

GALILEO NSGU

Third Edition of the Microelectronic Presentation Days Emmanuel Liégeon – Alcatel Alenia Space Toulouse

Galileo / NSGU ASIC development

Page 2

Proposed Agenda

- GSTB-V2 NSGU
- IOV NSGU

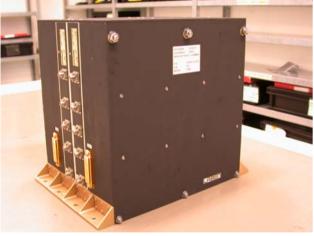
back next

Galileo program phases

Page 3

Program divided in three main phases:

- GSTB (Galileo System Test Bed)
 - Algorithm & waveform validation
- IOV (In Orbit Validation)
 - Validation of the system at a reduced scale (only 4 satellites among 30)
- FOC (Full Orbital Capacity)
 - Delivery of the full constellation (recurring phase)
 - Under concession responsibility



Page 4

INTRODUCTION

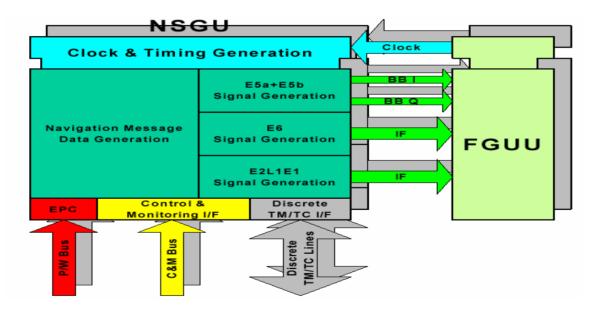
- GIOVE-A Navigation signals result from combining PRN codes and Navigation Message Data with dedicated modulation mapping
- NSGU offers a high level of flexibility

Overview of signals and modulations generated by SGEN module

GIOVE-A NSGU

with 2 SGEN modules in the centre of the box

ions	SGEN output signal type	SGEN signal modulation	Navigation message data rate (bps)	Central frequency (bps)	Maximum bandwidth (MHz)
	E5AB_I	CW, BPSK, QPSK, BOC(m,n),	E5a : 50 E5b : 250	baseband	35,7
	E5AB_Q	LINSUM, ALTBOC			35,7
	E6_IF	CW, BPSK, QPSK, BOC(m,n), INTERPLEX	E6a : 100 E6b : 1000	30 x 1,023	40
	E2L1E1_IF	CW, BPSK, QPSK, BOC(m,n), LOC(14,n) INTERPLEX	E2L1E1a : 100 E2L1E1b: 250	30 x 1,023	40


back

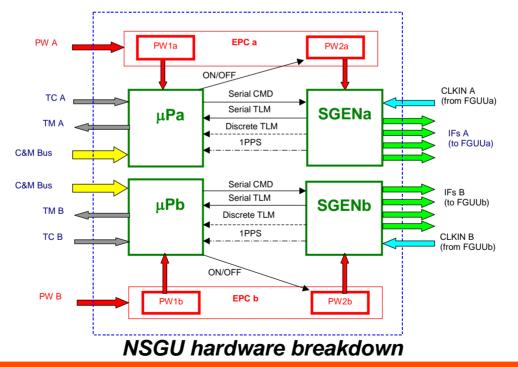
NSGU PRESENTATION

Page 5

The NSGU equipment is part of the GALILEO payload core and is responsible for the generation of the Navigation Signals

NSGU and its environment

back



NSGU PRESENTATION

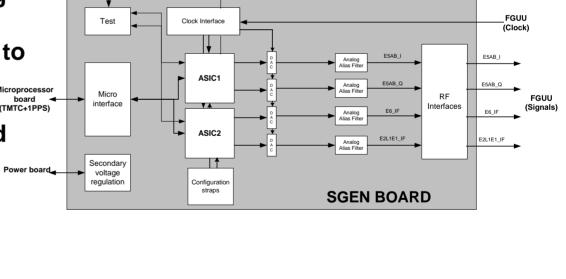
Page 6

The unit includes :

- a µP module in charge of Navigation Message data handling and
- a module named S(ignal)GEN(erator) in charge of the data spreading and signal processing&conditioning up to signal delivering to FGUU.

back

SGEN module presentation


board

SGEN module generates signals from navigation data transmitted by µP module

Test bed

Main functions of SGEN are :

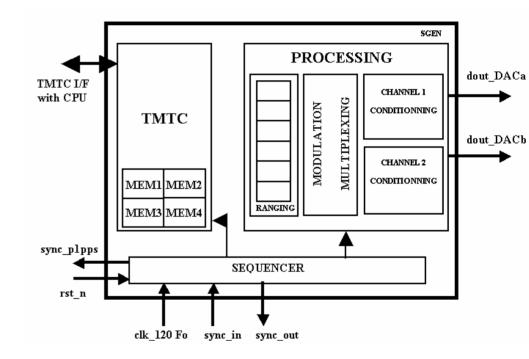
- Spreading codes generation
- Navigation data spreading
- **Digital modulation and** eventually up-conversion to IF
- Digital filtering, pre-(TMTC+1PPS) compensation of DAC and analogue part distortions (amplitude/phase)
- **Digital to Analogue** conversion
- Analogue output filtering

