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Introduction
• Optical / image sensors for GNC see a move 

from CCD to CMOS Active Pixel Sensors (APS)
• CMOS APS provide the potential for 

integration of analogue, logic, and system 
functions on single chip

• High level functional integration on chip raised 
many feasibility questions.

• FillFactory / Cypress have completed the 
LCMS Technology demonstrator under ESA 
contract 17235/03/NL/FM to address these.

• Final presentation 10th March 2006
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Rationale for integration (1)
• Benefits of on-chip integration at unit level?

• dimension / mass / cost reduction (fewer parts)
• power reduction and reliability improvements
• Easier, quicker and cheaper unit integration

• eliminate FPGAs, amplifiers, line drivers, thermistors, ...
• Exploitation of design methodologies not applicable 

to board-level design
• automated testing
• self-test
• dynamic power management
• ...
• → see highly-integrated battery-powered consumer 

applications (PDAs, MP3s, mobile phones, ...)
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Rationale for integration (2)
• Benefits on system level?

• Miniaturized low power sensors are enabling 
technologies for micro- and nano-satellites and 
intelligent landers

• Enabling technology for use of multiple sensor suites
• for given mass / power / cost budget
• Improved redundancy and robustness
• Fewer blinding/ dead zone problems – simplified control logic
• fusing multi-source data in enhanced-accuracy position 

determination
• Lower unit costs, lower launch mass
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Integration Risks and Mitigation
• logic switching noise

• impacts on electro-optical signal, at pixel site or later
• couples through die substrate
• couples through shared power supply
• → careful spacing / guarding of blocks, synchronous design

• power dissipation of extra functions
• increased die temperature, thermal gradients

• increased pixel dark current + noise
• → advanced power management techniques

• reduced flexibility
• design decisions ‘carved-in-silicon’
• → programmability, even of hardwired logic

• Radiation Tolerance with increased processing
• → RT design rules for pixels and analogue (Fillfactory patent)
• → Triple redundacy for all flip flips
• → EDAC and memory scrubbing for all memories
• → Use of existing radiation hardened IP cores
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LCMS Functional Requirements

• Idea: Star Tracker Optical Head ‘on a chip’ demonstration

• Full-frame images every 200 ms (acquisition mode)
• 20 Windows of up to 20x20 pixels every 100 ms (tracking mode)
• User programmable windows (size, position, gain, offset, threshold, 

integration time…)  - for each window !
• Simple dynamic user programming
• Processing: reject non-star signal

• background level estimation and subtraction
• pixel signal thresholding
• On chip full correlated double sampling (removes Fixed Pattern Noise)

• 12 bit ADC
• Autonomous operation: clock + command in, data out
• Fully integrated easy to use interfaces options

• SpaceWire / IEEE1355
• universal serial
• parallel bus

• Digitisation of on chip temperature sensor and 4 external analogue inputs
• Single supply, 3.3V
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Development logic – how to do it 
cheaply!

One contract, two chips
•HAS (High Accuracy Startracker) 
established analogue architecture
•LCMS (Low Cost and Mass 
Startracker) image sensor core is 
scaled HAS sensor

• 1024 x 1024 → 512 x 512 pixels
• 18 x 18 → 25 x 25 um pixel size

•HAS Silicon + FPGA used  for LCMS 
logic pre-validation

CMOS process/fab choice
HAS: optimal performance → X-
Fab .35 
LCMS: minimal design risk → AMIs
.35
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LCMS Block Diagram

Pixel Array

512 x 512 3T pixels
rad-tolerant

rolling shutter

S&H and column amplifiers

column addressing
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LCMS Readout Sequencers
•Low-level sequencer

• Controls analogue core
•High-level sequencer

• Full frame readout with Rolling Shutter and Double 
Sampling

• Windowed readout with Correlated Double 
Sampling

•Windowed readout timeline
• programmed into on-chip SRAM memory

• 8 kbits
• 1023 program steps/ 100 ms ‘frame’

• per window
• position in FOV
• PGA gain and offset
• when to reset
• when to read post-reset levels
• when to read post-exposure levels

• → very easy to set-up on-the-fly
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LCMS CDS and Pixel Processing
• Correlated Double Sampling

• digital domain
• suppresses kTC noise and FPN
• stores black / reset levels of 20  

windows in 128 kbit on-chip SRAM
• calculates (exposed-initial) for each 

pixel in output windows
• Data processing

• background estimation and removal 
(technique depends on mode)

• signal thresholding
• Data output format

• contiguous, per window
• no data re-ordering required
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LCMS Interfaces
• SpaceWire

• command and data
• 5 full frames / s @ 12 bit 

/ pixel
• Parallel

• command and data
• compatible IDT 

72V2113–style FIFOs
• 9 full frames / s @ 12 bit 

/ pixel
• Serial

• command only
• various formats (RS-485, 

PacketWire, TTC-B-01, 
...)

