Integrating Additional Functional with APS Sensors

Microelectronics Presentation Days ESA/ESTEC 8th March 2007

Werner Ogiers (<u>fwo [at] cypress.com</u>) Cypress Semiconductor (Formerly Fillfactory B.V) – Mechelen – Belgium

> Stephen Airey (<u>Stephen.Airey [at] esa.int</u>) Roland Weigand (<u>Roland.Weigand [at] esa.int</u>) European Space Agency – Noordwijk – Netherlands

Integrating Additional Functionality with APS Sensors

Contents

- Introduction
- Rationale
- Development logic
- LCMS sensor chip requirements
- LCMS sensor chip design
- Test results
- Future work and limits of integration
- Conclusion

Introduction

- Optical / image sensors for GNC see a move from CCD to CMOS Active Pixel Sensors (APS)
- CMOS APS provide the potential for integration of analogue, logic, and system functions on single chip
- High level functional integration on chip raised many feasibility questions.
- FillFactory / Cypress have completed the LCMS Technology demonstrator under ESA contract 17235/03/NL/FM to address these.
- Final presentation 10th March 2006

Rationale for integration (1)

- Benefits of on-chip integration at unit level?
 - dimension / mass / cost reduction (fewer parts)
 - power reduction and reliability improvements
 - Easier, quicker and cheaper unit integration
 - eliminate FPGAs, amplifiers, line drivers, thermistors, ...
 - Exploitation of design methodologies not applicable to board-level design
 - automated testing
 - self-test
 - dynamic power management
 - ..
 - → see highly-integrated battery-powered consumer applications (PDAs, MP3s, mobile phones, ...)

Rationale for integration (2)

- Benefits on system level?
 - Miniaturized low power sensors are enabling technologies for micro- and nano-satellites and intelligent landers
 - Enabling technology for use of multiple sensor suites
 - for given mass / power / cost budget
 - Improved redundancy and robustness
 - Fewer blinding/ dead zone problems simplified control logic
 - fusing multi-source data in enhanced-accuracy position determination
 - Lower unit costs, lower launch mass

Integration Risks and Mitigation

- logic switching noise
 - impacts on electro-optical signal, at pixel site or later
 - couples through die substrate
 - couples through shared power supply
 - \rightarrow careful spacing / guarding of blocks, synchronous design
- power dissipation of extra functions
 - increased die temperature, thermal gradients
 - increased pixel dark current + noise
 - \rightarrow advanced power management techniques
- reduced flexibility
 - design decisions 'carved-in-silicon'
 - \rightarrow programmability, even of hardwired logic
- Radiation Tolerance with increased processing
 - \rightarrow RT design rules for pixels and analogue (Fillfactory patent)
 - \rightarrow Triple redundacy for all flip flips
 - \rightarrow EDAC and memory scrubbing for all memories
 - \rightarrow Use of existing radiation hardened IP cores

LCMS Functional Requirements

- Idea: Star Tracker Optical Head 'on a chip' demonstration
- Full-frame images every 200 ms (acquisition mode)
- 20 Windows of up to 20x20 pixels every 100 ms (tracking mode)
- User programmable windows (size, position, gain, offset, threshold, integration time...) - for each window !
- Simple dynamic user programming
- Processing: reject non-star signal
 - background level estimation and subtraction
 - pixel signal thresholding
 - On chip full correlated double sampling (removes Fixed Pattern Noise)
- 12 bit ADC
- Autonomous operation: clock + command in, data out
- Fully integrated easy to use interfaces options
 - SpaceWire / IEEE1355
 - universal serial
 - parallel bus
- Digitisation of on chip temperature sensor and 4 external analogue inputs
- Single supply, 3.3V

Development logic – how to do it cheaply!

One contract, two chips

HAS (High Accuracy Startracker) established analogue architecture
LCMS (Low Cost and Mass Startracker) image sensor core is scaled HAS sensor

- * 1024 x 1024 \rightarrow 512 x 512 pixels
- $18 \times 18 \rightarrow 25 \times 25$ um pixel size

•HAS Silicon + FPGA used for LCMS logic pre-validation

CMOS process/fab choice

HAS: optimal performance \rightarrow X-Fab .35

LCMS: minimal design risk \rightarrow AMIs .35

LCMS Block Diagram

LCMS Readout Sequencers

- Low-level sequencer
 - Controls analogue core
- •High-level sequencer
 - Full frame readout with Rolling Shutter and Double Sampling
 - Windowed readout with Correlated Double Sampling
- Windowed readout timeline
 - programmed into on-chip SRAM memory
 - 8 kbits
 - 1023 program steps/ 100 ms 'frame'
 - per window
 - position in FOV
 - PGA gain and offset
 - when to reset
 - when to read post-reset levels
 - when to read post-exposure levels
 - \rightarrow very easy to set-up on-the-fly

