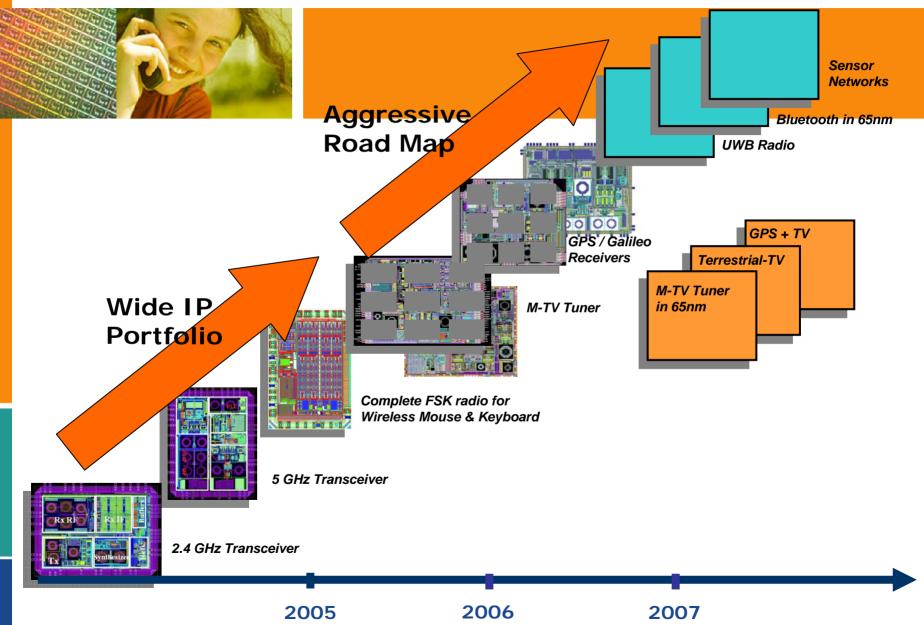


Monolithic Galileo/GPS Front-End ASIC 8-March-2007

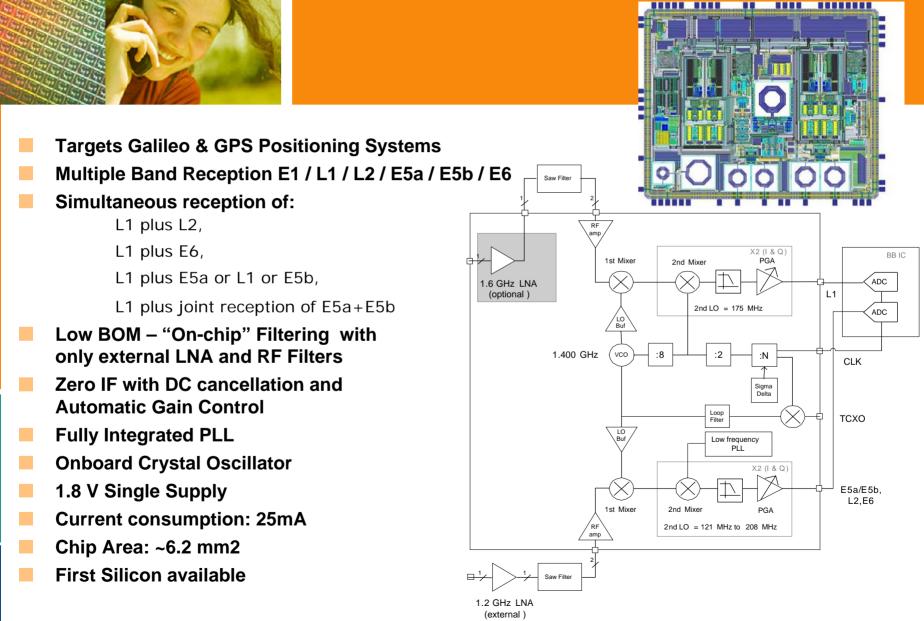
Contents

- Introduction to Chipidea
- Chip specifications
- Schematics overview
- Layout & Packaging
- Test Setup
- Characterization Tests
- Future Receiver Tests
- Future Radiation Tests
- Future Next Spin

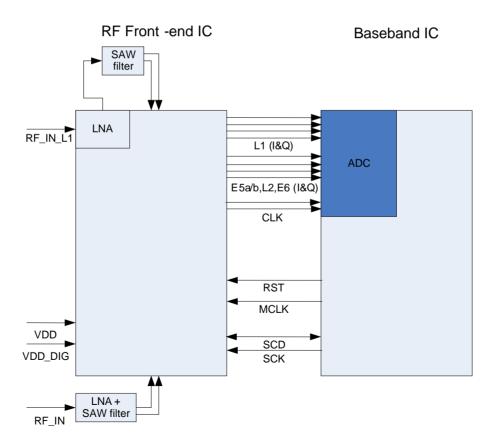
CHIPIDEA® Chipidea, Your Partner for RF Solutions


- Complete system solution far beyond the RF chip
 - Baseband converters that can be located either in the RF chip or Baseband SoC
 - Optimum partitioning of filters between analog and digital
 - Support functions such as supply regulation, clock generation, etc.
 - Advanced Digital Interfaces, such as 3GDigRF