LCMS

OSC

host

3.3V supply
ground

RX data+
RX data-

RX clock-
RX clock-

TX data+
TX data-

TX clock-
TX clock-

•Implementation:

•3.3v power supply

•20MHz oscillator

•Minimum number of external 
references – easily obtained 
by resistor network.
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LCMS Physical

analogue core

logic + SRAMs
ADC

LCMS chip dimensions
-X: 15.5 mm
-Y: 16.2 mm
-Area: 251 sq.mm

• Package
• ceramic JLCC-84

• Bond options
• 84 pin package 94 pin 

design
• LCMS-C: CMOS i/f options
• LCMS-L: Spacewire only
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Silicon Results

parameter result Units Remarks 
Dark Current, 25C 1000 e-/s after 21.5 krad 
DCNU, 1sigma (dark 
current non uniformity) 

100 % after 21.5 krad 

Read Noise, 1sigma 60 e- after 21.5 krad 
FPN, Full frame mode 85 e- after 21.5 krad 
FPN, windowed mode 19 e- after 21.5 krad 
PRNU (photon response 
non uniformity) 

<1.4 %  

Full well capacity 85000 e-  
Fill Factor x Quantum Eff. 48 % Peak at 600nm 
Power, full speed, EOL 164 mW CMOS mode 
 226  LVDS mode 

 

• Fully functional from first silicon

• Functional, performance and limited radiation 
testing performed

• No measurable additional noise effects.
• All functionality working as designed
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Spectral Response – FF x QE

Average QE x FF for [400 – 720 nm] range:

STAR-1000:    22 %
STAR-250:      29 %
HAS:               40 %
LCMS:            43 %
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Future Work (1) – near and medium term
• LCMS evaluation by ESA and European STR builders

• on-going
• in-flight demo expected

• ‘LCMS2’
• follow-up project, in funding and detailed definition phase at ESA
• extend LCMS concept with:

• object detection and aglomeration
• Basic object filtering and centroiding
• Large object edge detection and curve fitting
• On the fly full image compression
• Real time FPA SEU suppression
• smaller pixels – easier optics
• Improved, 12 bit accuracy ADC
• Even more simplified electrical interface (fewer pins, removal of external 

references, further power reductions…)
• …

• Maintenance of full user configurability of all functions and parameters.
• Aiming at fully qualified radiation hard product

• Current ESA baseline for second-generation APS-based AOCS units in the 
next decade.
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Future Work (2) – long term possibilities

• ‘Sensor-on-a-chip’ feasibility study
• ESA contract 5135/06/NL/JA 
• partners Galileo Avionica, Alcatel Alenia Space, BAe Systems
• explore present and future limits of integration

• Processor, NVM and RAM
• DC-DC convertor, clock generation and all auxiliary functions
• package miniaturisation and thermal self regulation
• optics miniaturisation (MEMS, ...)
• ultra-low-power
• ultra-low-mass
• wireless interfacing
• ...

• Identify uses, system level problems and key budgets
• Determine development costs (Very High!!) and recurring costs 

(rather low)
• Initial results indicate 20 - 50g, 0.1watt sensor may be feasible 

with some provisos (e.g. power supply voltage)
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Limits of integration
• Integration on chip has many potential benefits BUT many difficult 

issues:
• Non-technical issues

• Industrial issues… (many of them!)
• IPR issues
• Product flexibility
• Non recurring development costs (exponential with complexity)

• Technical issues
• Compatibility of required CMOS processes with image sensors (multiple 

metal layers, high voltage and wireless support -> poor dark current 
characteristics)

• Radiation hardening and electrooptical characterisation of new CMOS 
processes

• Clock, power and cross talk management
• Fault and problem identification and resolution
• Configurability management
• Testing complexity !!! (Do not underestimate!)
• Assembly and alignment issues
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Conclusion
• LCMS provided a clear and successful demonstration of 

functional integration on image sensors.
• Fully proven integration of:

• readout & interface logic
• pixel processing
• memories
• SpaceWire
• LVDS IO
• temperature sensor

• Demonstration that integration can be done with no negative 
impact on noise, power, ...

• Demonstration (by design and partial testing) that radiation issues 
can be handled.

• Further on chip integration provides the most promising 
path to AOCS sensor improvements in the future (e.g. 
lower mass, power and cost with higher reliability)
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