# ATC18RHA MULTI-PROJECT WAFER

March 7, 2007

Presented by Dominique de SAINT ROMAN Aerospace Marketing Manager Atmel ASIC Business Unit



### **CNES CONTRACTS**

- Radiation evaluation of the standard CMOS 0.18µm AT58K:
  - CNES contract n° 02/0709/00
- Rad-Hard characterization of the CMOS 0.18µm AT58KRHA:
  - CNES contract n° 03/1433

Development of the memories cells and evaluation of ATC18RHA:

- CNES contract n° 721/00/8286
- ATC18RHA optimization:
  - CNES contract n° 04/1643/00-19302



### **ESA CONTRACTS**

Development of the rad hard cell libraries ATC18RHA:

- ESA contract n° 15677/01/NL/FM
- Space MPW:
  - ESA contract n° 17767/03/NL/FM



# AGENDA

- ATC18RHA SUMMARY
- SINGLE PAD RING MATRICES
- DOUBLE PAD RING MATRICES
- FORESEEN IMPROVEMENTS
- QUALIFICATION STATUS AND PLANS
- SMPW
- CURRENT BUSINESS OPPORTUNITIES
- SMPW CONTACTS
- CONCLUSIONS



### **SUMMARY (1)**

- Dual processes and libraries using ATC18 libraries, and 0.18µm CMOS process with a Radiation and Hirel Assurance plans
- Encompasses, among others, SEE hardened DFF, Cold Sparing buffers, RHBD 3.3V buffers, 400MHz+ PLL and LVDS,... characterized to mil temp range
- 5.5Mgates capability and up to 504 signal pads for standard matrixes, and up to 7.4 Mgates for dedicated design
- Production design kit released since end 03/05



### SUMMARY (2)

- Though ATC18RHA is a standard cell library, pre-defined matrices sizes and pad frames have been set so as to ease the assembly of every individual ASIC design into standard package cavity sizes and layouts
- For the smallest matrix, MQFPF 160 & 196 pin counts are introduced in the preferred package list
- For the largest matrix, introduction of 625 pins MCGA package planned during 2007



### **SUMMARY (3)**

| Vendor   | Software Package  | ΤοοΙ              | Purpose               |
|----------|-------------------|-------------------|-----------------------|
|          | Nano Encounter    | AMOEBA            | Place                 |
|          |                   | Nano-Route        | Route                 |
| Codonao  |                   | СТЅ               | Clock tree            |
| Cadence  |                   | PKS               | Physical synthesis    |
|          |                   | Voltage Storm     | Power scheme check    |
|          |                   | Celtic            | Cross talk analysis   |
| Synopsys | Physical Compiler | Physical Compiler | Physical synthesis    |
|          |                   | Primetime         | STA                   |
|          |                   | Star-RC-XT        | 3D extraction         |
|          |                   | Formality         | Equivalence checking  |
| Mentor   |                   | DFT-Advisor       | Test insertion + ATPG |



### **SINGLE PAD RING MATRICES (1)**

| One pad ring       | Size (mm)<br>S (mm²)   | Programmable<br>Pads | Buffer<br>Power<br>Supply<br>Pads | Typical<br>Nbr of<br>Usable<br>Gates |
|--------------------|------------------------|----------------------|-----------------------------------|--------------------------------------|
| ATC18RHA95_<br>220 | 6.19x6.19<br>38        | 220                  | 8                                 | 1 M                                  |
| ATC18RHA95_<br>324 | 8.76x8.76<br>77        | 324                  | 8                                 | 2.2 M                                |
| ATC18RHA95_<br>404 | 10.66x10.6<br>6<br>114 | 404                  | 8                                 | 3.5 M                                |
| ATC18RHA95_<br>504 | 13.03x13.0<br>3<br>170 | 504                  | 8                                 | 5.5 M                                |



### **SINGLE PAD RING MATRICES (2)**

#### Package matrix combinations for Single Pad Ring (SPR)

| Package<br>Variant | Number<br>of leads | ATC18RHA<br>95-220 | ATC18RHA<br>95-324 | ATC18RHA<br>95-404 | ATC18RHA<br>95-504 | Package<br>Number<br>of Signal<br>Pins |
|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|----------------------------------------|
|                    | T352               |                    | X                  | X                  | X                  | 336                                    |
| MOEDE              | 256                |                    | X                  | X                  | X                  | 240                                    |
| MQFPF              | 196                | X                  | X                  |                    |                    | 180                                    |
|                    | 160                | X                  | Х                  |                    |                    | 144                                    |
| MCGA               | 625                |                    |                    |                    | ESA contract<br>X  | 575                                    |
|                    | 472                |                    |                    | x                  | x                  | 440                                    |
|                    | 349                |                    | Х                  | Х                  | Х                  | 312                                    |