Proven RF design competence

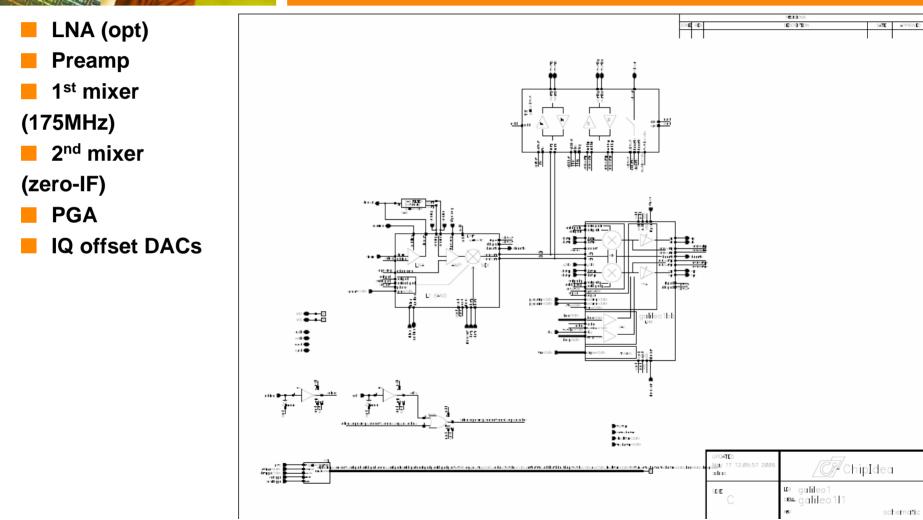

- From complete FSK radios for ISM HF bands to UWB RF front-ends
- RF Transceivers in 2.4 GHz band and in 5 GHz band
- For GPS receivers supporting Galileo
- For Mobile TV covering all the bands (from VHF to L-Band) and standards (DVB-H, T-DMB, ISDB-T)
- Working in close collaboration with Customers
 - Incorporating exclusive differentiating features for better competitiveness
 - Adapting the interfaces to suit specific application

RF Road Map

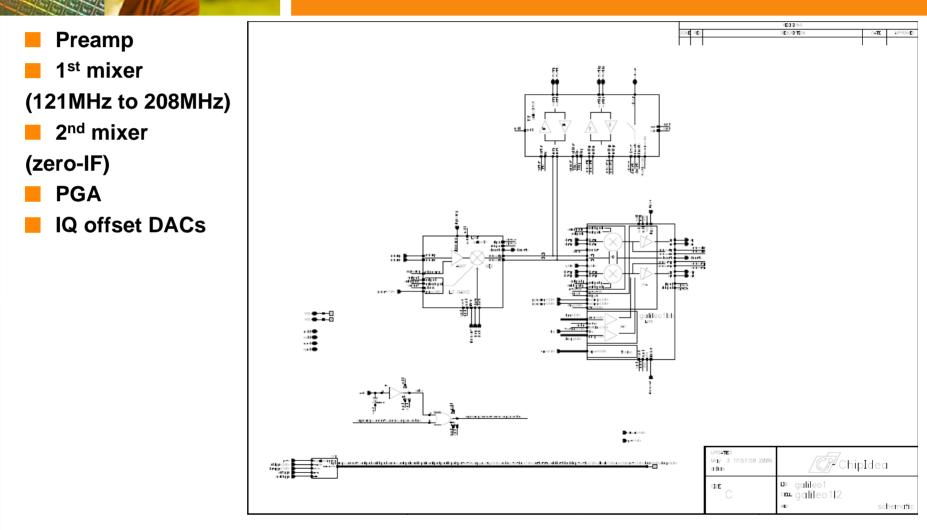


Application Diagram

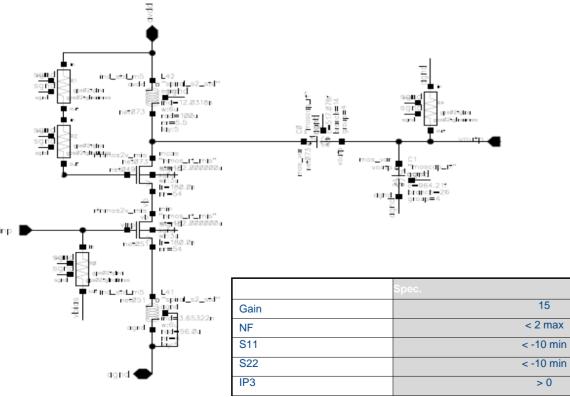

Communication with baseband IC, control, configuration, testing


Testability

- Bi-directional buffers are strategically placed in critical node of the receiver.
- Four test pins are used for debug.
- The IF signal can be monitored or applied externally into the circuit for debug or characterization.
- The Baseband PGA input signal can be monitored or applied externally into the circuit for debug or characterization.
- Critical DC voltage of several blocks can be measured or forced using the four test pins.
- VDC_TEST: Dedicated test pin for Sigma Delta. Can output DC voltages of DUT, eg, Mixer CM, VCOs control Voltage, etc.



L1 receiver

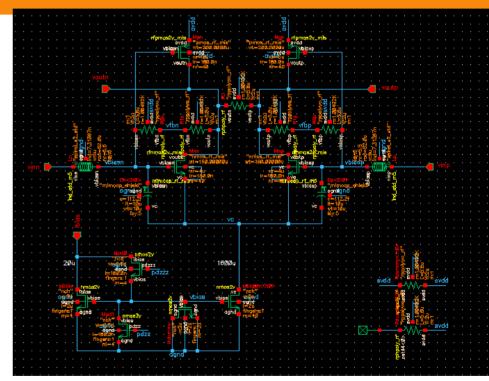

E5a/b L2 E6 receiver

LNA for GALILEO/GPS application

LNA for GALILEO/GPS application (1.6GHz)

•Single ended

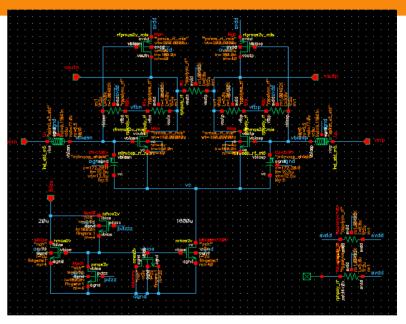
- •L degenerated architecture
- •External Inductor