PPS reference

back

nex

Page 7



Page 8

ASIC presentation

Main blocks of ASIC are :

- TMTC
- SEQUENCER
- PROCESSING
 - Ranging
 - Modulation/multiplexing
 - Signal conditioning

back next

Page 9

SGEN ASIC budget

Name	SGEN (GSTBV2)	
Complexity	490 kgates	
	 + 53 kbits of memory blocks 	
Working Frequency	120 fo	
Technology	MH1RT (ATMEL 0,35 μm)	
Matrix	MH1_156E1	
	Composite matrix with 4 RAM blocks:	
	256x48 TPRAM	
Package	MQ FPF 256	
Useful pins	72	
Core Power Supply Voltage	3 V	
Periphery Power Supply Voltage	3 V	
Power Consumption	6 W	
Generated Signals (Config. 1)	E5 I and Q	
Generated Signals (Config. 2)	E6 and L1	

back next

SGEN ASIC challenges

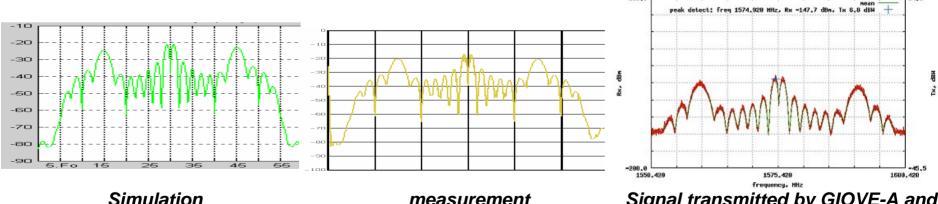
- High data frequency (120 MHz) comparing to ASIC technology 0.35µm
 - Use of retiming for critical data path
 - DC Ultra from Synopsys for logic synthesis
 - Difficulties to manage formal proof
 - Number of FF increased => power consumption increased
- CMOS DAC interface at 120 MHz
 - Difficulties to adjust data to the DAC
 - Worst case analysis at board level very accurately calculated
- ASIC Power consumption

March 2007 - M054E-5

- First estimations lower than measured worst case power consumption
- Power supply had to be regulated at 2.85V (+/- 10%) to keep consumption budget

back

ne>


Page 11

Conclusion

First run success

- Fully functional and full performance spec
- Without FPGA prototyping, in a very challenging schedule
- GIOVE-A launched on December 28th 2005
- First signal transmitted on January 12th 2006

E2L1E1 ABC INTERPLEX [BOC(15,5/2 + BOC(1,1) + BOC(1,1)] from simulation up to real signal received at Earth station

Simulation during NSGU conception

measurement during NSGU integration Signal transmitted by GIOVE-A and received at Chilbolton observatory

back

next

GALILEO IOV / NSGU ASIC

Page 12

IOV NSGU : main evolutions versus GSTB-V2 and consequences on ASIC design

- PLSU interface for PRS codes providing
 - ➔ New interface for the ASIC
- Capability to compensate analogue distortions for all the payload emission chain (NSGU but also subsequent payload units)
 - ➔ New digital filter design
- Modulation scheme concept going beyond than the GSTB-V2 one
 - GSTB-V2 modulation flexibility is based on predefined modulation schemes associated with flexibilities on codes rates and BOC frequencies
 - IOV modulation flexibility is much more open and offers also a huge flexibility on the modulation scheme for each signal.

→ This new flexible modulation scheme offering a huge amount of possibilities is more consuming in term of complexity and amount of memory

back

GALILEO IOV / NSGU ASIC

NSGE ASIC : the SGEN new generation

- Use the GSTB ASIC (SGEN) experience feedback to avoid previous development difficulties and manage the new challenges
- Use AAS previous successful experience with Atmel ATC18RHA technology to offer required flexibility

Challenges

- Higher signal generator flexibility and new services
 - Large increase of ASIC complexity
 - ATC18RHA capability widely exceeds the needed amount of gates
- High data frequency (120 MHz)
 - No more a really important difficulty with a 0.18µm technology
 - No more need of complex synthesis optimisation like retiming
- CMOS DAC interface at 120 MHz
 - DAC interface carefully studied and implemented
- ASIC Power consumption

- ATC18RHA power consumption is 5 to 7 times lower than MH1RT

back

Galileo / NSGU ASIC development

Page 14

Conclusion

- NSGE ASIC development is on-going
- Full spec ASIC thanks to ATC18RHA capabilities

back