### **DOUBLE PAD RING MATRICES (1)**

- Though the physical buffers layouts are 70µm wide, the implemented pad pitch is set to 95µm to allow for:
  - Matching the ceramic package bonding fingers pitch capability
  - Adding, next to every buffer, decoupling capacitors for better noise filtering
- New assembly activities are ongoing for implementing a double ring of pads in several steps resulting:
  - On a first place, into its availability by limiting the use of the inner ring to array power supplies pads
  - And later on (2008), to extend its use to almost any type of use



### **DOUBLE PAD RING MATRICES (2)**

| Two pad rings  | Size (mm)<br>S (mm²) | Outer ring<br>Programmable<br>Pads | Inner ring<br>typical number<br>of array<br>power pads | Buffer<br>Power<br>Supply<br>Pads | Typical<br>Nbr of<br>Usable<br>Gates |
|----------------|----------------------|------------------------------------|--------------------------------------------------------|-----------------------------------|--------------------------------------|
| ATC18RHA95_220 | 6.19x6.19<br>38      | 220                                | 88                                                     | 8                                 | 0.725 M                              |
| ATC18RHA95_324 | 8.76x8.76<br>77      | 324                                | 140                                                    | 8                                 | 1.8 M                                |
| ATC18RHA95_404 | 10.66x10.66<br>114   | 404                                | 180                                                    | 8                                 | 2.97 M                               |
| ATC18RHA95_504 | 13.03x13.03<br>170   | 504                                | 232                                                    | 8                                 | 4.83 M                               |



### **SINGLE PAD RING MATRICES (3)**

#### Package matrix combinations for Double Pad Ring (DPR)

| Package<br>Variant | Number<br>of leads | ATC18RHA<br>95-220/88 | ATC18RHA<br>95-324/140 | ATC18RHA<br>95-404/180 | ATC18RHA<br>95-504/232 | Package<br>Number<br>of Signal<br>Pins |
|--------------------|--------------------|-----------------------|------------------------|------------------------|------------------------|----------------------------------------|
|                    | T352               |                       | Y                      |                        |                        | 336                                    |
| MOEDE              | 256                | Y                     |                        |                        |                        | 240                                    |
| MQFPF              | 196                |                       |                        |                        |                        | 180                                    |
|                    | 160                |                       |                        |                        |                        | 144                                    |
| MCGA               | 625                |                       |                        | Y                      | ESA contract<br>Y      | 575                                    |
|                    | 472                |                       | Y                      |                        |                        | 440                                    |
|                    | 349                | Y                     |                        |                        |                        | 312                                    |

AMEL

### **FORESEEN IMPROVEMENTS**

Add an IO25 library 2Q07
LVDS ref pads with internal routing between clusters so as to save pads and pins 2Q07
Merge/combine array and buffer grounds so as to save still more pins 3Q07



### **QUALIFICATION STATUS AND PLANS**

- Currently QML Q and V qualified
- Available with the SMD 5962-06B02
- EPPL 1 listed
- Available space quality grades: ESCC & QML Q/V
- Plan to go for E QML certification by 2H08



# **SMPW (1)**

- Concept validated since 2005 with 2 customer codes
- Rationales: share mask and silicon costs with multiple customer designs
- Implementation: when it is an ESA ASIC design, the customer doesn't pays for it
- Foreseen launch rate: every 6 months, depending on designs availability



# **SMPW (2)**

- Major steps:
  - RTE
  - ELAP
  - Detailed feasibility study
  - PO
  - Preliminary LR (optional)
  - LR
  - LRCD
  - Preliminary DR (optional)
  - DR
  - DRCD
  - Tape out
  - Prototyping
  - FM

**T0-4 MONTHS** 

T0-2 WEEKS T0 T0+16 WEEKS



### **SMPW (3)**

#### Planned launch time scales

| Runs | LRCD     | DRCD       | Prototypes | FM      |
|------|----------|------------|------------|---------|
| E1   | March 07 | July 07    | Nov 07     | June 08 |
| E2   | Sept 07  | January 08 | May 08     | Dec 08  |
| E3   | March 08 | July 08    | Nov 08     | June 09 |
| E4   | Sept 08  | January 09 | May 09     | Dec 09  |

AIMEL

### **SMPW (4)**

Candidates:

- COLE and SpW RTC with SAAB
- SCOC3, FFTC and MDPA with Astrium
- And 5 other firm candidates which cannot be disclosed

Foreseen first run launch: 3Q07



### **SMPW information**

Atmel hotline for SMPW: <u>smpw-atc18@nto.atmel.com</u>

Direct link <u>http://www.atmel.com/dyn/resources/prod\_documents/AT</u> <u>C18RHA\_SMPW.PDF</u>

#### Contact point

Jean Bouillon

Jean.bouillon@nto.atmel.com

+33 2 40 18 18 39



### CONCLUSIONS

- ATC18RHA manufacturability demonstrated with 2 TVs and alpha customer design
- SMPW manufacturability demonstrated with 2 customer designs and 2 TVs
- Still waiting the launch of the first formal SMPW run
- Meanwhile, optimization and improvements are on going
- Already MIL QML Q/V
- ESCC QML this year