	Spec.				
Gain	15	13	15.6	17.8	dB
NF	< 2 max	1.1	1.3	1.6	dB
S11	< -10 min	-16.7	-13.4	-10.9	dB
S22	< -10 min	-23.5	-15.9	-12.3	dB
IP3	> 0	-	1.2	-	dBm

RF Preamp L1

RF Preamp L1 (1.6GHz)

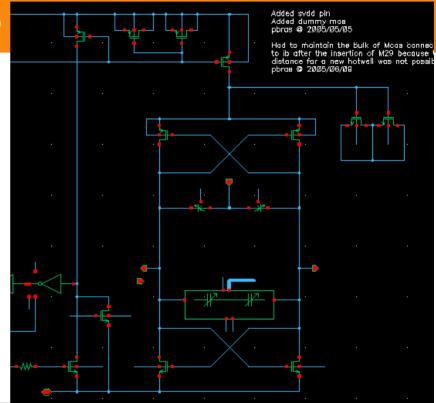
Differential inputRequires no external components


		Spec.				
G1575	Gain for 1575MHz frequency	> 12	12.94	14.97	16.86	dB
NF1575	Noise figure for 1575MHz frequency	< 5	1.86	2.59	3.44	dB
S11_1575	Input matching coefficient for 1575MHz frequency	< -12	-16.89	-25.3	-39.89	dB
IIP3	Input referred 3 rd order interception point	> -20	0.85	2.51	3.93	dBm

RF Preamp L2/E5/E6

RF Preamp L2/E5/E6

Differential input
Requires no external components
Designed form 1.1GHz to 1.3GHz

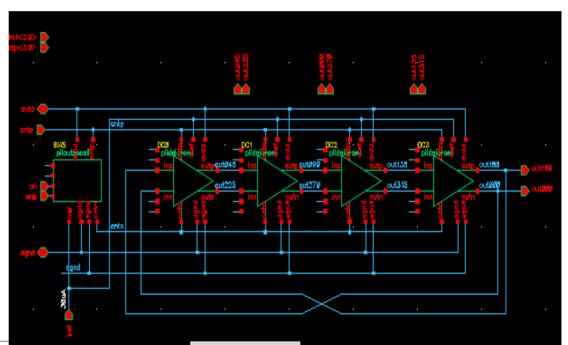

		Spec.				
G1150	Gain for 1150MHz frequency	> 14	14.12	16.82	19.42	dB
G1300	Gain for 1300MHz frequency	> 14	14.06	16.33	18.39	dB
NF1150	Noise figure for 1150MHz frequency	< 4	1.91	2.67	3.56	dB
NF1130	Noise figure for 1300MHz frequency	< 4	1.87	2.63	3.58	dB
S11_1150	Input matching coefficient for 1150MHz frequency	< -9	-27.45	-16.36	-10.97	dB
S11_1130	Input matching coefficient for 1300MHz frequency	< -9	-48.53	-25.12	-16.8	dB
IIP3	Input referred 3 rd order interception point	> -30	0.257	1.91	3.34	dBm

1.4GHz VCO

1.4GHz VCO

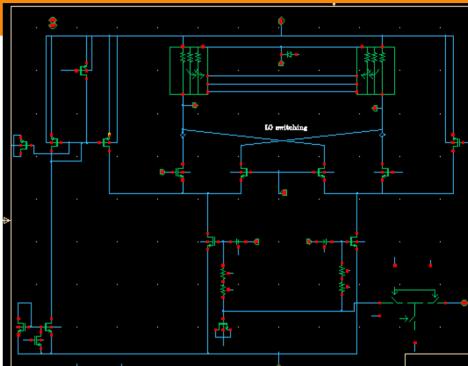
Programmable capacitors to increase tuning range
Integrated LC
Low Phase noise

		Spec.				
VCO_ldc	VCO current consumption	>-2.5e-3	-2.25e-3	-2.11e-3	-1.99e-3	А
VCO_Vpk	VCO output amplitude peak	>0.7	660e-3	877e-3	1.173	V
VCO_dF	VCO gain dF/dV	>50	33.33	373.3	201.8	MHz/V
PhaseNoise	VCO phase noise @ 1K	<-70	-57.55	-55.83	-45.03	dBc/Hz
PhaseNoise	VCO phase noise @ 10K	<-70	-84.96	-83.82	-73.56	dBc/Hz
PhaseNoise	VCO phase noise @ 100K	<-75	-108.1	-108	-100.9	dBc/Hz
PhaseNoise	VCO phase noise @ 1M	<-95	-129	-129	-124.1	dBc/Hz
PhaseNoise	VCO phase noise @ 5M	<-108	-141.3	-141.3	-136.4	dBc/Hz


© Company Property - Company Confidential

120MHz-225MHz

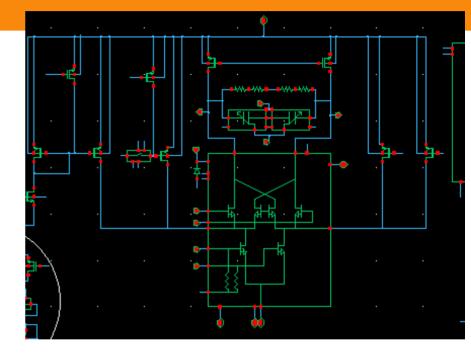
Four stages ring oscillatorI & Q phases available



		Spec.				
irmsavdd	VCO consumption	<0.0015	286e-6	306e-6	1.54e-3	А
voutdiff	VCO output amplitude	>0.6	645e-3	829e-3	1.223	Vpp
Kvco	VCO sensitivity	<100e6	-1.27e6	22.9e6	235e6	Hz
PhaseNoi se	VCO phase noise @ 100KHz	<-75	-91.12	-88.21	-84.01	dBc/Hz
PhaseNoi se	VCO phase noise @ 1MHz	<-95	-112.8	-110	-105.6	dBc/Hz
PhaseNoi se	VCO phase noise @ 5MHz	<-108	-129.1	-126.3	-121.8	dBc/Hz
loff	Current consumption power down	>-0.1e-6	-687.80e-9	-9.36e-9	-1.67e-9	А

