FFTC – Fast Fourier Transform Co-processor

Paul Rastetter

Astrium GmbH

Martin Suess

ESA / ESTEC

Outline

- Introduction
- Background
- FFTC Functional Requirements
- FFTC Design Requirements
- FFTC Architecture
- ASIC Facts
- FFTC Demonstration System
- FTAB support software
- Status

Introduction

FFTC Project consists of two parts

- FFTC ASIC
- FTAB (FFTC Accelerator Board)

Target Applications

- SAR Image Processing
- Radar Altimeter Processing
- Fourier Transform spectrometer data processing
- Data compression (e.g. wavelet)

Background

PowerFFT

- PowerFFT is proprietary of Eonic
- PowerFFT is commercially available
- PowerFFT IP is licensed by ESA from Eonic

The concept of the PowerFFT is the basis for the FFTC device development.

FFTC Functional Requirements

- Input/Output complex data format
 - Parallel I and Q: 8 to 16 bits integer; 8 to 16 bits sign-inverted integer,
 32 bits IEEE floating point; 32 bits integer
 - Sequential I and Q: 32 bits IEEE floating point; 32 bits integer
- Complex data filtering or windowing
- Fast Forward / Inverse Fourier Transforms based operations
 - FFT / IFFT
 - Convolve / correlate 2 vectors in frequency domain
 - Convolve / correlate a vector with vector in frequency domain
 - Multiply / conjugate multiply 2 vectors and FFT / IFFT result
- Perform square law detection
- Output complex or real data
- Complex multiply

FFTC Device Requirements

- Initialise itself
- Load its internal registers
- Perform a function in cyclic mode
- Select FFT length from 16 to 1024 points
- Perform 1024 points complex FFT in less than 50 microseconds (goal 10 microseconds)
- Perform 256 taps FIR on block of 64 k samples
- Perform gain and offset correction
- Batch repeat mode for short FFT lengths
- Integrated EDAC for on-chip and off-chip memories

FFTC Design Requirements

- FFTC contains 4 radix 2 processors working as butterfly engines
- FFTC provides MAC (Multiply/Accumulate) functionality
- FFTC includes internal RAM
- FFTC will be manufactured in a space qualifiable ASIC technology
- FTAB includes address generators
- FTAB includes a sequencer and control logic

FFTC Architecture

4 additional memory ports

i. It shall not be communicated to third parties without prior written agreement. Its content shall not be disclosed.

FFTC Architecture (cont.)

FFT Core

vector length 16, 32, ...to 1024 points

Input data rate = output data rate = P x FFT data rate transformed vector X_N ... X₁ X₀ Feedback busses Output shuffle network Butterfly processor 2 Butterfly processor 2 Butterfly processor Butterfly processor P Butterfly processor P Butterfly processor Butterfly processor P

MAC Core

- Vector multiplication of two vectors
- Vector addition of two vectors
- Gain / offset operation
- Conjugate one vector and add to second vector
- Square law detection of a vector

FFTC Architecture (cont.)

Control

- Data converters, processing core, cross-bar switch etc. are set through FFTC control instructions
- Device is programmed using high level instructions
- Very Long Instruction Word (VLIW): one instruction sufficient for FFT up to 1024 points
- Cycled operations possible

Memory Ports

- External memory banks provided for longer FFTs or multidimensional data sets
- Are controlled and synchronized by external memory controller
- Can be used as data buffers

ASIC Facts

FFTC ASIC will be realised in ATC18RHA technology from ATMEL in the frame of a MPW run

Core supply voltage: 1.8 V

I/O supply voltage: 3.3V

estimated gate count: ~4 Mio

Package: MCGA625

Memory ports:

FFTC Demonstration System

- FTAB FFTC Accelerator Board
 - Serve as a demonstrator for the FFTC device
 - it can be used as a building block for high performance on-board signal processing units
 - it can be connected to a SpaceWire network, allowing scaling of processing performance for application requirements
- FFTC demonstration system is based on
 - FFTC Accelerator Board
 - Host (test) computer (PC)
 - SpaceWire PCI interface board

This document is the namenty of Astrium It shall not be

It shall not be communicated to third parties without prior written agreement. Its content shall not be disc

FFTC Accelerator Board (FTAB)

FFTC Demonstration System

This document is the property of Astrium, It shall not be communicated to third parties without prior written agreement. Its cor

FTAB Support software

- Host computer controls the FTAB via SpaceWire
- Communication between Host and FTAB via SpaceWire
- Perform FFTC and FTAB configuration
- Send commands for FFTC via SpaceWire
- Data transfer to and from FFTC via SpaceWire
- Communication is based on RMAP

Status

- Start of the FFTC project in April 2007
- Requirement Review in June 2007
- Architectural Design Review in September 2007
- Logic Review in December 2007
- Design Review in July 2008
- Prototypes in October 2008
- Project end in January 2009

