

Hybrid: both 512² and 1024² pixels

Readout: 2048² pixels

Conclusions

- Thinned backside illuminated imagers realized
 - Hybridized and monolithic
 - CMOS APS: synchronous pipelined shutter with true CDS
- New 3D process technology for thin wafer handling and processing
 - Use of temporary carriers and glues
 - 200 mm thin wafer processing on carrier with standard equipment
- Performance enhancing concepts implemented
 - Graded EPI → lower cross-talk and improved QE for same voltage
 - Poly-Si filled pixel separating trenches \rightarrow low cross-talk
- Working demonstrators
- Detailed characterization is currently ongoing

aspire invent achieve