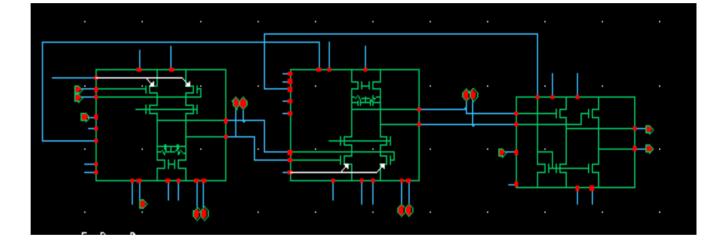
1st Mixer

1st Mixer


		Spec.				
Gc	Conversion Gain	13	8.39	13	17.79	dB
NF	Noise Figure- DSB	18	15.8	17.9	20.1	dB
IIP3	Input 3 rd order interception point	-18	-2.76	-0.85	-4.52	dBm
IIP2	Input 2 nd order interception point	-	-	-30	-	dBm
lavddon	Current drawn from avdd in normal operation mode	1.5	1.45	1.51	1.59	mA
lavddpd	Current drawn from avdd in power-down mode	-	0.1	0.19	0.44	uA

2nd Mixer

•Gilbert Cell •I & Q for image rejection •Integrated Filter



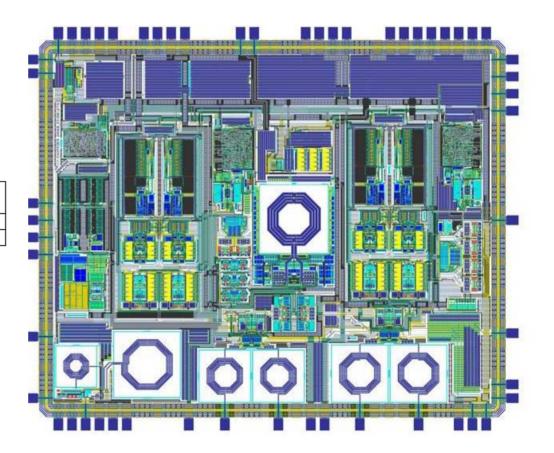
		Spec.				
Gc	Conversion Gain	21.5	16.03	19.5	22.86	dB
NF	Noise Figure- DSB	19.5	16.95	18.92	20.71	dB
IIP3	Input 3 rd order interception point	-4	-10	-2.97	3.3	dBm
IIP2	Input 2 nd order interception point	-		-40		dBm
lavddon	Current drawn from avdd in normal operation mode	1.5	0.82	0.85	0.89	mA
lavddpd	Current drawn from avdd in power-down mode	-	0.06	0.14	0.37	uA

PGA

PGA

		Spec.				
Gmin	minimum Voltage Gain	3	-4.66	2.74	11.20	dB
Gmax	maximum Voltage Gain	51	42.70	49.80	57.30	dB
Gstep	Gain Step	=6		6		dB
NF	Noise Figure @ 10MHz (Max. Gain)	<40	20.08	20.85	21.53	dB
IIM3	IIM3 with maximum gain to allow no distortion at output	TBD	-	-61.73	-	dBV
lavddon	Current drawn from avdd in normal operation mode (w/out Buffer)	< 1	-	0.52	-	mA

1. Die


Dimensions in millimeters

Die external dimensions: I , w , t	3000 x 2500x 0.9
Minimum Bond Pad opening area: 1, w	53 x 66 [um]
Minimum Bond Pad pitch	80 [um]

2. Package

Dimensions in millimeters

Туре	QFN	
Number of Pins	32	
Pin Pitch	0.5mm	
Body: I, w	5mm x 5mm	
Body Material	Plastic, RoHS Compliant	

Test Overview

- Test Development
- Test Setup Review
- Characterization Tests
 - Power Consumption
 - LNA
 - L1, L2 Complete Chain
 - Phase Noise
 - Sigma-Delta Spurs
 - LPF
 - Channel Isolation
 - IQ Mismatch
- Summary