LCMS CDS and Pixel Processing

Correlated Double Sampling digital domain suppresses kTC noise and FPN stores black / reset levels of 20 windows in 128 kbit on-chip SRAM calculates (exposed-initial) for each pixel in output windows

Data processing

- background estimation and removal (technique depends on mode)
- signal thresholding

Data output format

- contiguous, per window
- no data re-ordering required

LCMS Interfaces

- SpaceWire
 - command and data
 - 5 full frames / s @ 12 bit / pixel
- Parallel
 - command and data
 - compatible IDT 72V2113-style FIFOs
 - 9 full frames / s @ 12 bit / pixel
- Serial
 - command only
 - various formats (RS-485, PacketWire, TTC-B-01, ...)

Implementation:

- •3.3v power supply
- 20MHz oscillator

 Minimum number of external references - easily obtained by resistor network.

LCMS Physical

RESS

- Package
 - ceramic JLCC-84
- Bond options
 - 84 pin package ⇔ 94 pin design
 - LCMS-C: CMOS i/f options
 - LCMS-L: Spacewire only

LCMS chip dimensions -X: 15.5 mm -Y: 16.2 mm -Area: 251 sq.mm

Silicon Results

- Fully functional from first silicon
- Functional, performance and limited radiation testing performed
- No measurable additional noise effects.
- All functionality working as designed

FSS

parameter	result	Units	Remarks
Dark Current, 25C	1000	e-/s	after 21.5 krad
DCNU, 1sigma (dark	100	%	after 21.5 krad
current non uniformity)			
Read Noise, 1sigma	60	e-	after 21.5 krad
FPN, Full frame mode	85	e-	after 21.5 krad
FPN, windowed mode	19	e-	after 21.5 krad
PRNU (photon response	<1.4	%	
non uniformity)			
Full well capacity	85000	e-	
Fill Factor x Quantum Eff.	48	%	Peak at 600nm
Power, full speed, EOL	164	mW	CMOS mode
	226		LVDS mode

Spectral Response – FF x QE

Future Work (1) – near and medium term

- LCMS evaluation by ESA and European STR builders
 - on-going
 - in-flight demo expected
- 'LCMS2'
 - follow-up project, in funding and detailed definition phase at ESA
 - extend LCMS concept with:
 - object detection and aglomeration
 - Basic object filtering and centroiding
 - Large object edge detection and curve fitting
 - On the fly full image compression
 - Real time FPA SEU suppression
 - smaller pixels easier optics
 - Improved, 12 bit accuracy ADC
 - Even more simplified electrical interface (fewer pins, removal of external references, further power reductions...)
 - ..
 - Maintenance of full user configurability of all functions and parameters.
 - Aiming at fully qualified radiation hard product
 - Current ESA baseline for second-generation APS-based AOCS units in the next decade.

Future Work (2) – long term possibilities

- 'Sensor-on-a-chip' feasibility study
 - ESA contract 5135/06/NL/JA
 - partners Galileo Avionica, Alcatel Alenia Space, BAe Systems
 - explore present and future limits of integration
 - Processor, NVM and RAM
 - DC-DC convertor, clock generation and all auxiliary functions
 - package miniaturisation and thermal self regulation
 - optics miniaturisation (MEMS, ...)
 - ultra-low-power
 - ultra-low-mass
 - wireless interfacing
 - ..
 - Identify uses, system level problems and key budgets
 - Determine development costs (Very High!!) and recurring costs (rather low)
 - Initial results indicate 20 50g, 0.1watt sensor may be feasible with some provisos (e.g. power supply voltage)

Limits of integration

- Integration on chip has many potential benefits **BUT** many difficult issues:
- Non-technical issues
 - Industrial issues... (many of them!)
 - IPR issues
 - Product flexibility
 - Non recurring development costs (exponential with complexity)
- Technical issues
 - Compatibility of required CMOS processes with image sensors (multiple metal layers, high voltage and wireless support -> poor dark current characteristics)
 - Radiation hardening and electrooptical characterisation of new CMOS processes
 - Clock, power and cross talk management
 - Fault and problem identification and resolution
 - Configurability management
 - Testing complexity !!! (Do not underestimate!)
 - Assembly and alignment issues

Conclusion

- LCMS provided a clear and successful demonstration of functional integration on image sensors.
 - Fully proven integration of:
 - readout & interface logic
 - pixel processing
 - memories
 - SpaceWire
 - LVDS IO
 - temperature sensor
 - Demonstration that integration can be done with no negative impact on noise, power, ...
 - Demonstration (by design and partial testing) that radiation issues can be handled.
- Further on chip integration provides the most promising path to AOCS sensor improvements in the future (e.g. lower mass, power and cost with higher reliability)