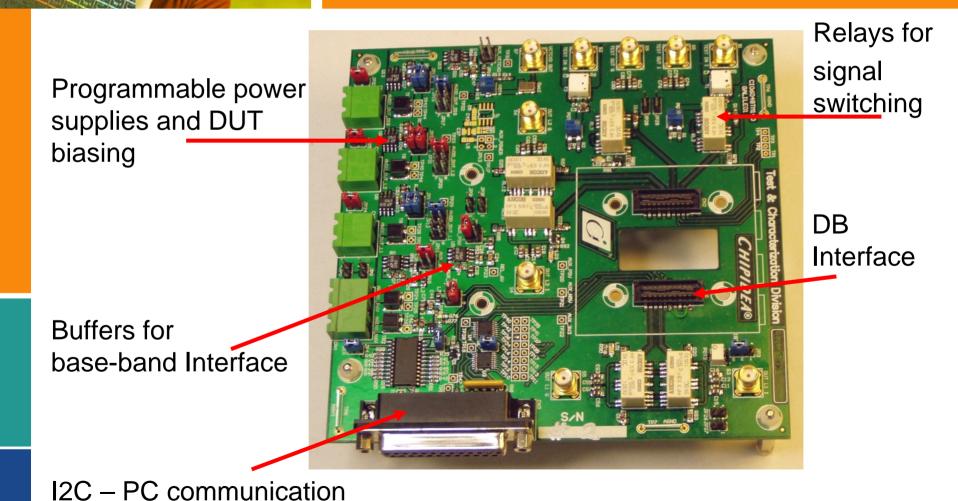
Test Development

Packaging

- QFN32 for high RF performance

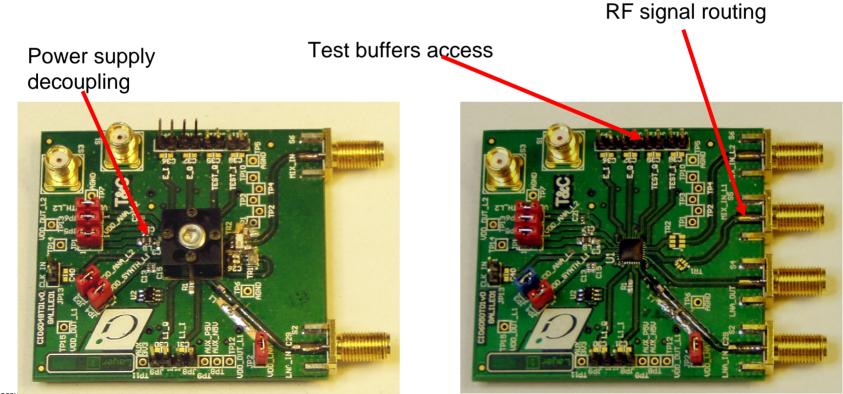
Hardware

- MotherBoard
- DaughterBoards
- De-embedding Boards (SAW Filter, Balun, PCB traces)

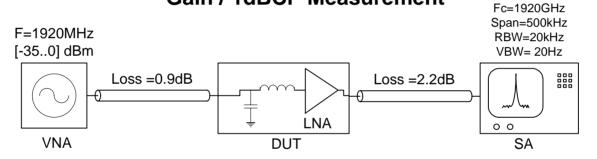

Software

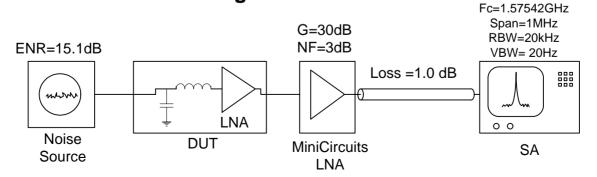
- Flexible software Control (I2C)

Motherboard



Two Types:

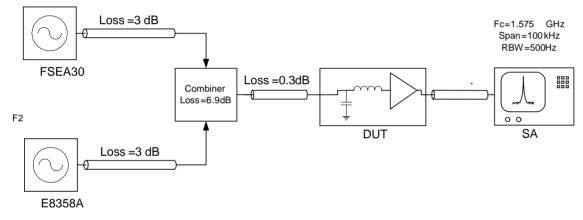

- Type I: with RF QFN socket and SAW filter
- Type II: for direct DUT soldering and LNA charactertization

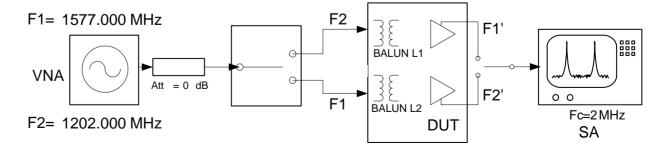


Test Setup: NF, 1dBCP

Gain / 1dBCP Measurement

Noise Figure Measurement




Test Setup: IIP3

F1

IIP3 Measurement

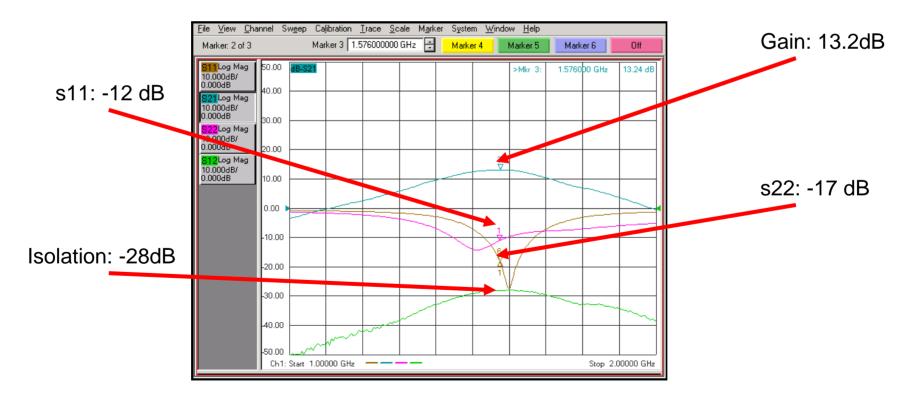
Isolation between channels

F1' = F1 down converted to Bbi,q F2' = F2 down converted to Bbi,q

Test – Power Consumption

Setup:

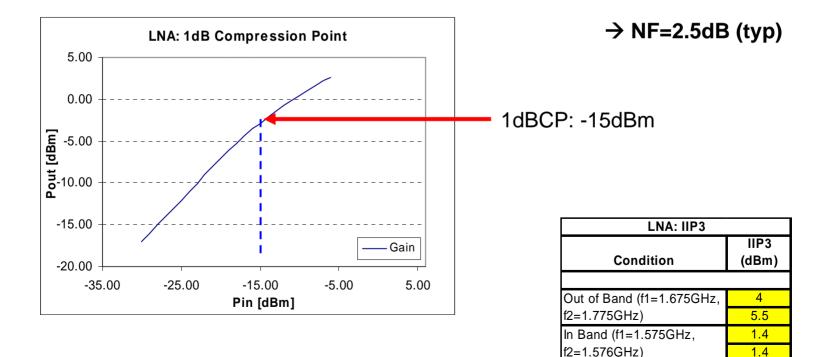
 Using standard lab Power Supplies and intercepting individual power domains of DUT


FIB # 3 / 1.8V	PGAs set	to G=12dB			
POWER CONSU	MPTION (m.	ń	•	Powerde	own
Domain	Measured	MAX. Spec		Domain	Measured
VDD_LNA	3.42	4		VDD_LNA	14 nA
VDD_ANA_L1	14.57	23		VDD_ANA_L1	120 nA
VDD_SINTH_L1	0.515	1.5		VDD_SINTH_L1	22 nA
VDD_ANA_L2	9.84	16		VDD_ANA_L2	10 nA
VDD_SINTH_L2	0.427	1.5		VDD_SINTH_L2	1 nA
VDD_DIGITAL	2.54	4		VDD_DIGITAL	240 nA
TOTAL	31.312	50		TOTAL	<400 nA

LNA – s-Parameters

Setup:

- Calibrated VNA, after LNA input impedance matched (5.6nH Series, 3p3 Shunt)



LNA – Linearity and Noise

Setup:

- LNA input impedance matched (5.6nH Series, 3p3 Shunt)

L1 - Complete Chain (RF_AMP to PGA)

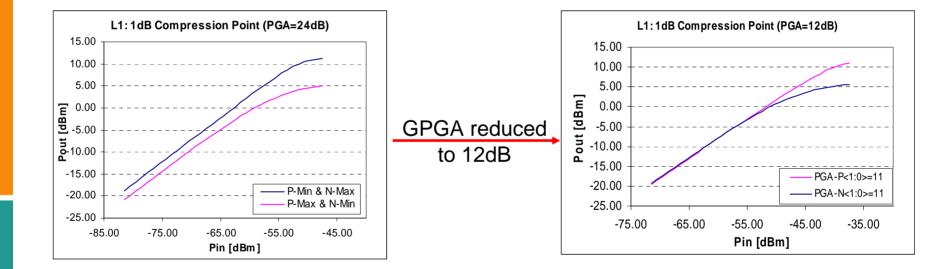
Setup:

- G(RF_AMP) = 15dB
- $G(RF_MIXER) = 4dB$
- G(IF_MIXER) = 20dB
- G(PGA-p, PGA-n): (24,0) or (0,24)dB
- SD=0

Results:

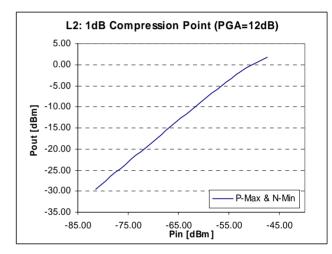
- ✓ Gain = 52 dB, step OK!
- ✓ 1dBCP= -52.5dBm
- ✓ IIP3 = -18.3dBm ←

(-35dBm referred to LNA input, spec=-40dBm)


✗ NF = 6.5dB (spec: 5.35dB)

IIP3 Setup:

- f1=1.69 GHz, f2=1.81 GHz
 - Pin=-37.5 dBm
- PGA-p=12dB

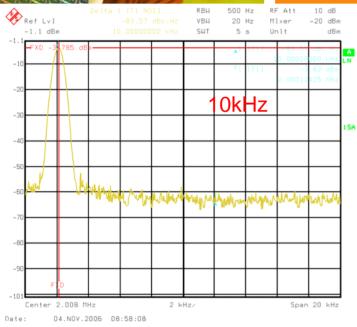


Setup:

- G(RF_AMP) = 15dB
- G(RF_MIXER) = 4dB
- $G(IF_MIXER) = 20dB$
- G(PGA-p, PGA-n): (24,0) or (0,24)dB
- SD=0

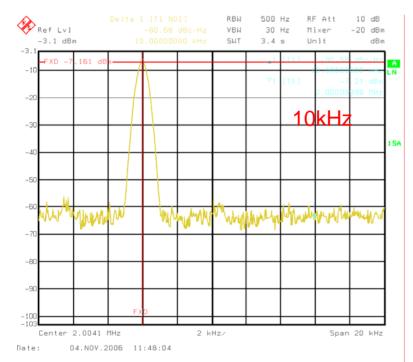
Results:

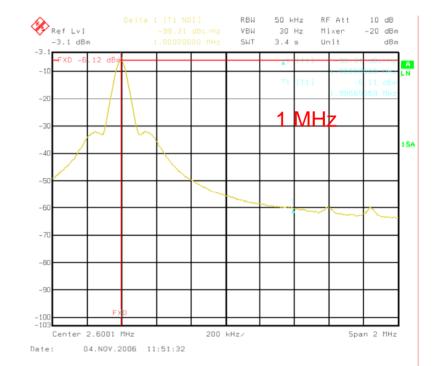
- ✓ Gain = 51.8 dB (should be 51dB), step OK!
- ✓ 1dBCP= -52.5dBm
- ✓ IIP3 = -19.6dBm ←
- **X** NF = 7.5dB (spec: 5.35dB)


IIP3 Setup:

- f1=1.31 GHz, f2=1.43 GHz
- Pin=-50.0 dBm
- PGA-p=12dB

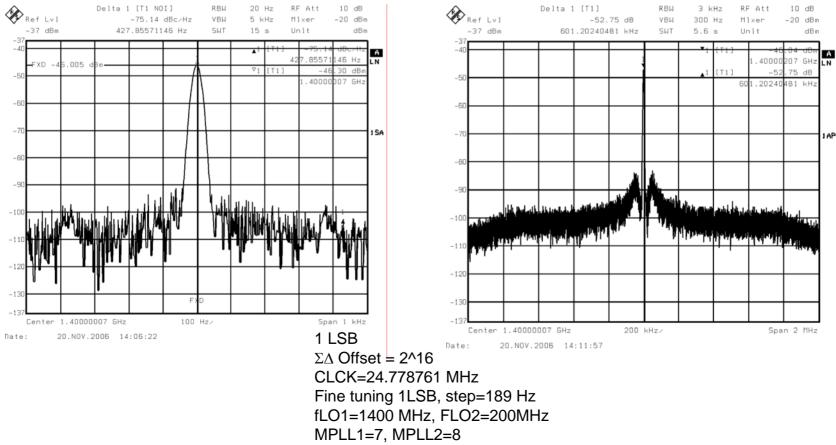
L1 – Phase Noise at Base-band (SD=0)



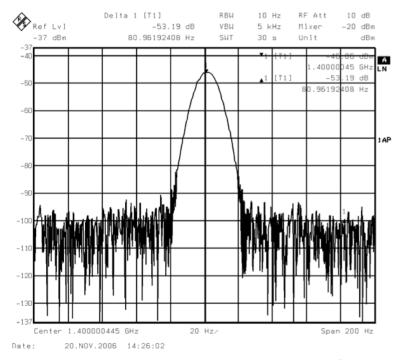

L1 – COMPLETE CHAIN								
Pin @ RF-	PGA		PHASE-NOISE					
AMP [dBm]	GAIN	OFFSET	[dBc/Hz]	SPECIFICATION				
-51.5	0dB	1 kHz	-77.6	na				
-51.5	0dB	10 kHz	-83.2	-70				
-51.5	0dB	57 kHz	-75	na				
-51.5	0dB	100 kHz	-84.4	-75				
-51.5	0dB	1MHz	-107.3	-95				

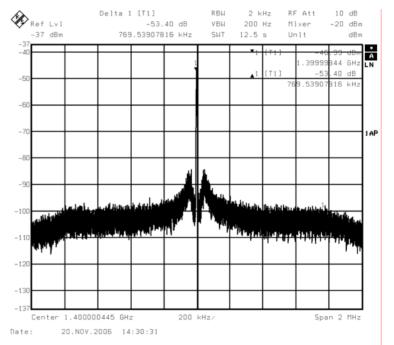
L2 – Phase Noise at Base-band (SD=0)

L2: COMPLET	E CHAIN			
Pin @ RF-	PGA		PHASE-NOISE	
AMP [dBm]	GAIN	OFFSET	[dBc/Hz]	SPECIFICATION
-54	24dB	1KHz	-79.5	na
-54	24dB	10KHz	-81.5	-70
-54	24dB	100KHz	-81	-75
-54	24dB	1MHz	-98.4	-95

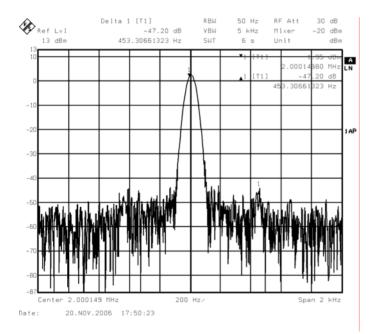

© Company Property - Company Confidential

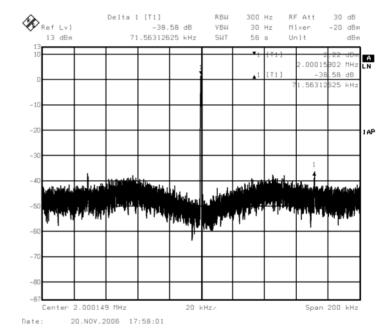
SIGMA-DELTA Spurs L2 (Both PLLs)


Downconversion measurement from RF_AMP input to PGA Output



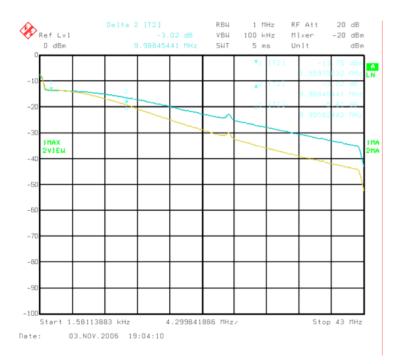
SIGMA-DELTA L2 Spurs Both PLLS (2)


3 LSB $\Sigma\Delta$ Offset = 2^16 CLCK=24.778761 MHz Fine tuning 3LSB, step=189Hz fLO1=1400 MHz, FLO2=200MHz MPLL1=7, MPLL2=8



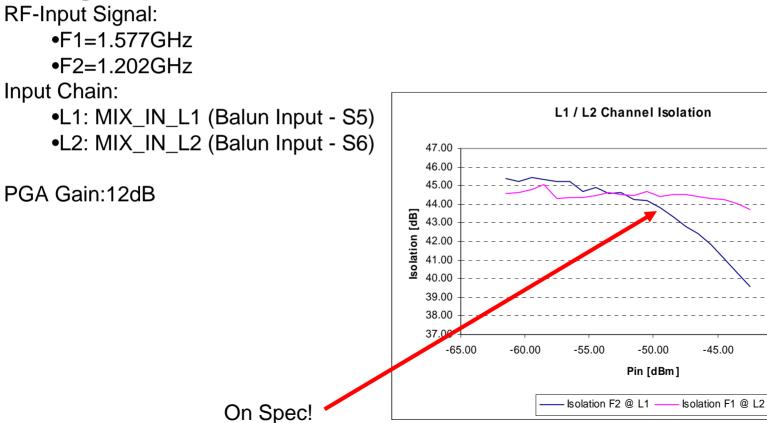
SIGMA-DELTA Spurs L2 (PLL2 alone)

Downconversion measurement from RF_AMP input to PGA Output


4 LSB $\Sigma\Delta$ Offset = 2^16+2^13+2^10+2^7+2^4+2 CLCK=24.778761 MHz Fine tuning 4LSB, step=23.7Hz fLO1=1400 MHz, fLO2=200MHz MPLL1=7, MPLL2=8

Lowpass Filters

Measured using test buffers


RBW 2 MHz RF Att 30 dB Ref Lvl VBN 200 kHz Mixer -20 dBm 10 dBm dBm SWT 5 ms Unit . N 1V1EH 2V1EH -5 -60 Stop 100 MHz Start 1 kHz 9.9999 MHz/ Date: 16.NOV.2006 18:13:30

LPF-BW (L1) with tun=min (Y-trace=full BW; B-trace=1/2 BW) LPF (L1) Attenuation LPF-BW: Y-trace=MIN tun; B-trace=Default tun; G-trace = Max tun

Channel Isolation

Settings:

-40.00

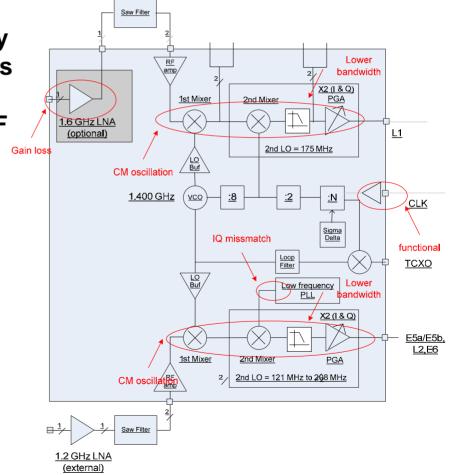
-35.00

IQ Mismatch

Setup: RF-Input Signal: •F1=1.577GHz •F2=1.202GHz

Test Procedure:

In order to cancel the error in the path of the differential outputs (lines length, differential to single ended buffers...) the channels had been crossed in the following way:


	Phase [deg]			Amplitude [dB]		
	I->A /Q->B	I->B /Q->A	Mismatch	I->A /Q->B	I->B /Q->A	Mismatch
L1	92.4	87.4	2.5	0.174	-0.105	0.14
L2	83.01	96.6	6.79	-0.68	0.9	0.79

- Common mode oscillations
- L2 IQ missmatch
- Lower LNA gain, higher NF
- Lower bandwidth

Future Work- Receiver Tests

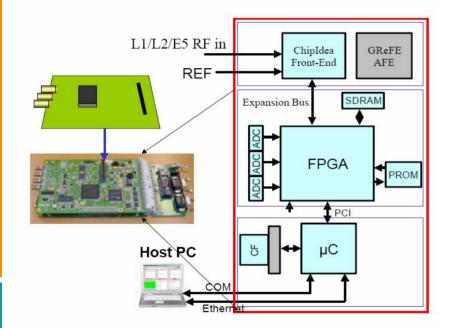


Figure 1-2: GPS/Galileo RX with Chip-Idea front-end

- Feedback to our datasheet and feasibility study.
- Functional Test
- Logging Waveform (offline analysis)
- Interference Tests
- Detailed Navigation Performance Analysis

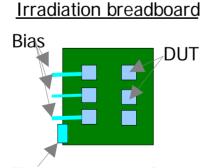
Future Work - Radiation Tests

Defined typical and worst cases radiation environment to be used as a baseline for the chip testing:

Scenario 1 ("typical"):

- LEO Polar orbit, with 900 Km altitude;
- "Quiet" Magnetic Weather Conditions (no magnetospheric storms);
- Solar Quiet ("no flare") conditions (absence of solar energetic particle events);

-Solar Minimum cycle (cosmic ray maximum);


Scenario 2 ("worst case"):

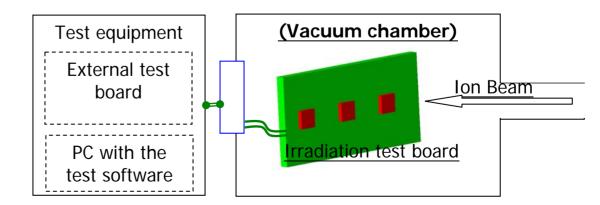
- HEO orbit, with 20 000 Km altitude and 55° inclination (GPS constellation);
- "Stormy" Magnetic Weather Conditions;
- Solar-Energetic Particle ("flare") conditions (worst-day);

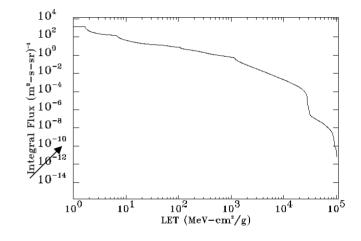
- ESA ESTEC Co-60 facility
- Environment scenarios and radiation level of interest:
 - LEO 40 kRads
 - MEO 300 kRads (600kRads)
- Samples to be irradiated 6
 - •3 biased
 - 3 not biased

Test equipmet's Conections

Proposed Radiation Steps

Radiation level	Total dose (kRad)	
М	3	
D	10	
E	20	
F	40	
R	100	
А	300	


- Radiation exposure rate 3.6 kRads/hr
- Other procedures after irradiation:
 - Annealing at room temperature
 - Accelerated aging



Objectives: Radiation assessment of the chip (SEE)*Facilities:*

- •Heavy-ion Irradiation Facility (HIF)
- •RADiation Effects Facility (RADEF)
- Environment & experimental testing parameters
 - Environment CREME96 model
 - (ex: LET spectrum for polar quiet; polar orbit,..)
 - Ion cocktail selection in order to simulate the environment; (other parameters: Fluence and flux)
- Experimental setup
 - objective: Characterization of the different SEE

Conclusions and directions

- First silicon run finished with very promissing results:
 - Architecture validated
 - Performance of most IP blocks validated
- Second silicon run will include …
 - perfomance tuning and...
 - functional improvements for receiver integration.
 - High–end receiver performance tests
 - Radiation tests
- High probability of productization complete in 2H2007